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1. Introduction 

The title of this volume is the Handbook of Industrial Organization. The literal 
interpretation of the term "industrial organization" has, in large part, receded 
from the surface when the noun or adjective " IO"  is used. As many of the 
subsequent chapters in this volume indicate, the field has moved far beyond the 
mere description of how industries are organized. Yet it is at this basic level that 
the discussion must begin. For the very name of the field alerts one to the fact 
that we are dealing with questions that do not even arise in the traditional 
Marshallian framework. There the industry, itself, was the unit of analysis. Its 
internal organization, while perhaps of anecdotal interest, was not viewed as 
being at all important for answering the important positive or normative ques- 
tions of value theory. Thus, the distinguishing feature of research in industrial 
organization is that, for some reason or other, it is not fruitful to employ the 
classical perfectly competitive model to analyze the problems of interest. This 
chapter explores the technological conditions that may make it necessary to 
abandon the competitive model: there simply may not be "enough room" in the 
market for a sufficiently large number of firms to give credence to the assumption 
of price-taking behavior. 

The chapter is organized in the following manner. Section 2 introduces the cost 
concepts required for analyzing the role of technology in the determination of 
firm and industry structure. The emphasis is on the general multiproduct case, 
although important single product aspects of the problem are also discussed. 
Section 3 presents an analysis of the role these cost concepts play in determining 
efficient industry structure. Section 4 addresses some issues that must be dealt 
with in any empirical study of technology and industry structure, as weil as 
presenting selective surveys of such studies of the telecommunications and 
electric power industries. Section 5 ends the chapter with some concluding 
observations. 

2. The multiproduct cost function I 

The most basic concept with which to characterize the productive technology 
available to the firm is the technology set T, a list of the combinations of inputs 
and outputs that are available to the firm. Thus, let x denote a vector of r inputs 

1The material in this section is based upon the discussion in Baumol, Panza_r and Willig (1982). 
Most formal proofs have been included in order to make this discussion of important multiproduct 
eost coneepts as self-contained as possible. 
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available to the firm and y a vector of possible outputs that may be selected from 
the set N = (1, 2 , . . ,  n }. Then the technology set is formally defined as 

Definition 1. The technology set 

T = ((x, y ) :  y can be produced from x}. 

In the familiar single output case, T can be directly related to the simple 
production function y = f ( x ) .  Assuming free disposal, the technology set can be 
characterized as T = ((x, y): y < f ( x ) ) .  While this definition of T is intnitively 
quite clear, more structure must be assumed in order to facilitate mathematical 
analysis. The following weak regularity condition is commonly employed: 

Regulari ty  condition R1 

Input vectors x are elements of the compact set X c R~_ and output vectors y 
are elements of the compact set Y c R~. The technology set T is a nonempty 
closed subset of X × Y, with the additional properties that (i) (0, y)  ~ T iff 
y = 0 ,  and (il) If ( x , y ) ~  T, (x 1 , y l ) ~ X ×  Y, x l>_x,  and yl  < y ,  then 
(x  1, yl)  ~ T. 

Rl(i) states that positive inputs are required to produce positive outputs. Rl(ii) is 
a "free disposal" axiom that assures that the production process is at least weakly 
monotonic, i.e. an increase in input use makes possible at least a weak increase in 
output. 

Given R1, there exists a continuous production transformation function 
cp(x, y)  that is nondecreasing in x and nonincreasing in y such that cp(x, y) _> 0 
iff (x, y)  ~ T. 2 The production transformation function provides a convenient 
functional representation of the set of feasible input /output  combinations. It is 
directly related to the familiar single output production function. For example, if 
y = f ( x )  is the production function, then cp(x, y) = f ( x )  - y is a well-defined 
production transformation function. 

Since most of the analysis of this chapter will be carried out under the 
assumption that the firms in the industry are price takers in input markets, it is 
more convenient to work with the cost function representation of the technology. 
Therefore define the multiproduct minimum cost function: 

c ( ~ , w )  = n ~ n ( w .  ~: ( x , y )  ~ ~ )  = w- «*(y , ,~ ) ,  
X 

2See McFadden (1978). 
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where x * ( y ,  w) is an efficient, cost-minimizing input  vector  for producing the 
ou tpu t  vector  y when factor  prices are given by  w. 

I t  will be  convenient  (and sometimes essential) to assume that  this central  
analyt ic  cons t ruc t  has the following smoothness  property:  

Regularity condition R2 

For  all i ~ N, if y,, > 0, then Ci =- ~C/Oyg exists. 

This  s imply  assumes that marginal  cost is weil defined for any output  that  is 
p roduced  in strictly positive quantity.  It  is not  desirable to assume that  the cost 
funct ion  is globally differentiable, because that  would rule out the possibil i ty that  
addi t ional  fixed or s tar tup costs may  occur when product ion  of another  output  
begins.  (Mathemat ical ly ,  such possibilities would require the presence of j u m p  
discontinuit ies  along the various axes.) At  this point  it is also appropr ia te  to 
in t roduce  a regulari ty condit ion defined on the t ransformaf ion  funct ion ~ ( x ,  y )  
tha t  suffices for  R2:  

Regularity condition R3 

T can be character ized by  a t ransformat ion  function, cp(x, y) ,  that  is continu- 
ously differentiable in x and in Yi, for Yi > 0, at points  (x,  y )  where x is 
cost-efficient for  y. 

A par t icular ly  convenient  and reasonably general 3 specification of a cost 
funct ion  satisfying R2 is as follows. Let C ( y ) =  F ( S }  + c ( y ) ,  where c is 
cont inuous ly  differentiable, c(O) = O, S = ( i  ~ N: Yi > 0} and F (  ~ } = 0. 4 A 
s imple  two-produe t  example  will serve to illustrate the usefulness of  this con- 
struction:  

F 12 d- clY 1 -t- c2Y2, 
C(Yx ,  Y2) = F1 q-ClYl, 

F 2 + d- c2Y2, 

for Yl > 0, Y2 > 0, 
for Yl > 0, Y2 = 0, 
for Yl = 0, Y2 > 0, 

(1) 

3This formulation is not completely general, however. In particular, it does not allow for the 
possibility that the magnitude of the jump discontinuity that result when a new product is introduced 
may depend upon the quantities of the 0utputs in the existing product mix as weil as the composition 
of that mix. 

4Here, and wherever it will not lead to confusion, the vector w will be suppressed as an argument 
of the cost ftmction. 
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with 0 < F 1, F 2 < F 12 and C(0,0) = 0. Thus, in this example, starting up 
production of Yl only requires incurring the fixed cost F 1. If the firm then begins 
production of Y2 as weil, additional fixed costs of F 12 - F 1 are incurred. The 
important  role in the determination of industry structure played by such product 
specific fixed costs will be discussed below. 

2.1. E c o n o m i e s  o f  scale  

The technological limits to competitive market structures have long been at- 
tributed to the presence of economies of scale. » Later we shall discuss its 
importance in the determination of firm and industry structure in great detail. 
But what, precisely, is meant by the term "economies of scale"? The most natural 
intuitive characterization in the single product case is: Given a proportional 
increase in all input levels, does output increase more or less than proportion- 
ately? While this technological definition is often used in undergraduate text- 
books, 6 it is not useful for current purposes, because it does not bear the desired 
relationship to the properties of the firm's cost curves. 

To understand why, suppose that in a small neighborhood of the output level 
y = f ( x ) ,  it is the case that f ( k x )  = k ' y .  Then the above definition would say 
that returns to scale were increasing, constant, or decreasing as k '  is greater than, 
equal to, or less than k. It is easy to see that increasing returns to scale, by this 
definition, impües that average costs are lower at k ' y  than they are at y.7 
However, the converse is not necessarily true. The reason is that if the firm wishes 
to increase output by the factor k', the cheapest way to do so is not necessarily a 
proport ionate increase in all input levels. Thus, even if per unit expenditure does 
not fall when output is increased by expanding all inputs proportionately (i.e. 
k > k'), it may decrease when inputs are chosen in a cost-minimizing manner. 
Part of the conceptual difficulty is due to the need to relate economies of scale 
concepts, defined in terms of properties of the productive technology without 
reference to factor prices, to the cost conditions facing the firm. For, as we shall 
see, it is the latter that play a key role in determining firm and industry structure. 

Fortunately, assuming that regularity condition R3 holds, it is possible to 
define a technologically based measure of the degree of scale economies that also 
serves to characterize important properties of firms' cost functions. 

5See Scherer (1980, ch. 4) for an extended factual and intuitive discussion of the sources of and 
limits to economies of scale in a manufacturing setting. 

6See, for example, Hirshleifer (1984, p. 329). 
7proof: AC(k '  y, w) < kw . x / k ' y  = ( k / k ' ) w  . x / y  = ( k / k ' ) A C ( y ,  w) < AC(y,  w). 
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Definition 2. Technological economies of  scale 

The degree of technological scale economies at (x, y )  ~ T is defined as S(x,  y )  
= - - (Y ' .X i (a~ /~Xi ) ) / (Y ' . y i (~~/Oyi} .  Returns to scale are said to be (locally) 
increasing, constant or decreasing as ff is greater than, equal to or less than 1. 

For  the single output case, this definition reduces to the familiar concept known 
as the elasticity of scale. 8 That concept is defined as the elasticity with respect to 
t of f ( t x ) ,  evaluated at t = 1. That is, 

e ( t x )  - t [ d f ( t x ) / d t l / f ( t x  ) = t [ ~ _ , x i f i ( t x ) ] / f ( t x ) ,  

where f/--- a f / ~ x  i. Thus, e ( x )  = ~ , x J i ( x ) / f ( x  ). To see that this is exactly equal 
to S, note that in the single output case, q0(x, y)  = f ( x )  - y. Thus, aqD/Ox~ = 
~ f / 3 x  i and aq~/3y = - 1 .  Substituting into Definition 1 yields the result that 
S = E x i f i / y  = Y' ,x i f i / f  = e (x ) .  

Now consider an alternative measure of economies of scale that is defined in 
terms of the firm's cost function: 

Definition 3. Cost function economies of scale 

The degree of cost function scale economies enjoyed by the firm at any 
output  vector y when facing factor prices w is defined as S ( y , w ) =  
C( y,  w) /[~Y~Ci(  y,  w)]. Again, returns to scale are said to be (locaUy) increasing, 
constant or decreasing as S is greater than, equal to or less than 1. 

Of course, for the single product case, S reduces to C / y C '  = A C / M C ,  the ratio 
of average cost to marginal cost. Since d A C / d y  = ( M C  - A C ) / y ,  this means 
that the firm enjoys increasing, constant or decreasing returns to scale as the 
derivative of average cost with respect to output is negative, zero or positive. 

Note  that it is not quite correct to replace this characterization with 
one that determines the presence or absence of scale economies based upon 
whether A C is decreasing or increasing. Consider, for example; the cost func- 
tion C ( y )  = y[2 - (y  - 1)3]. At y = 1, M C  = A C  = 2 and S(1) = 1. How- 
ever, A C  = [2 - (y  - 1) 3] is clearly decreasing at y = 1, since AC(1  + e) = 
2 - e  3 < A C ( 1 ) = 2 < 2 + e  3 = A C ( 1 - e )  for any small, positive e. This 
establishes 

Proposition 1 

Locally, economies of scale are sufficient but not necessary for the firm's average 
cost curve to be declining in the single output case. 

SSee, for example, Varian (1984, eh. 1) and Ferguson (1969). 
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At first, it is difficult to see the connection between the technology based 
definition of scale economies fr(x, y)  and the cost based definition S( y, w). Both 
are local concepts, possibly taking on different values at every point in their 
domain. Because S is a property of a point in input /output  space, while S is a 
property of the cost function, it is not obvious that they are closely related. In 
fact, however, they are equivalent! 

Proposition 2 

Given R1 and R3, fr(x*( y, w), y)  = S( y, w), i.e. when outputs are produced in 
a cost efficient manner, the degree of scale economies is the same, whether it is 
measured using the transformation function or the cost function. 

Proof 

The cost function results from minimizing w.  x subject to x > 0 and 
qg(x, y ) >  0. Letting 2, denote the value of the Lagrange multiplier at the 
optimum, the Kuhn-Tucker necessary conditions for this problem are 

W i -- ~ k ~ ~ / O X  i ~-~ O, 

x/* [w, - xa~/ax,] = 0,  ( 2 )  

~ ( x * , y ) > O ,  X_>0 and X c p ( x * , y ) = 0 .  (3) 

Summing (2) over all inputs and using the fact that C(y,  w) - w • x*(y,  w), 
yields: 

C( y, w) = X ~_,x*O~p/3x i. (4) 

The Lagrangian expression for this problem evaluated at the optimum is given by 

C ( y ,  w) -= w- x* - X~(x*, y ) .  

Thus, from the Envelope Theorem, we have: 

cl = - x o ~ / ~ y j .  (5) 

Multiplying (5) through by yj and summing over all outputs, using (4), yields: 

S( y, w) = - [XEx*a~/ax , ] / [xY ' . y jaw/ay , ]  = ff( x*( y, w), y) ,  
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as long as ~ 4: 0. But h = 0 and (2) would imply x* = 0, which, given (3), would 
violate R1. Q.E.D. 

Thus, we have succeeded in developing a technologically based measure of the 
degree of scale economies that can be directly related to properties of the firm's 
multiproduct cost function. 

In the subsequent discussion, I shall often adopt the assumption that the cost 
function exhibits increasing returns to scale at small output levels that are 
eventually exhausted, followed by a region of decreasing returns as output levels 
become ever larger. In the single product case, this just the traditional assump- 
tion that average cost curves are U-shaped, although the flat and rising portions 
of the U may lie beyond the range of experience. In this case, it is also well 
understood that the output level at which average cost attains its minimum plays 
a particularly important role in the determination of industry structure. However, 
in the multiproduct case, it is not clear what will fulfill this role, for average cost 
is not a clearly defined concept when the firm produces more than one product. 

Fortunately, it is not average cost itself that plays this crucial role, but rather 
that the shape of the A C curve indicates the output level at which economies of 
scale become exhausted. This concept does translate directly to the multiproduct 
world, and the easiest way to make this clear is to reduce n dimensions down to 
one by fixing the proportions in which the various outputs of the firm are 
produced. It is then possible to study the behavior of costs as a function of the 
(scalar) number of such fixed proportion bundles. Geometrically, this is equiva- 
lent to studying the behavior of total costs as production is varied along a ray 
through the origin in output space. Therefore, consider 

Definition 4. Ray average cost 

The ray average cost of producing the output vector y ~ 0, R A C ( y )  is defined 
to be C( y ) / a  • y, a > 0. Ray average cost is said to be increasing (decreasing) at 
y if RAC(ty)  is an increasing (decreasing) function of the scalar t, at t = 1. Ray 
average cost is said to be minimized at y if R A C ( y )  < RAC(ty) for all positive 
t ~ l .  

The vector of positive weights a in this definition is, of course, completely 
arbitrary, as are the units in which each output level is measured. However, this 
somewhat artificial construction of a denominator for this multiproduct average 
cost construct makes it possible to formally relate the slope of the RA C curve at 
a point in output space to the degree of scale economies experienced by the firm, 
just  as in the single product case. 
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The derivative with respect to t of RMC(ty), evaluated at t = 1, is negative, zero 
or positive as the degree of scale economies S ( y )  is greater than, equal to, or less 
than 1. 

P r o o f  

Since R A C ( t y )  = C ( t y ) / a  . ( t y ) ,  d [ R A C ( t y ) ] / d t  = [ t ( a  . y ) ( y  . ~ T C ( t y )  - 

( a  • y ) C ( t y ) ] / t 2 ( a  • y)2 = [1 - S ( t y ) ] / [ t 2 ( a  • y ) (  y • ~TC(ty)] .  Therefore, when 
t = 1, s i g n ( d R A C / d t }  = - s i g n { S ( y )  - 1}. Q.E.D. 

Hence, just as in the single product case, the firm enjoys increasing, constant or 
decreasing returns to scale depending upon whether the derivative of ray average 
cost with respect to the level of (a fixed bundle of) output is negative, zero or 
positive. 

It is now possible to make precise the above presumption that returns to scale 
are first increasing, then constant and, eventually, decreasing, i.e. RA C curves are 
U-shaped. The only complication in the multiproduct case is that the size of the 
output bundle at which economies of scale are exhausted will tend to vary with 
the composition of the bundle. Thus, instead of a single point of minimum 
efficient scale at which scale economies are first exhausted, as in the scalar output 
case, in higher dimensions there will be a locus (surface, hypersurface) of such 
points: the M-locus. As depicted in Figure 1.1, the M-locus connects all the 
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minima of the RAC curves corresponding to different output prop0rtions. 9 The 
points of the M-locus on the axes represent the minimum points of the average 
cost curves in stand alone production of the various products. 

2.2. Product specific economies of scale 1° 

Our discussion of multiproduct economies of scale revealed that that important 
property of the technology pertains to the change in costs resulting from 
proportional variations in output, i.e, as output moves along a ray through the 
origin. In terms of Figure 1.2, if one envisions the cost surface plotted in the 
vertical dimension, then economies of scale are characterized by the behavior of 
RA C as output varies along a ray such as OS. However, when one refers to a firm 
ù increasing" its scale of operations, one might just as easily have in mind an 
upward movement along W V  as an outward movement along OS. That is, the 
change in costs resulting from a proportional increase in one product (or a subset 
of products) holding other output levels constant, also has important implications 
for firm and industry structure. 

To begin to discuss this matter requires us to precisely define the incremental 
cost of product  i as the change in the firm's total cost caused by its introduction 

9Il the cost function is twice continuously differentiable, except at the axes, then M will be 
smooth, if irregular, in the interior of output space. 

t°This term seems to have first been used in Scherer et al. (1975) and Beckenstein (1975) to refer to 
a concept similar in spirit, but less useful for the present analysis. The discussion hefe closely follows 
that in Baumol, Panzar and Willig (1982, ch. 4). 
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at the level y» or, equivalently, the firm's total cost of producing y minus what 
that cost would be if the production of good i were discontinued, leaving all 
other output levels unchanged. More formally, we have 

Definition 5. lncremental cost of  a single product 

The incremental cost of the product i E N at y is IC,.(y) = C ( y )  - C(yi) ,  
where f = { j ~ N: j =~ i }, the complement of i in N, and yi is a vector with a 
zero component  in place of Yi and components equal to those of y for the 
remaining products. The average incremental cost of product i is defined as 

A I C i (  y )  ~- IC~( Y ) / Y v  

For  example, for Y2 > 0, the incremental cost of y~ in the generalized affine 
cost function of equation (1) above is given by 

I C  1 = F 12 - F 2 -b C l Y l ,  

and the average incremental cost of Yl by 

A I C  1 = c I -[- ( F  12 - F 2 ) / / y l .  

Contrast  these formulae with those that would result if the cost function were 
given by the simple affine function C = F + c ly  1 + C2y 2 for (y»  Y2) =~ (0,0). In 
that case, for Y2 > 0, 1C 1 = cly~ and AICa = c 1. The difference stems from the 
fact that there are product specific fixed costs of F 12 - F 2 in the first case and 
none in the second. (All the fixed costs are incurred as soon as any positive 
amount  of either product is produced.) These product specific fixed costs give rise 
to decreasing average incremental costs in the first case and constant average 
incremental costs in the second. By analogy to the single product case, it is 
natural to describe the former example as one that exhibits increasing product 
specific returns to scale. More precisely, we have 

Definition 6. Scale economies specific to a single product 

The degree of scale economies specific to product i at output level y is given by 
S i ( y )  = 1C1( y ) / y i C i ( y )  = A I C i / M C  i. Returns to the scale of product i at y 
are said to be increasing, decreasing or constant as S / (y )  is greater than, less 
than, or equal to 1. 

Since it is quite possible to envision a proportional expansion of a proper 
subset of the firm's products (i.e. more than 1 but less than n), it is useful to 
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generalize Definitions 5 and 6 to describe the properties of the cost function in 
such cases. 

Definition 7. Incremental cost 

The incremental cost of the product set T c N at y is given by I C r ( y  ) = 
C ( y )  - C ( y f ) .  Again, 7 ~ is the complement of T in N and y f  is that vector 
with components equal to y for products in the set 7 ~ and zero for products in 
the set T. 

Using the same technique as for RAC(y) ,  it is possible to unambiguously define 
the average incremental costs of a product set: 

Definition 8. Average incremental cost 

The average incremental cost of the product set T at y is AICT(y )  = 1CT( y ) / a  
• YT" The average incremental cost of the product set T is said to be decreasing 
(increasing) at y if AICT(ty r + y f )  is a decreasing (increasing) function of t at 
t = l .  

We can now define a measure of the degree of product set specific scale 
economies that is consistent with both the scalar and multiproduct measures 
developed so far. 

Definition 9. Product specific economies of scale 

The degree of scale economies specific to the product set T c N at y is given by 
ST(Y)  -- ICT( Y)/YT" v C ( y ) .  Product set specific economies of scale are said to 
be increasing, decreasing or constant at y as ST(y )  is greater than, less than, or 
equal to 1. 

This definition is identical to S ( y )  when T = N and equals the product specific 
measure of Definition 6 when T = ( i ) .  Also, the same arguments employed to 
establish Proposition 3, can be used to establish that  the sign of dAICT( ty) /d t ,  
evaluated at t = 1, is the same as the sign of 1 - ST(y) .  Thus, just as in the 
scalar and n product cases, the degree of economies of scale can be defined in 
terms of the derivative of the (appropriately defined) average cost curve. Note 
also that S t ( y )  > 1 implies DAICT(y)  (decreasing average incremental costs of 
the product set T at y), but, as in the scalar case, not conversely. 

Having explored the concept of product specific economies of scale it is 
interesting to examine the relationship between the overall degree of scale 
economies S ( y )  and the degree of scale economies that pertain to a subset of 
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products T and its complement 7 ~. Using Definitions 7 and 9 yields: 

S = ( a T S  T + (1 - a T ) S « ) / ( ( I C  T + I C ¢ ) / C ) ,  

15 

(6) 

where a T = YT" V C / y  • v C .  If the denominator of this expression were 1, then 
the overall degree of scale economies would be a simple weighted average of that 
of any subset of products and its complement. Indeed, if the production pro- 
cesses used in producing T and ~ê were completely separable, that denominator 
would be 1. Substituting using the definition of incremental cost allows us to 
write the denominator of (6) as 

[ c ( y )  - c ( y « )  + c ( y )  - c( yT)]/c( y) 

o r  

1 + [ c ( y )  - c ( y , )  - c( y~)]/c( y). (7) 

If the production processes for product sets T and 7 ~ were truly independent, 
then the total costs of producing all n products would be exactly equal to the 
sum of the stand-alone costs of the subsets T and 7 ~ [i.e. C(yT)  and C( yT~)]. 
However, if economies of joint production are present, total costs will be less 
than the sum of the stand-alone costs. Then (7) will be less than 1, and the overall 
degree of scale ecenomies will exceed the weighted sum of the two product 
specific measures. The next section discusses these economies of scope in detail. 

2.3. Economies of  scope 

The multiproduct cost constructs discussed in the previous sections have de- 
scribed the behavior of the cost surface over conveniently chosen cross sections 
of output space. This section discusses a cost concept that is crucial to our 
understanding of firm and industry structure, yet cannot be characterized directly 
in terms of such a "slice" of the cost surface. 

In addition to the intuitively familiar economies deriving from the shear size or 
scale of a firm's operations, cost savings may also result from the production of 
several different outputs in one firm rather than each being produced in its own 
specialized firm. That is, the scope of the firm's operations may give rise to 
economies as weil  More formally, consider 

Definition 10. Economies of scope 

Let P = ( T l , . . . ,  T m } denote a nontrivial partition of S c N. That is, UT~ = S, 
T,. • Tj = ~ for i ¢ j ,  T,. ~ N, and m > 1. Then there are economies of scope at 
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YS with respect to the partition P if ~ i [C(  YTi)] > C(Ys). There are said to be 
weak economies of scope if this inequality is weak rather than strict, and 
diseconomies of scope if the inequality is reversed. 

For example, in the simplest two product case, N = (1, 2} and P = (1, 2). Then 
economies of scope are present at the output vector (Yl, Y2) if C(yl, Y2) < 
C(y» O) + C(O, Y2). In the generalized affine example of equation (1), there are 
economies of scope if and only if F 12 < F 1 + F 2. 

In order to study the relationship between economies of scope and the 
measures of economies of scale derived above, the following quantitative descrip- 
tion is useful: 

Definition 11. Degree of scope economies 

The degree of economies of scope at y relative to the product set T and the 
partition P = {T, 7 ~ } is defined as S C T ( y  ) -~ [C(yT) + C(y~i.  ) - C( y)] /C(  y). 

The degree of economies of scope measures the percentage increase in cost that 
would result from dividing the production of y into product lines T and 7 ~. 
Breaking up the firm along these lines increase, decreases, or leaves total costs 
unchanged as SC r is greater than, less than, or equal to zero. 

If all products have positive incremental costs, it is easy to show that the 
degree of economies of scope must be less than 1 for any binary partition. 
Rearranging terms, Definition 11 can be rewritten as 

S C r ( y )  = 1 - [ I C r ( y )  + I C # ( y ) ] / C ( y )  < 1. (8) 

Equation (8) allows us to examine the role of economies of scope in relating the 
degrees of product specific and overall scale economies. Using (8), equation (6) 
can be rewritten as 

S(  y )  = [aTSr + (1 -- aT)S¢]/[1 -- SCr(  y)].  

Thus, it is the presence of economies of scope that "magnifies" the extent of 
overall economies of scale beyond what would result from a simple weighted sum 
of product specific levels. 

As mentioned briefly above, the literature abounds with discussions of the 
technological, "engineering" sources of economies of scale. Since economies of 
scope has a much briefer life as a precise analytic construct, u it is desirable to 

llThe term "economies of scope" was introduced and precisely defined in Panzar and Willig 
(1975). 
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spend some time describing, in intuitive terms, the properties of the productive 
technology that give rise to its presence as a property of the multiproduct cost 
function. The natural place to begin the search for sources of economies of scope 
is the Marshallian notion of joint production. Intuitively, it must clearly be 
cheaper to produce pairs of items such as wheat and straw, wool and mutton, and 
beef and hides in one firm than in two specialized firms. Therefore, I shall 
construct a formal model of technological joint production and derive its rela- 
tionship between that concept and economies of scope. 

Joint production, in the Marshallian sense, arises because one or more factors 
of production are public inputs. That is, once acquired for use in producing one 
good, they are costlessly available for use in the production of others. 12 Assume 
that there are n production processes: 

Y i = f i ( z  i , K ) ,  i =  1 , . . , n ,  

where z i is a vector of inputs that are directly attributable to the production of 
products i and K is the amount available of the pure public input. It is more 
convenient to work with the variable cost representation of the productive 
technology which expresses the minimized level of attributable costs, V ~, of 
producing product i as a function of y» K and the vector w of the prices of the 
private inputs. That is, 

Vi(yi, K,w)=min{zi.w: f(zi, K)<_yi}, i = l , . . . , n .  

Assuming that the public input is at least weakly productive, it must be the case 
that 

Vi(yi,  Kl)  < Vi(yi, K2), for K 2 < K 1, i = 1 , . . ,  n. (9) 

If, in addition, the public input is strictly productive in the weak sense that any 
positive amount  of the public input is better than none at all, then it is also true 
that 

W ( y , , K )  < V~(y»0),  forall y » K > O , i = l , . . . , n .  (lo) 

Finally, assume for simplicity that units of the public input are available at the 
constant price fl- Then we can state the following result: 

X2The clearest examples are to be found in the peak load pficing literature: see, for example, Clark 
(1923), Demsetz (1973) and Panzar (1976). In MarshaJl's agricultural examples, the plant or animal in 
question can be viewed as the public input. 
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Proposition 4 

£C. Panzar 

The multiproduct minimum cost function C(y, w, fl) that is dual to a set of 
multiproduct production techniques employing a public input (as described 
above) exhibits economies of scope. 

Proof 

A firm that produces at minimum cost any subset of products Tj at output levels 
• i ~ Yrj solves the program: mlnk(~iErj[V(y~, K )+  flK]}. Let Krj solve this 

program. Then the multiproduct minimum cost function has the property that 

C ( YTj , W, fl ) = E [ Vi  ( yi , w, I~ T j ) ] -1- fl KTj - 
i~ Tj" 

Now let { T 1 . . . . .  T« } constitute a nontrivial partition of N and define the feasible 
cost function: 

k 
C ( y ,  lv, fl) = E E vi(yi;w, ~ )  +i ~~,, 

j=l i~Tj 

where h" = maxj ( / ( r j  }, J = 1,•• . ,  k. Then 

Given (9) and (10), both terms on the right-hand side of this expression are 
nonpositive, with at least one strictly negative• Because C ( y )  is defined to be the 
minimum cost function, we know that C ( y )  __< C(y) .  Therefore, 

C( y) - E C( yrj) < C( y) - E C( yTj) < O• 
J J 

(11) 

But for y > 0, the inequality in (11) is precisely the definition of economies of 
scope. 

Q.E.D. 

The public input model analyzed above illustrates one technological source of 
economies of scope. Proposition 4 has demonstrated that the presence of a public 
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input is sufficient for the existence of economies of scope. However, it is rar from 
necessary. This is fortunate, since cases of joint production involving pure public 
inputs do not seem numerous enough to account for the ubiquity of multiproduct 
firms that presumably enjoy economies of scope. There is another tradition in the 
literature 13 that explains the existence of economies of scope as a result of the 
presence of inputs that, perhaps because of indivisibilities, are easily shared by 
the production processes of several different outputs. 

In order to investigate this type of phenomenon more precisely, consider a 
micro model of the sharing of "overhead" between n otherwise independent 
product ion processes. For ease of exposition, assume that there is only one such 
input, called "capital".  Let q~(k, fl) denote the cost of acquiring the vector 
k = ( k »  k z . . . . .  kù) of capital services used in production processes 1 through 
n when the relevant input prices are fl. If  q~ is strictly subadditive in k 
(i.e. ~ ( k  ° + k i, fl) < ~ ( k  °, fl) + qJ(k i, fl)), then it is natural to describe k as a 
quasipublic input, since its services can be shared by two or more product lines at 
a lower total cost than would be incurred if each obtained its capital services 
independently. An extreme example is the pure public input case considered 
above, in which q~(k, f l)  = fl maxi[ki]. Another benchmark case is when capital 
is a pure private input obtainable at a constant price per unit, so that ~b(k, fl) = 
B ~ k  i is only weakly subadditive in k. It  is also possible to envision situations in 
which the production processes impede one another, so that q~ is actually 
superadditive in k, e.g. ~(k l ,  k2, fl) = a ( f l ) ( k  1 + k2) 2. 

Perhaps more common might be a situation in which capital services 
are private inputs in the sense that a given total capacity K can be ex- 
haustively allocated across product lines (e.g. k I + k 2 < K),  but there are 
regions of increasing and decreasing returns to scale in the installation of K. 
For  example, consider the case in which + ( k »  k2, f l ) =  q~(k I + k2, f l ) =  
ao( f l )  + a l ( f l ) ( k  1 + k2) 2 = ao(f l )  + a l ( f l ) K  2. Here, it can be shown that 
and ~b are subadditive for k I + k 2 = K < ~ .  

Thus, economies of shared inputs (subadditivity of ~)  may arise either because 
the input in question is public or quasipublic or because there are economies of 
scale in its acquistion. In any event, there is an intimate connection between the 
acquisition cost properties of shared inputs and the presence or absence of 
economies of scope at the final output level: 

13Consider, for example, Hicks (1935/1952, p. 372): ".. .  almost every rinn does produce a 
considerable range of different products. It does so largely because there are economies to be got [rom 
producing them together, and these economies consist largely in the fact that the different products 
require rauch the same overhead." See also, Clemens (1950/1958, p. 263): "It is a commonplace of 
business practice that the production and sales managers work hand in hand to devise new products 
that can be produced with the company's idle capacity . . . .  What the firm has to seil is not a product, 
or even a line of products, but rather its capacity to produce," 
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Proposition 5 

J.C. Panzar 

For any nontrivial partition of N, there are economies (diseconomies) of scope if 
and only if ~k is strictly subadditive (superadditive) in the relevant range. 

Proof 

The multiproduct minimum cost function associated with the above micro model 
of the technology is given by 

C(ys, W, fl) = rr~kn{i~sVi(yi, w, ki) + ~(k,B) }. (12) 

Let the vector k(  y, w,/3) denote the argmin of program (12) for S = N, i.e. the 
tost  minimizing vector of capital services for the production of the output vector 
y. Assuming that capital services are an essential input into each production 
process implies that kg > 0 for yi > 0, while, if ~ is nondecreasing, /~i = 0 
if Yi = 0. Now let {Tl , . . . ,  Tz} be a nontrivial partition of N and let 

= ~ j [ k (  YTj)], the sum of the optimal capital services vector for each product 
subgroup if it were produced in isolation. Then from (12) and the definition of k, 
it follows that 

E Vi(yi ,  k i ( Y ) )  + ~ ( k ( Y ) )  = C ( y )  <- E v(.,vi, ki) + ~p(~r) (13) 
i~N i~N 

and 

E v'(y,,~i(y)) + ,~(~:,,(y)) _> c(.v,.,) 
i~Tj 

= E V i ( y i » k i ( Y T j ) ) F ~ ( ~ ( Y T j ) ) "  
i ~ Tj 

(14) 

Summing (14) over j = 1 . . . . .  l and subtracting (13) yields: 

1 l 

~ ( r , ( y ) )  - E ~(T,,j(y)) _< c(y) -  E c(y,j) 
j = l  j = l  

l 
< ~(k) - Y'~ ~P(k(yTj)). (15) 

j = l  
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The conclusions follow since the leftmost (rightmost) term in equation (15) is 
positive (negative) if and only if ~ is strictly superadditive (subadditive) over the 
relevant range. Q.E.D. 

This micro model of the firm's production process establishes the intimate 
connection between the existence of economies of scope and the presence of 
inputs that may be effectively shared among production processes. While the 
focus of the above discussion may have seemed to have been directed exclusively 
toward technological, engineering considerations, a broader interpretation is 
certainly possible. For example, the shareable inputs might include managerial 
expertise, a good financial rating, a sales staff, and so forth. 14 

The foregoing discussion has analyzed the sources of economies of scope at the 
micro level, in effect, deriving that property of the multiproduct cost function on 
the basis of assumptions about the way that the firm's production processes 
interact with orte another. While this may provide an intuitive understanding of 
the factors responsible for economies of scope, it is not terribly useful for 
empirically testing for their presence. It is difficult to envision obtaining the data 
that would be required to estimate qJ and evaluating whether or not it is 
subadditive. Therefore, it is useful to have available a condition defined in terms 
of properties of the multiproduct cost function that can be used to ihrer the 
presence of economies of scope. The following multiproduct cost concept will 
prove useful in this quest: 

Definition 12. Weak  cost complementarities 

A twice-differentiable multiproduct cost function exhibits weak cost complemen- 
tarities over the product set N, up to the output level y, if 02C( f~)/OyiOyj = 
Cij( f~) < 0, i ~ j ,  for all 0 < j3 < y, with the inequality strict over a set of output 
levels of nonzero measure. 

The presence of weak cost complementarities implies that the marginal cost of 
producing any one product does not increase with increases in the quantity of 
any other product. According to Sakai (1974), tl'Us is a normal property of joint 
production. Note that, because Cii is allowed to be positive, Definition 12 does 
not impose the strong condition that all of the individual product marginal cost 
curves C i are decreasing. The following result is true: 

14See Teece (1980) for a discussion of such less easily quantifiable sources of economies of scope. 
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Proposition 6 

J.C. Panzar 

A twice-differentiable multiproduct cost function that exhibits weak cost comple- 
mentarities over N up to output level y exhibits economies of scope at y with 
respect to all partitions of N. 

Proof 

Since any partition of N can be obtained by a sequence of binary partitions, it 
suffices to demonstrate the result for the partition T, T, where N 4: T = ~ .  
Rearrange terms so that the condition to be demonstrated is 

[ C ( y ~ + y ~ ) - - C ( Y T ) ] -  [ C ( y ~ ) - C ( O ) ]  < 0 .  

The first term in brackets can be rewritten as fr~i~ ~[Ci( YT + Xr~)dxi] and the 
second bracketed term as fr~,i~~[Ci(x~)dxi], where F is any smooth mono- 
tonic arc from 0 to yT~. Since these are line integrals along the common path F, 
their difference can be written as 

B i ~  [Ci(YT+ xfù) - C/(x~)] dx, 

= fr ~,L ~5 ,  ~~~+ x,)d,x~<O 
i J 

where A is a smooth monotonic arc from 0 to YT" Q.E.D. 

The only problem with this sufficient condition for economies of scope is that 
it requires that the cost function be twice differentiable everywhere, even at the 
origin and along the axes. As discussed earlier, this is overly restrictive, since it 
rules out the presence of overall and product specific fixed costs. Fortunately, the 
result can be easily extended to deal with this important complication. Without 
loss of generality, any multiproduct cost function can be expressed as C ( y )  = 
F{ S } + c ( y ) ,  where S = (i  ~ N: Yi > 0}. This formulation allows for C(.)  to 
exhibit discontinuities along the axes even if c( .)  is smooth. Thus, Proposition 6 
can be generalized to: 

Proposition 7 

If c(-)  is a twice-differentiable function that exhibits weak complementarities 
over N up to output level y, and if F is not superaddit ive- i.e. F (  S } + F(  T } 
>__ F (  S U T } for all S, T G N -  then the cost function exhibits economies of 
scope at y > 0 with respect to all partitions of N. 
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The proof  is the same as that of Proposition 6, with c( . )  replacing C(- ) ,  so that 
the above equations also contain the expression F{ N } - F ( T  ) - F (  T ). This 
term is nonpositive by hypothesis. Q.E.D. 

Proposition 7 reveals that a multiproduct cost function may exhibit economies 
of scope because of complementarities in either "fixed" or "var iable"  compo- 
nents. Clearly, economies of scope may occur even in cases in which cij > 0, as 
long as F ( - }  is sufficiently subadditive. For example, the cost function intro- 
duced in Section 2 exhibits global economies of scope even though c12 = 0 
at all output  levels. This follows from the fact that C(yl ,  Y 2 ) -  C(Yl, 0 ) -  
C(0, )32) = F12 - F1 - F2 < 0 for all y v~ 0. Similarly, suppose C ( y  1, Y2) = 
F + a(ya + y2) 2 for y ~ 0. Th_is cost function never exhibits cost complementar- 
ities, as C12 = 2a(y~ + Y2) > 0. Yet it exhibits economies of scope for all output 
vectors such that YaY2 < F/2a.~5 

2.4. Cost subadditivity and natural monopoly 

There has been a long tradition of government regulation of "monopolies"  in the 
United States, and, recently, a wave of deregulation in industries that were once 
thought to be characterized by substantial monopoly attributes. Thus, rauch of 
the empirical work on firm and industry structure to be discussed below has 
focused upon trying to determine the extent of "natural  monopoly" in various 
regulated industries. Somewhat surprisingly, until fairly recently there was con- 
siderable confusion as to what, precisely, is meant by the term "natural  
monopoly" .  16 Therefore this subsection will provide a precise definition of this 
important  concept and a discussion of the properties of the cost function that 
ensure its presence. 

Definition 13. Strict subadditivity 

A cost function C ( y )  is strictly subadditive at y if for any and all output vectors 
yl ,  y2 . . . . .  yk, yt ~ y, i = 1 , . . ,  k, such that y~yi = y, it is the case that C ( y )  
< ~ C ( y ~ ) .  

15proof: Economies of scope are present whenever the cost of producing both outputs together, 
F + a(y 1 + y2) a, is less than the total cost of producing each product in a separate firm, [Fay 2] + 
[F + ay]], i.e. when 2ayly a < F. 

16Baunaol (1977) provided the first rigorous discussion of this issue in the multiproduct setting. The 
discussion that follows is based primarily on that in Baumol, Panzar and Willig (1982, ch. 7). See also 
Sharkey (1982, ch. 4). 
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Intuitively, then, subadditivity of the cost function at y ensures that that 
output vector can be produced more cheaply by a single firm than by any group 
of two or more firms. Thus, subadditivity of the cost function can be taken as the 
obvious criterion for natural monopoly. 

Definition 14. Natural monopoly 

An industry is said to be a natural monopoly if the cost function is strictly 
subadditive over the entire relevant range of outputs. An industry is said to be a 
natural monopoly through output level y if C ( y ' )  is strictly subadditive at all 
y '  _<y. 

It is important to note that subadditivity is a local concept in that it refers to a 
particular point on the cost surface. However, determining whether or not costs 
are subadditive at any such point requires knowledge of the cost function at all 
smaller output levels. That is to say, in order to know whether single-firm 
production of y is or is not cheaper than its production by any combination of 
smaller firms, one must know the level of cost that would be incurred by any 
smaller f rm,  i.e. one taust know C(y*)  for every y* _< y. 

In the "familiar" single product case, natural monopoly has been associated 
with the presence of increasing returns to scale and falling average costs. 
However, this characterization is imprecise at best and can be seriously mislead- 
ing. In order to examine this issue, we need 

Definition 15. Declining average costs 

Average costs are strictly declining at y if there exists a 8 > 0 such that 
C(y ' ) /y '  < C(y" ) / y"  for all y '  and y"  with y - 8 < y "  < y '  < y + 8. Average 
costs are said to decline through output y if C(y') /y '  < C(y" ) / y"  for all y '  and 
y "  such that 0 < y"  < y '  _< y. 

In nontechnical discussions, the notion of falling average costs and natural 
monopoly are offen confused. The following result claxifies the relationship 
between the two for the single output case. 

Proposition 8 

Decreasing average cost through y implies that the cost function is subadditive at 
y, but  not eonversely. 
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Let yl  . . . . .  yk be any nontrivial way of dividing y among two or more firms, so 
that ~ y i = y  and y > y i >  O. Because average cost is declining and because 
yi < y, C ( y ) / y  < C ( y i ) / y  i, so that ( y i / y ) C ( y )  < C(yi) .  Summing over i yields 
~ C ( y  i) > ~ ( y i / y ) C ( y )  = C(y) ,  which is the definition of subadditivity. To 
prove that the converse is not true requires only a counterexample. Consider a 
cost function such that C(y)  = a + cy for 0 < y < yO and C(y)  = a + b + cy 
for y > yO, with a > b > 0. This cost function is clearly globally subadditive, 
since C ( y )  < a + b + c y < 2 a + c y <  C(y  1 ) +  - . .  + C ( y  k) for all k >  1 and 
y i >  0 such that ~ y i =  y. Yet there is a region in which average costs are 
increasing, s inceAC(y  ° - 8) = a / ( y  ° - 8) < (a + b ) / ( y  ° + 8) = A C ( y  ° + 8) 
f o r 0 < 8 < y ° .  Q.E.D. 

If one wishes to maintain the presumption that all AC curves are, ultimately, 
U-shaped, then another counterexample is required. (The A C curve in the 
counterexample in the above proof is falling almost everywhere, with a discontin- 
uous upward jump at yO.) Consider the cost function given by C(y)  = F + ay 2 
for y > 0. It is easy to see that average costs are U-shaped: falling for 0 < y 
< FX/ff~ =Ym and increasing for y > X/-ff-/a. Yet this cost function remains 
subadditive through y = ~ = y~. To see this, first note that, when there are 
rising marginal costs, any industry output y is divided in positive portions most 
cheaply among k different firms if each firm produces the same amount, y / k .  
Then (minimized) total industry costs for a k firm industry are k C ( y / k ) =  
kF  + ay2 /k  > F + ay 2 for all y < Ys. 

The foregoing discussion has revealed that the relationship between economies 
of scale and natural monopoly is nontrivial, even in the single product case. In 
the multiproduct world things are even more complicated. In fact there exists no 
logical connection between the two concepts in the multiproduct world! 

Proposition 9 

Economies of scale is neither necessary or sufficient for natural monopoly. 

Proof 

Non-necessity was proven as part of Proposition 8. To see that economies 
of scale is not sufficient for natural monopoly, consider the cost function 
C(y»  Y2)= ~Yl + Y2. This function exhibits economies of scale everywhere, 
as S(y»  Ya) = 2. Yet it is superadditive for all (Yl, Y2) > (0,0), since C(y l ,0  ) -t- 
C(O, Y2) = ~ + ~ < ~/Yl + Y2 = C(yl,  Y2). Q.E.D. 
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The p roof of  Proposit ion 9 has revealed that one reason that the presence of 
econornies of  scale does not suffice for natural monopo ly  is that economies of  
scale do not imply economies of  scope. Economies of scope is clearly necessary 
for natural  monopoly ,  since one way of  viewing its definition is as a requirement 
that  the cost  function be subadditive for all orthogonal divisions of the output  
vector  v. Clearly, this requirement is subsumed in those of Definition 13. More 
simply, if single firm product ion is to be less costly than any multifirm alterna- 
tive, it taust involve less costs than those that would result if the firm were split 
up along produc t  lines. 

Therefore  it should not  be surprising that economies of scope taust always be 
assumed as par t  of (or be implied by) any set of  conditions that are sufficient for 
subadditivity.  What  is somewhat surprising is that economies of scale and 
econorräes of  scope, together, do not  imply subadditivity! 

Proposition 10 

EconorNes  of  scale and economies of scope do not  suffice for subadditivity. 

Proof I 

Consider  the cost function given by 

C(Yl ,  Y2) = 10v + 6(x  - v) + z + e, 

for (Yl, Y2) ~ (0 ,0)  and C(0 ,0 )  = 0, (16) 

where x -~ max[yl ,  Y2], v - min[y  1, Y2], z - min[v, x - v], and ~ is an arbitrar- 
ily small positive n u m b e r )  8 This function would be linearly homogeneous  
(exhibiting globally constant  returns to scale) were it not  for the presence of the 
fixed c o s t e  > 0. Therefore it exhibits increasing returns to scale everywhere. For  
the case of stand-alone production,  C(yi) = 6yi + ~, so that 

C ( y l , 0  ) + C(O, Y2) = 6Yl + e + 6y 2 + E = 6(x  + v) + 2e. 

17The following counterexample is from Baumol, Panzar and Willig (1982, ch. 7, pp. 173-74 and 
ch. 9, pp. 249-251). Another can be found in Sharkey (1982, ch. 4, pp. 68-69). 

18An intuitive interpretation might go as follows. A farmer is in the business of producing "meat" 
and "fiber". The technologies available to hirn include raising sheep, raising chickens and growing 
flax. Raising sheep costs $10 per animal and yields orte unit of meat and one unit of fiber. Raising 
chickens (woolless sheep) costs $6 per unit of meat obtained and growing flax (meatless sheep) cost $6 
per unit of fiber obtained. However, since sheep will destrny the flax crop, the farmer must fence in 
the smaller of these operations at a cost of $1 per unit. When combined with a setup cost of e, these 
options ~~ve rise to the stated minimized cost function. 
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C ( y . O )  + c ( o ,  y2)  - c ( y .  y2)  = 2 v  - z + ~ >_ v + ~ > o, 
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which demonstrates that this cost function exhibits economies of scope every- 
where. Without loss of generality, assume that x =Y2 > Yl = v and consider 
dividing the production of (yl, Y2) between two firms with output levels (y~, Yl) 

and (0, Y2 - Ya). This division results in total costs of 

C ( y l ,  Yl) + C(0, Y2 - Yl) = 10o + e + 6(x - v) + e. 

Subtracting this from (16) yields: 

C(Yl ,  Y2) - C(yl ,  Yl) + C(0, Y2 - Yl) = z - ê  = min[yx, Y2 - Yl] - e. 

Since e can be chosen as small as desired without violating the properties of 
global economies of scale and scope, it is always possible to choose a positive 
e < Y2 -- Yl SO that the above expression is positive. Thus, the cost function is not 
subadditive for Yl 4:y2 )9 Q.E.D. 

In view of this result, it is clear that a stronger set of sufficient conditions is 
required to guarantee subadditivity of costs. Intuitively, this strengthening can be 
accomplished in one of two ways. We can strengthen the assumptions concerning 
the savings achieved as the scale of the firm's operations increases, or we can 
strengthen the assumptions about the extent of production cost complementari- 
ties. First, we consider the former option. The discussion in Subsection 2.3 
suggests how to proceed. Instead of requiring only that the cost function exhibit 
economies of scale with respect to the firm's entire product line, we assume that 
the cost function exhibit decreasing average incremental costs with respect to 
each product  line. That this will, in general be a more stringent requirement can 
be seen f rom equation (6), which reveals that it is quite possible for the cost 
function to exhibit overall economies of scale at y even though there may be 
decreasing product  specific returns to scale for one (or both) of the product lines 
involved. 

Proposition 11 

Decreasing average incremental costs through y for each product i ~ N and 
(weak) economies of scope at y imply that the cost function is subadditive at y. 

19This "vanishing ," can easily be dispensed with. Without it, the cost function exhibits globally 
constant retums to scale and economies of scopë but is strictly superadditive everywhere except on 
the diagonal (Yl = Y2), where it is additive. 
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Proof 

J.C. Panzar 

For clarity and notational convenience, the proof presented here will be for the 
two output case. 2° The key to the argument is the fact that DAIC in a product 
line implies that that product line must be monopolized if industry costs are to be 
minimized. Consider an output vector y = (Yu Y2) and divide it into two 
batches, 313 + .~ = y, with both .vl and ;1 > 0. Then the following lemma is true: 

Lemma 

If DAICI(y) holds, then either 

C ( y  I --t-;1, ;2)  + C(0, ;2) < C(j3)  -~- C(J~) 

Or 

(17) 

c(~1 + ~1, y,) + c(0, ~~) < c(j~) + c (~ ) .  (18) 

To establish the lemma, assume without loss of generality that the average 
incremental cost of shiffing the production of Yl from one firm to the other is no 
greater than the cost of shifting the production of )~1, i.e. 

[C(331 + )71, )32) - C( Y)] / ;1  -< [C()31 + Yl, )32) - C( j~)]/331. (19) 

From the DAIC assumption we have 

IC(Y1 + ;1, Y2) - C(0, ; 2 ) ] / ( Y l  -~- ;1) < [ C ( y )  - C(0, ; 2 ) ] / ; 1 -  

Cross-multiplying and adding and subtracting ;1C(j~) on the left-hand side 
yields: 

[ C ( y l  '[- ;1, ;2)  - C(0, ;2)] /~1 < [ C ( y )  - C(0, ; 2 ) ] / ; 1 .  

Along with (19) this implies: 

C(..1~1-~- ;1:, .Y2) Æ C(ùO) + C(,J~) - C(O, ;2) ,  

which completes the proof of the lemma. Now to complete the proof of the 
proposition suppose, without loss of generality, that (17) holds. Now applying the 
lemma again teils us that consolidating the production of product 2 will also 

2°The proof for the n output case can be found in Baumol, Panzar and Willig (1982, pp. 176-77, 
186). 
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reduce industry costs, i.e. either 

C()31-[-)~1» )32 '[- )~2) q- C(0 ,0)  < C(.~)  '[- C(j~)  
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(20) 

or 

C()31 --1-- )~1,0) + C(0, j$ 2 +)~2) < C(j3)  + C(j~) .  (21) 

If (20) holds, subadditivity is established immediately. If (8) holds, then (weak) 
economies of scope establishes the result, since, then 

C ( y )  < C(.91 +)31,0) + C(0,)32 +)72) < C(.f)  + C(j~). Q.E.D. 

Not only does this result establish sufficient conditions for an industry to be a 
natural monopoly, the lemma itself provides important information for under- 
standing industry structure. This important result bears restating. 

Proposition 12 

If the cost function exhibits Declining Average Incremental Costs for product i 
(DAICi) through y, then industry cost minimization requires that production of 
good i be consolidated in a single firm. 

It is clear why this result was important in establishing the sufficient conditions 
for natural monopoly set forth in Proposition 11, since if DAIC i holds across all 
products, the addition of economies of scope implies that all product lines must 
be monopolized together. However, Proposition 12 is more generally applicable, 
since it establishes a condition that suffices for any single product to be efficiently 
monopolized, regardless of the overall presence or absence of natural monopoly. 
As we shall see, this has important implications for public policy toward industry 
structure in cases in which there economies of scale in orte product that shares 
scope economies with another for which economies of scale are exhausted at 
relatively small output levels. 

Proposition 11 has set forth sufficient conditions for subadditivity of costs 
based upon economies of scope and a strengthened version of multiproduct 
economies of scale. Next, consider the alternative response to the problem posed 
by Proposition 10: maintaining the assumption of multiproduct economies of 
scale, while strengthening the accompanying cost complementarity condition. To 
do this requires the following multiproduct cost concept: 
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Definition 16. Trans-ray supportabißty 

A cost function C ( y )  is trans-ray supportable at y0 if there exists at least one 
trans-ray direction above which the cost surface is supportable. That is, there is a 
trans-ray hyperplane H - { y > 0: a • y = a • yO}, a > 0, for which there exists 
a constant v o and a vector v such that C ( y )  >_ v o + v • y for all y ~ H. 

This powerful condition is difficult to interpret intuitively. It can be made 
clearer with the aid of Figure 1.3, in which the vertical axis measures total cost 
and the horizontal axis coincides with the base R T  of the trans-ray slice in Figure 
1.2. Consider a point y0 on this ray. If a straight line can be drawn through 
C ( y 0 )  that nowhere rises above C(y)  over RT, then the cost function C has a 
support  at y0 over the trans-ray hyperplane H = RT. Now consider all possible 
trans-rays through y0 in the Yl, Y2 plane. If the cost function C has such a 
support  above any one of them, then it is said to be trans-ray supportable at y0. 
This brings us to a basic set of sufficient conditions for subadditivity: 

Proposition 13 

If  C ( y )  is trans-ray supportable at y0 and exhibits decreasing ray average costs 
along all rays through the origin up to H, the hyperplane of trans-ray supportabil- 
ity for y0, then C is strictly subadditive at y0. 

Proof 

Let yl  + . . .  + yk = yO, with y / ¢ 0 a n d 0 < a - y i < a . y ° , w h e r e a > 0 i s t h e  
vector of coefficients that defines H. Then the vector (a • y ° / a  • y i )  yi =_ et,yi ~ H 
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is weil defined. Letting the vector v contain the coefficients of the hyperplane that 
supports C at y0, by hypothesis, C(otiy i) >~ v"  (otty i) + %. Dividing by a i 
yields: 

c(o, i y ' ) / «  ' >_ v .  y '  + %/o,'. (22) 

Since a i > 1, declining ray average costs ensure that 

c(.v') > c (« ' y ' ) / « ' .  (23) 

Putting (22) and (23) together yields C(y i )  > v .  yi + Vo/a ( Summing over all i 
yields 

v [ ] y°+v 0 C(y°). 

Q.E.D. 

The logic behind this proof is as follows. Let k = 2, so that y l  + y2 = y0 in 
Figure 1.2. Now extend rays from the origin through yl and y2 tO H,  the 
hyperplane along which the cost function is trans-ray supportable, i.e. to the 
points a l y  I and a2y 2. By declining ray average costs, the unit cost of each of 
these commodity bundles is thereby reduced. Now, since y0 can be expressed as a 
weighted sum of a I f  and a 2 y2, trans-ray supportability ensures that the cost of 
producing it is less than or equal to a similarly weighted sum of the costs of those 
output vectors. Thus, both steps in the procedure which makes it possible to 
compare C(yO) to C(y l )  + C(y2)  serve to reduce the former relative to the 
latter. 

This combination of declining ray average cost and trans-ray supportability is 
another set of sufficient conditions for natural monopoly. A whole class of 
stronger sufficient conditions is immediately available, since any cost complemen- 
tarity condition that implies trans-ray supportability will, when combined with 
DRAC, yield subadditivity. These stronger conditions may prove easier to verify 
on the basis of the parameter values of empirically estimated cost functions. Two 
conditions that guarantee that the cost function has a support in at least one 
trans-ray direction are trans-ray convexity of the cost function and quasiconvexity 
of the cost function. 

The concept of trans-ray convexity, developed in Baumol (1977), requires that 
the cost function be convex on the trans-ray hyperplane in question, e.g. line R T  
in Figure 1.2. Since a convex function can be supported at any point in its 
domain, trans-ray convexity of the cost function with respect to any hyperplane 
immediately implies trans-ray supportability. Quasiconvexity can be shown to 
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imply that the cost function has a support over the trans-ray hyperplane defined 
by the gradient of the cost function at the point in question. 21 There is one more 
issue that must be discussed in connection with this set of sufficient conditions 
for subadditivity and natural monopoly. Trans-ray supportability (unlike trans-ray 
convexity) does not rule out the presence of product specific fixed costs. In Figure 
1.3, these would show up as jump discontinuities above R and T. As with the 
tost function C, it may still be possible to support the cost function above a point 
such as y0. Il, however, product specific fixed costs were greater, so that the 
single product cost levels dropped to s and t, then none of the cost functions 
depicted could be supported over the trans-ray in question. Yet it seems intu- 
itively clear that the degree of economies of scale and the extent of natural 
monopoly can only be enhanced by increases in fixed costs, since they would 
seem to increase the advantage of single firm production over that of any 
multifirm alternative. Therefore, let us again use the formulation introduced 
above, writing C ( y )  = F(  S ) + c(y) ,  where S is the set of outputs produced in 
strictly positive quantities. Then we can stare the following result: 

Proposition 14 

If c(y) is strictly (weakly) subadditive at y0 and F(S} is weakly (strictly) 
subadditive in the sense that F{S to T} < ( < ) F { S }  + F(T}, VS, T c N, then 
C ( y )  is strictly subadditive at yO. 

Proof 

Consider the nonzero output vectors yl, y2 . . . .  , y~ s.t. y'yS = y0. Then 

k k k 

E C ( y ' ) =  E F { S  s} + Y'~«(y'), 
s = l  s = l  s = l  

where S c = { i ~ N: Y7 > 0}. Using the weak (strict) subadditivity of F, we have 

k k 

E c (y ' )  >__ (>)F(S} + E c(y'), 
s = l  s = l  

where N ~ S = (i ~ N: ~y{ - yo > 0}. The result then follows from the strict 
(weak) subadditivity of c(-). Q.E.D. 

21The proof of  both of these assertions can be found in Baumol, Panzar and Willig (1982, ch. 4, 
appendix I, p. 91). 
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This completes the present discussion of sufficient conditions for subadditivity. 
Additional sets of sufficient conditions can be found in Baumol, Panzar and 
Willig (1982, ch. 7) and Sharkey (1982, ch. 4). 

3. Industry configurations 22 

Thus far we have examined the properties of the cost function of the firm that are 
important  determinants of firm and industry structure. However, in order to gain 
a complete understanding of market structure, it is necessary to understand the 
interactions between the determinants of firm size and the size of the market. The 
former is, as I have argued, determined in large part by the position of the cest 
function. The latter is determined by the position of the market demand curve. 
The interaction between these two exogenously given constructs places bounds 
on the structure of the industry, i.e. limits on the number and size distribution of 
firms that can be present in equilibrium. 

In a private enterprise economy any industry structure that persists in the long 
run must yield the firms in the industry at least zero economic profits. This places 
certain restrictions on the relative locations of the cost and demand curves. Thus, 
at a minimum, it must not be the case that the market demand curve lies entirely 
to the left of the firm average cost curve. For in such a circumstance the' firm and 
industry could not break even unless it had recourse to some form of discrimina- 
tory pricing policies or a subsidy. Note that this is true even though it may well 
be the case that the industry in question ought to produce because the total 
benefits to consumers, as approximated by the area under the market demand 
curve, exceed the total cost of providing, say, W units of output in Figure 1.4. 

Thus, a minimal requirement for inclusion in the set of industries relevant to 
the student of Industrial Organization, is that there exist some industry configu- 
rations that are feasible in the sense that the firms involved in the industry at 
least break even. It will prove useful to precisely define the terms to be used in 
this discussion: 

Definition 1 7. Industry configuration 

An industry configuration is a number of firms, m, and associated output vectors 
B1, y2 . . . . .  ym such that ~ y i  = Q(p). Here, p is the vector of market prices and 
Q(p)  is the system of market demand equations. 

22The discussion in this section is based upon that in chapter 5 of Baumol, Panzar and Willig 
(1982), which, in turn, built upon Baumol and Fischer (1978). 
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Definition 18. Feasible industry configuration 

An industry configuration is said to be feasible if, in addition, it is the case that 
p • y~ > C ( y i )  Vi. If, alternatively, we use the system of market inverse demand 
relationships, p(yl),  this condition becomes p(y t )  . y i>  C(yi), where 
yt = ~yi  is the industry output level. 

Since the primary focus of this analysis is on long-run industry structure, the 
first definition limits attention to industry situations in which supply equals 
demand and the second requires that each firm earns non-negative profits from 
its market activities. One must go further than this, of course. For there are 
situations in which there may exist feasible industry configurations containing 
one, four, or a hundred firms. The industry demand curve p2(yl)  in Figure 1.4 
illustrates such a situation, if one imagines that the average cost curve rises, but 
only imperceptibly, beyond M. While competitive, monopoly or oligopoly market 
structures may all be feasible for this industry, common sense and standard 
practice suggest that this industry be classified as naturally compefitive. Thus, 
another important characteristic of an industry configuration is its efficiency. 

Definition 19. Efficient industry configuration 

{ yl,  y2 . . . . .  ym} is an efficient industry configuration if and only if 

B C(yJ) = min ~ C(yJ) - C ' ( y l ) ,  
j = l  m , Y  1 . . . .  , Y ~  j = I  
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where y t  _ ~ y j  is total industry output and C I ( y i )  is the industry costfunction. 
Thus, an industry configuration is efficient if and only if it consists of a number 
of firms and a division of output that yield the lowest possible total industry costs 
of producing the industry output vector in question. 

The analysis that follows will focus on the determination of the number of 
firms that can constitute a feasible and efficient industry configuration for the 
relevant set of industry output levels. 23 This focus does not mean that it is logical 
to presume that only efficient industry configurations can be observed in real 
world industries. Rather, it is an attempt to determine an unambiguous standard 
for determining the maximum amount of concentration that is required by 
considerations of productive efficiency. Thus, as the analyses of later chapters in 
this Handbook  indicate, there may be strategic considerations that cause an 
industry to remain a monopoly even if it is structurally competitive. However, it 
is important  to recognize that this type of "marke t  failure" argument can go only 
one way. Il, for example, only one or few firms can be part  of feasible and 
efficient industry configurations, that industry simply cannot be structurally 
competitive. 

3.1. Feasible and efficient sing& product industry configurations 

I shall now relate the above constructs to the standard textbook practice of 
making inferences about market structure from the relative positions of the 
market  demand curve and the average cost function of the firm. Suppose the 
firm's average cost curve is as depicted in Figure 1.5. If  the market inverse 
demand curve is given by p l ( y ) ,  then the industry has been traditionally 
classified as a "natural  monopoly".  24 Alternatively, if the market inverse demand 
curve is given by p2(y ) ,  so that it intersects the competitive price level Pc at an 
output  level, C, that is a large multiple of M, the industry is classified as 
structurally competitive. Finally, if C is a small multiple, then the industry is 

23The determination of the relevant set of industry output levels can be a nontrivial exercise, 
especially in the multiproduct case. In the single product examples depicted in Figure 1.5, the relevant 
set of industry outputs for the industry whose inverse demand curve is given by p2(y) is the compact 
interval [W, 100M]. For output levels smaller than W, there exists no price at which even a 
monopolist could break even. For outputs greater than IOOM, consumers' wilfingness to pay is less 
than the lowest possible unit cost achievable by the industry. For the industry facing the inverse 
demand curve given by pl(y), the set of relevant output levels is empty. 

24Of course the subadditivity analysis of the previous section has revealed that the natural 
monopoly region will typically also include some output levels to the right of the minimum point of 
the average cost curve. 
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traditionally considered as likely to be an oligopoly. The following propositions 
make this standard practice precise. 25 

Proposition 15 

Assume that the average cost function C(y)/y has a unique minimum at yM, is 
strictly decreasing for 0 < y < yM, and is strictly increasing for y > ym. Then the 
cost-minimizing number of firms for the production of the industry output y l  is 
exactly yl/yM if that number is an integer. In this case, CI(y I) = 
(yI/yM)C(yM) _ y l .  AC M. If yI/yM is not an integer, then the cost-minimiz- 
ing number of firms is either the integer just smaller or the integer just larger than 
yI/yM. 

This result formalizes the intuitive notion that, with U-shaped average cost 
eurves, the most efficient way to produce any given industry output is to divide it 
up equally among the required number of minimum efficient scale firms. It goes 
beyond this, however, in that it addresses the case in which the required number 
is not an integer. This turns out to be a nontrivial extension that requires the 
hypothesis that the average cost curve be monotonically decreasing (increasing) 
for outputs smaller (greater) than y M. 

Similarly, it is possible to rigorously justify the standard praetiee of determin- 
ing industry structure using the relative positions of the market demand and 
average cost curves. 

25These results, which are stated here without proof, are from Baumol, Panzar and Willig (1982). 
Proposition 15 has also been proved by Ginsberg (1974) under more restrictive conditions. 
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Proposition 16 

Assume that the average cost function has a unique minimum a t  y M is strictly 
decreasing (increasing) for 0 < y < ( > ) y  M. Let [x] denote the smallest integer at 
least as large as x. Then no more than [Q[ACM]/y u] firms can participate in a 
feasible and efficient industry configuration and there always exists a feasible and 
efficient industry configuration containing [Q[ACM]/y ~t] - 1 firms. 

This result instructs the analyst to find the quantity demanded at the price equal 
to unit cost at y M. Next, divide that quantity by y M, the quantity that minimizes 
average cost, to determine the critical number Q[ACM]/y M -- m*. The proposi- 
tion establishes that no feasible and efficient industry configuration has more 
than [m*] firms and that there does exist a feasible and efficient industry 
configuration of [m*] - 1 firms. Note that this test requires quanfitafive informa- 
tion about the cost function only at y M. 

Thus, if m* is large, the industry is structurally competitive, because there are 
feasible and efficient industry configurations with as many as [m*] - 1 firms. If 
0 < m* < 1, the industry is a natural monopoly, since there can exist no feasible 
and efficient configurations of more than one firm. However, in this case, one 
cannot be sure that there exist any feasible configurafions. That depends upon 
whether the demand curve intersects the average cost curve or not, as in the 
case of p l ( y )  in Figure 1.4. That cannot be determined from cost information 
only at y~t. 

Before leaving the single product world, it is important to modify the above 
results to deal with an important departure from the assumption that average 
cost curves are stficfly U-shaped. Conventional wisdom holds that average costs 
in many industries decline for a range of outputs, attain their minimum at 
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Figure 1.6 
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minimum efficient scale, and then remain constant for a considerable range of 
output levels. 26 Figure 1.6 depicts such a situation, with minimum efficient scale 
being achieved at y M and average cost remaining constant through output level 
y x, the point of maximum efficient scale, and rising thereafter. 27 

If average costs are constant up to an output level at least twice as large as 
minimum efficient scale (i.e. yX> 2yM), the set of market structures that are 
consistent with feasible and efficient industry configurations is greatly expanded. 
This means that Propositions 15 must be modified: 

Proposition 1 7 

When yX > 2yM, an efficient industry configuration for industry output levels 
0 < y i < 2 y M can involve only one firm, and for larger industry outputs at least 
m firms and at most ~ firms are required, where m__ is the smallest integer greater 
than or equal to yl /yX and ~ is the largest integer less than or equal to yI/yM. 

Thus, if yM is large relative to Q(ACM), a competitive industry structure is 
inconsistent with industry cost minimization. Similarly, if Q(A C M)/y X is small, 
a concentrated industry does not result in any loss of produ,'tive efficiency, 
though, of course, there may be welfare losses from oligopolistie pricing. 

3.2. Effieient multiproduct industry configurations 

The problem of establishing bounds on the number of firms that can participate 
in an efficient industry configuration is considerably more complicated in the 
multiproduct case. First, when there are two or more products, any given 
industry output vector y r  can be apportioned among firms in ways that may 
involve some or all of the firms producing different output mixes, i.e. operating 
on different output rays. Second, as noted earlier, the size of firm at which 
economies of scale are first exhausted may differ across output rays, so that the 
set of outputs at which there are locally constant returns to scale will be a locus 
rather than a single point. Therefore, in order to get any results at all, it is 
necessary to assume that all ray average cost curves are stfictly U-shaped, so that 
all points inside (outside) the M-locus depicted in Figure 1.7 exhibit increasing 
(decreasing) returns to scale. Also, since economies of scale do not ensure 

26See Bain (1954) and the discussion in chapter 4 of Scherer (1980). 
27Of course this latter region may never be observed, since no firm would be operating there under 

most reasonable notions of industry equilibria. 
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subadditivity in the multiproduct case, it is necessary to assume that the firm cost 
function C(y) is strictly subadditive "inside" the M-locus. 2s 

Next, let M denote the convex hull of the M-locus, as illustrated in Figure 1.7. 
Then, for any given industry output vector yt, let i ( y r )  = max{ t: ty I ~ 34 } and 
_t(yl) = min{t: ty I ~ 34}. Then the following result is true: 29 

Proposition 18 

The cost-minimizing number of firms for the production of industry output 
vector yr, m(yl) ,  satisfys the following conditions: (i) m ( y i )  > 1 / 2 t ( y t )  and 
m ( y  1)>_[1/2t(yz)]; (ii) m(y  I )= 1 if _t(y I ) >  1, otherwise, 1 < m ( y  I) < 
2 / t ( y l )  and 1 < m ( y i )  < [2/_t(yl)] _ 1. 

These upper and lower bounds on the cost-minimizing number of firms teil us, in 
effect, that the "average-sized" firm in the industry must be sufficiently close to 
the M-locus. Also, it is clear that these bounds are not nearly as "t ight" as those 
in the single product cäse. Nevertheless, they äre the tightest bounds available, as 
it is possible to construct examples in which they are exactly satisfied. 3° 

28In the single product case subadditivity was implied by the assumption that average cost was 
decreasing up to yM. Actually, this assumption is required only for output vectors inside the convex 
closure of M, a concept to be defined below. 

29Baumol, Panzar and Willig (1982, proposition 5F1). The proof is given in appendix III to 
chapter 5. 

3°Banmol, Panzar and Willig (1982, pp. 119-120). 
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There is another issue in the multiproduct case. Even if the lower bound on 
m ( y I )  is large, that would not be sufficient to conclude that the industry is likely 
to be competitive. For such a finding would indicate only that one could expect a 
large number of firms involved in producing all the industry's products, not a 
large number of firms producing each product, which is required for the industry 
to be competitive. Thus, it is necessary to modify Proposition 18 in order to 
calculate bounds on the number of firms producing any particular product or 
subset of products in an efficient industry configuration: 31 

Proposition 19 

Let m s ( y l )  denote the number of firms producing products in the subset S 
in an industry configuration efficient for the production of y Z, and let 
Ms =-{ Ys: Y ~ M} denote the projection of the M-locus in the subspace 
corresponding to the product subset S, with 1Q s its convex hull. Then ms(yZ) > 
1/2tS( y t) and ms( y r) > [1/2tS( yI)], where tS( y z) - max(t: ty~ ~ 3~s}. 

The implications of Proposition 19 are illustrated in Figure 1.8 for the case of a 
two-product industry. If the object of the investigation is to determine whether or 
not the industry is a candidate for pure competition, then it is necessary to place 
large lower bounds on the number of producers of both products required in an 
efficient industry configuration producing y1 > 0. Specializing Proposition 19 to 
the case of S = {i}, the relevant lower bounds are mi(y x) >yit/2~i, and 
mi(y  I) > [yiZ/2~i], where Yi = max{yi: y E M) .  Note that it is the maximum 
value of Yi over the entire projection of the M-locus, rather than )9,, the output 
that achieves minimum efficient scale in stand-alone production, that is used to 
calculate the lower bounds. When, as drawn, the M-locus is "bowed out" from 
the axes, )Tg may be considerably larger than )3i. Also note that these are the 
relevant bounds even if the ray through yZ intersects the M-locus at output levels 
for each product that are small relative to )7~, i.e. even when an industry of 
"average" size firms would be relatively unconcentrated. 

The above discussion indicates the important role played by the shape of the 
M-locus in determining the lower bounds on the number of firms producing in an 
efficient industry configuration. Given this, it is important to know what shape 
the M-locus is "fikely" to be, based upon properties of the multiproduct cost 
function. Unfortunately, the answer here is discouraging. Under most plausible 
scenarios, the M-locus will tend to have the "bowed out" shape shown in Figure 
1.8. This is true even if the two production processes are completely independent? 
To see this, consider the rectangle formed by )31, )32, Y, and the origin. At any 
point on, say, the right border of this rectangle, S 1 = 1 and S 2 > 1. But, from 

31Baumol, Panzar and Willig (1982, proposition 5G1, p. 123). 
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equation (6), we know that S is simply a weighted sum of $1 and S 2 when the 
products  are produced independently. Therefore S must be greater than 1. When 
ray average costs are U-shaped, this means that one taust proceed outward along 
the ray from the origin before S falls to 1. This effect is increased when there are 
economies of scope, for then S exceeds the weighted average of S 1 and S 2. 
Finally, when there are product specific fixed costs, the M-locus is discontinuous 
at the axes, so that )31 and )32 lie inside the points where the M-locus reaches the 
axes. 32 Without assuming diseconomies of scope, only the limiting case in which 
(at least some) inputs are perfectly transferable between outputs can one expect 
the M-locus not to be concave to the origin. In that case, the cost function can be 
written as C ( y )  = Y¥iYi + ¢P[~-,aiyi] and the M-locus is a hyperplane (e.g. the 
outer border  of the rectangle in Figure 1.8) characterized by { y: ~a~y~ = k }, 
where kCb'(k) = ~ ( k ) .  33 

This completes the discussion of the theoretical results underlying the role 
played by technology in the determination of industry structure. The next section 
examines the extent to which practice has kept up with theory in this area. 34 

4. Empirical issues 

The remainder of this chapter is devoted to a discussion of issues that arise in 
at tempting to give empirical content to the theory developed in the previous two 
sections. The first two subsections discuss general methodological problems that 

32See Baumol, Panzar and Willig (1982, figure 9C3, p. 255). 
33Baumol, Panzar and Willig (1982, pp. 129-130). 
34As is usual, practice tends to follow theory only with a lag. This is especially true with respect to 

the material of this section. For an exception, see Wang Chiang and Friedlaender (1985). 
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often arise in empirical applications. The final two subsections discuss empirical 
tost  function studies in electric power and telecommunications. I will not be 
concerned with econometric methodology, but rather with the extent to which the 
cost functions estimated are useful for addressing the questions of industry 
structure that, presumably, provided the initial motivation for such empirical 
studies. For  as Nerlove (1963) remarked (p. 409) in his pioneering study of 
electricity supply, " the first question one must ask is 'To what use are the results 
to be put?' ". The bulk of the discussion of empirical studies will be devoted to 
those that have been published in the last few years, since surveys by Gold (1981) 
and Bailey and Friedlaender (1982) in the Journal of Economic Literature cover 
the earlier literature in some detail. 

4.1. Aggregation and the hedonic approach 35 

In most real world industries, firms are likely to be producing a large number of 
distinct products. Thus, in attempting to estimate cost functions econometrically, 
the analyst will usually be forced to aggregate the output data in some way in 
order to reduce the parameters to be estimated to a manageable number. Until 
fairly recently, the typical approach was to construct a single, scalar measure of 
output, Y - ~ a i y  i, were a > 0 is some vector of weights, often based on output 
prices. However, this procedure imposes the implicit restriction that the multi- 
product  cost function can be written as C ( y ) =  C(Y). Unfortunately, this 
imposes severe restrictions on the important multiproduct cost constructs devel- 
oped earlier in this chapter. Of course, in principle, it is possible to test the 
validity of such restrictions, but such tests usually require that sufficient data is 
available to render such restrictions unnecessary in the first place. 36 

Of course, if there is reason to believe that the true multiproduct cost function 
can be written in this simple form, all of the important multiproduct cost 
constructs discussed above can be calculated from the estimated parameters of C. 
However, there is also a situation in which it is possible to reliably infer 
something about the properties of C from estimates of C. Suppose all of the 
output  vectors in the sample lie on or close to the same ray, i.e. firms in the 
sample always produced essentially the same output mix. Then the single product 
measure of economies of scale calculated from the parameters of C will correctly 
measure the degree of multiproduct scale economies along the ray in question. In 
particular, the intersection of that ray with the M-locus, at which returns to scale 
are locally constant, can be correctly identified. It is important to note, however, 

35Most of this section is drawn from the discussion in Baumol, Panzar and Willig (1982, pp. 
446-448). 

36See Blackorby, Primont and Russell (1977) or Denny and Fuss (1977) for discussions of 
econometric aggregation tests. 
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that it is not generally valid to extrapolate those measures to output mixes 
outside the sample. As the discussion of the previous section indicates, knowledge 
of the entire M-locus is generally required when calculating bounds on the 
number of firms in an efficient industry configuration for any output mix. 

During the last decade, estimates of hedonic cost functions have become 
common in the literature. These represent a compromise between the estimation 
of scalar aggregate and rnultiproduct product cost functions. This approach was 
pioneered by Spady and Friedlaender (1978) in their analysis of trucking firms. 
Rather than attempt to estimate costs as a function of the (large) number of 
different types of freight carried over a (very large) number of origin and 
destination pairs, they specified costs as a function of aggregate ton-miles and 
hedonic variables such as the average length of haul. Formally, a hedonic cost 
function can be expressed as C(Y, Z 1 . . . .  , Zk), where Y is, again, a scalar 
measure of aggregate output and Z are hedonic measures of the output mix. Of 
course, if enough such hedonic measures are included, then the output vector y 
could be reconstructed from Y and Z, so that there would exist a hedonic cost 
function representation equivalent to the true multiproduct cost function. How- 
ever its estimation would; in general, require estimating the same number of 
parameters. 

Use of hedonic cost functions enables the investigator to, in effect, perform 
often unavoidable aggregation based upon informed judgements about character- 
istics that are likely to have important impacts upon the costs associated with 
producing a given aggregate output vector. If the resulting hedonic cost function 
is judged to be good approximation of the true multiproduct cost function, the 
multiproduct cost characteristics developed above can be computed from its 
parameter estimates and employed in an analysis of industry structure. This last 
step requires some care in interpretation, however, even if the specified hedonic 
cost function is assumed to reflect the true multiproduct cost structure. 

For example, consider the recent study of airline cost by Caves, Christensen 
and Tretheway (1984). They estimate a cost function for airlines as a function of, 
inter alia, aggregate output (e.g. revenue passenger miles, R P M )  and P, the 
number of points served by the firm. Therefore, assume that the true cost 
function can be written as C ( y )  = H ( G ( Y ) ,  P} ,  where Y is aggregate output 
and P is the number of points served. Caves et al. define two cost concepts to be 
used in describing the cost characteristics of airline networks, returns to density, 
R T D  = H / Y G '  and "returns to scale", R T S  = H / [ P H p  + YG']. R T D  mea- 
sures the proportional increase in output made possible by a proprotional 
increase in all inputs, with points served (and other hedonic measures) held 
constant. R T S  measures the proportional increase in output and points served 
made possible by a proportional increase in all inputs, ceteris paribus. At the 
sample mean, they found significant returns to density ( R T D  = 1.2), but essen- 
tially constant "returns to scale" ( R T S  = 1.0). 
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How do these cost concepts relate to those that have been shown to be 
important  for the determination of industry structure earlier in this chapter? 
In order to examine this question, it is necessary to relate Caves et al.'s hedonic 
cost function more directly to an underlying multiproduct cost function. For 
expository purposes, it is convenient to assume a simple structure for H, i.e. 
H = c Y  + rP ,  where c and r are positive constants. Then the underlying 
multiproduct cost function can be written as 

C(y) =« .  E y , + r P = « .  Y+rP=H{G(Y),P}, 
i ~ T  

where T is the set of markets served and P is the cardinality of T. 37 Now it is 
easy to see that returns to density are precisely equal to (what has been 
previously defined to be) the degree of multiproduct economies of scale! That is, 
R T D  = [(c • Y + r P ) / c  • Y]  = C(  y ) /17"C(  y )  • y = S. Also, in this example it is 
easy to see that Caves et al.'s measure of "returns to scale" is always equal to 1. 
Unfortunately,  it is also easy to see that that fact is not particularly relevant for 
the analysis of industry structure described in Sections 2 and 3. 

Examining this example in terms of the cost concepts developed above, reveals 
globally increasing returns to scale, both with respect to the entire product set 
and any subset of products. That is, S and S r both exceed 1 at all output levels 
and for all subsets of markets T. There are no economies of scope in this 
example. However, the more general hedonic specification is consistent with 
either economies or diseconomies of scope. These would be determined by the 
returns to scale properties of G and of H with respect to P. The extent of 
economies of scope would, of course be useful in determining efficient firm size. 
However, measures of economies of scope were not computed. 

Industries characterized by network technologies are disproportionately repre- 
sented in econometric cost studies. There are two related reasons for this. First, 
network technologies are usually thought to be characterized by economies of 
scale. This has resulted in most of them being regulated over the years, which, in 
turn, has meant  rauch better than average data availability for cost function 
estimation. Furthermore, the opening of such industries to competitive entry has 
orten focused important policy debates on the extent of scale economies that may 
or may not be present. Unfortunately, their network structure makes the aggrega- 
tion problem under discussion particularly severe. If point-to-point transporta- 
tion (or transmission) movements are viewed as the true cost-causitive outputs of 
the firm, a firm operating even a relatively small network must be viewed as 
producing an astronomical number of products. The hedonic approach has, in 
large part, arisen as an attempt to deal with the problem of networks. 

37For ease of exposition, I am ignoring the network aspects of airline costs, so that the number of 
economically distinct outputs is the same as the number of points served, as in a simple star-shaped 
network. 
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In an important recent paper, Spady (1985) proposes an innovative solution to 
this problem. By assuming that the cost of production on each fink of the 
network are quadratic, he is able to construct a multiproduct cost function that is 
econometrically parsimonious, yet a true aggregate of the underlying production 
processes. All that is required, in addition to aggregate data, are estimates of the 
first and second moments of the distribution of the links' traffic and tectmological 
characteristics. This exciting approach has, to my knowledge, yet to be empiri- 
cally implemented. 

4.2. Long-run and short-run measures of returns to scale 

The discussion in this chapter has focused on the properties of the long-run cost 
function and the role that they play in determining equilibrium industry struc- 
ture. However, in an empirical application that attempts to estimate the cost 
function of an individual firm, the data available may be better suited for 
estimating a short-run cost function: a specification that assumes that only some 
of the inputs available to the firm are set at their cost-minimizing levels. For 
example, if a cost function were to be estimated using montlily data, it would be 
unrealistic to assume that the firms capital inputs were adjusted to the cost-mini- 
mizing level associated with each month's rate of output. In that case, it might be 
appropriate to estimate a variable cost function representation of the technology. 
Conceptually, this is done by dividing the vector of inputs available to the firm 
into two categories: x = (v, k). The variable inputs v are assumed to be observed 
at their cost-minimizing levels but the fixed inputs k may or may not be. Then 
I1( y, k, s) is defined as the minimum expenditure on variable inputs v required 
to produce the output vector y, given the availability of the fixed inputs at 
level k, provided that y can be produced from k. That is, V(y, k, s ) =  
minv(s-v:  (v, k, y ) ~  T}, where s is the vector of variable input prices. 
Examples of empirical cost studies that estimate variable cost functions include 
the telecommunications study by Christensen, Cummings and Schoech (1983) 
and the railroad study of Friedlaender and Spady (1981). 

Once estimates of the parameters of a variable cost function are obtained, 
however, how does one calculate the degree of economies of scale to be used for 
policy purposes? For example, Braeutigam and Daughety (1983) present the 
following measure of economies of scale: 

ù {~- z/~,ù,»,,}/{~I,.,y,l,,}. 
This measure of economies of scale is defined as a function of variable input 
prices, output levels and fixed input levels, i.e. S = S(y,  k, s). Clearly, this 
measure differs from both S(y,  w) and S(y,  x), the measures discussed in 



46 ZC. Panzar 

Subsection 2.1. However, the relationships between these measures should be 
clear. S is a hybrid of the technological and cost function measures of economies 
of scale. S reflects a fundamental property of the productive technology and can 
be calculated at every point in input /output  space, X × Y. S measures the 
elasticity of  costs with respect to output(s). By construction, it pertains only to 
cost-efficient input /output  combinaüons. 

If one assumes, instead, that only a subset of inputs is selecte&optimally, S is 
the resulting measure of economies of scale. In fact, using the same argument 
that established Proposition 2, it is possible to show that S( y, *3( y, k, s), k)  = 
S ( y ,  k, s), where ,3 is the argmin of the above variable cost-minimization 
problem. Thus, the technological and variable cost measures of the degree of 
scale economies coincide at those input /output  points at which the variable 
inputs are chosen optimally. Similarly, it is also the case that S( y, k*( y, r, s), s )  
= S( y, w), where r is the vector of fixed input prices, so that w = (r, s). 

Given that it is sometimes necessary and /o r  desirable to estimate a variable 
cost function, there remains the question of how to use the estimates to provide 
the most appropriate information regarding economies of scale. As Braeutigam 
and Daughety (1983) point out, one would not expect S and S to be equal unless 
the fixed inputs happen to be at their cost-minimizing levels or the technology is 
homothetic. 38 Furthermore, they show that it is generaUy not possible to make 
any inferences about the relative magnitudes of S and S for any given y and s. 
Thus, if one wishes, for policy purposes, to determine the extent of economies of 
scale in the long run, there is no alternative but to use the variable cost function 
estimates and the vector of fixed input factor prices to derive the long-run cost 
function C( y, s, r), which can be used to calculate S. 39 Of course, this eliminates 
one of the perceived advantages of the variable cost function approach, the 
ability to obtain estimates without observations on the prices of fixed factors. 
This issue is particularly important for studies in which the "fixed factor" is 
actually some accounting measure of assets for which it is difficult to impute a 
price. 

4.3. Empirical studies of electric power 

Nerlove (1963) provided a pioneering study of economies of scale in electricity 
generation based upon modern duality theory. Using data from 1955, he esti- 
mated a cost function that included factor prices as arguments. His basic 

3Sln th.is context the appropriate multiproduct version of homotheficity reqtfires that the transfor- 
maUon function can be written as ~0(v, k, y) = F(h(v, k), y), with h linearly homogeneous. That is, 
there exists a natural aggregate of inputs that ean be used to produce any desired output mix. In that 
oase, S, the technological measure of economies of seale, is constant along any isoquant. 

39This is the method used by Friedlaender and Spady (1981) in their study of rail and trueking 
costs. 
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estimation equation was a Cobb-Douglas log-linear specification of the cost 
function: 

InC = K + (1/S)in y + (1 /S )Ea i [ ln  p~]. 

Here S is the (single product) degree of scale economies, the Pi refer to the prices 
of labor, fuel and capital, and ~a i  is constrained to equal unity. Two variants of 
this model yielded estimates of S --- 1.4 [Nerlove (1963, tables 3 and 4)]. To put 
this in perspective, this would mean that the utility's costs would exceed its 
revenues by forty percent if its output were priced at marginal cost. 

As Nerlove recognized, this functional form has the disadvantage of imposing 
the condition that the degree of returns to scale is the same for all output levels 
and factor prices. And, indeed, examination of the residuals from this basic 
regression equation revealed that the true relationship of costs to output could 
not be log-linear. Therefore he tried various techniques to allow for the intuitivety 
plausible possibility that the degree of scale economies decreases as output 
increases. Dividing the sample into five output categories yielded estimates 
(depending on the treatment of the price of capital) ranging from S > 2.5 at 
small output levels to S = 0.95 for the largest output category. This suggested 
that economies of scale were exhausted at large plant sizes. 

In order to examine the robustness of these results, Nerlove then estimated 
equations based upon what he referred to as the hypothesis of "continuous 
neutral variations in returns to scale". That is, he assumed that the degree of 
economies of scale depended upon the output level of the firm but not upon the 
factor prices it face& (It is easy to show that this implies that the underlying 
production function taust be homothetic.) The estimated equations were of the 
form: 

InC = K + et[In y] + il[In y]2 + Ea i [ ln  Pi]. 

These estimates also yielded the result that the degree of economies of scale 
declined with output. However, in this case, economäes of scale persisted through- 
out, with estimates ranging from S = 3.0 at low output levels to S -- 1.7 for the 
largest plants in the sample. [However, Christensen and Greene (1976) point out 
an error in Nerlove's calculation of the degree of scale economies from bis 
estimated parameter values. When corrected, the results of this regression equa- 
tion also show that economies of scale are exhausted by firms with the largest 
output levels.] 

Nerlove's pioneering study was important because it clearly established the 
cost function, with its factor price arguments, as the proper framework in which 
to study the returns to scale experience of public utilities and because it 
demonstrated that economies of scale tend to decline with output, thereby setting 
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the stage for the application of more flexible function forms better suited to 
capture this effect empirically. 

Christensen and Greene (1976) studied economies of scale in the electric power 
industry using data from 1970. They employed the translog cost function: 

[INC] = K + a Y  + f ly2  + E a i P  i _1_ E E b u P i P j  q- EYiYPi,, (24) 

where capital letters denote the natural logarithms of the independent variables y 
and the Pc In order for (24) to represent a proper cost function, it is required 
that ~ a  i = 1, ~7 i  = 0 and ~,ibo = ~_,jbij = ~~bi j  = 0. This functional form 
aUowed them to encompass all of the equations estimated by Nerlove as special 
cases and statistically test the validity of the implied restrictions. For example, if 
orte restricts f l - -b i j  =7,-= 0, equation (24) reduces to the homogeneous 
Cobb-Douglas function, with a degree of scale economies ( l / a )  that is constant 
overall output ranges and unaffected by changes in factor prices. Allowing for 
fl ¢ 0 yields Neflove's homothetic model in which the degree of scale economies 
varies with output (S = 1 / ( a  + 2flY)) but not factor prices, and retains the 
property that the elasticity of substitution between factors of production is fixed 
at unity. 

Christensen and Greene found it possible to reject the hypotheses of homo- 
geneity, homotheticity and unitary elasticities of substitution in the generation of 
electric power, both for their own 1970 data and Nerlove's 1955 data. They also 
found that maintaining the hypothesis of homogeneity results in estimates of 
global economies of scale, whereas more flexible representations again reveal that 
economies of scale are exhausted at very large scales of operation. One implica- 
tion of their estimates that they do not discuss is the effects of factor price 
changes on the degree of scale economies. Based on the parameter values 
reported in their table 4, an increase in the price of labor (fuel) results in a small 
(~  2 percent), but stafistically significant, increase (decrease) in the degree of 
scale economies enjoyed by firms in both 1955 and 1970. Changes in the price of 
capital appear to have no effect on the degree of scale economies. (The coeffi- 
cients are extremely small and insignificant for both years.) 

Christensen and Greene conclude their article with an illuminating presenta- 
tion of the average cost curves based on the estimates of the translog model. One 
interesting finding was that, while the representative average cost curve had 
shifted downward considerably, the shape of the average cost curve did not 
change. Thus, since firms had expanded their output levels considerably, far 
fewer firms were operating with substantial unexploited economies of scale: the 
figures for steam-generated electric power were 48.7 percent in 1970 versus 74.1 
percent in 1955. Finally, while the estimated translog average cost curve was 
U-shaped, there was a large segment that was approximately flat. This range of 
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output levels - from 19 to 67 billion kWh - was produced by firms producing 44.6 
percent of total output. 

The papers by Nerlove, and Christensen and Greene, established standards for 
rigor, thoroughness and precision in the empirical study of economies of scale. 
However, they did not even begin to deal with the multiproduct nature of the 
world inhabited by the firms that they study. Electric utilities orten seil natural 
gas as weil. Electricity produced at peak times of the day or seasons of the year 
may cause the firm to incur rauch greater costs than electricity generated oft 
peak. If the peak/off  peak mix varies across firms (i.e. they are not on the same 
output ray), estimates of single output cost functions will be biased. And what of 
the costs of transmission and distribution, and the interrelationship between 
those costs and the costs of generation? Empirical work addressing such multi- 
product issues did not really begin until the theoretical constructs discussed in 
previous sections had been developed. 

Mayo (1984) attempted to extend the Christensen and Greene (1976) type of 
analysis of the efficiency of industry structure in the case of regulated public 
utilities to the case of multiple outputs, electricity (kilowatt hours) and natural 
gas (cubic feet). He estimated two forms of the quadratic (in outputs) cost 
function for electric and gas utilities using data from 1979. In his single intercept 
equation, Mayo found that the estimated coefficient of the electricity-gas interac- 
tion term was positive. This guaranteed that diseconomies of scope would 
eventually set in, despite the positive estimate of the intercept (fixed cost) term. 
What is somewhat surprising is that the magnitude of the estimated coefficients 
are such that diseconomies of scope set in at very small output levels. The 
estimated coefficient of the quadratic electricity term was also positive, which, in 
the single intercept case, ensures that there are globally decreasing electricity 
specific returns to scale. Mayo's estimates also yielded the result that overall 
returns to scale were exhausted at rather small electricity output levels for all of 
the gas electricity product mixes considered. This was true despite the negative 
estimated coefficient of the quadratic gas term (and the resulting global gas 
specific economies of scale). 

Using 1981 data for the same sample, but leaving out utilities that generate 
more than 10 percent of their electricity using nuclear plants, Chappell and 
Wilder (1986) obtained estimates of the parameters of the single intercept 
quadratic cost function that yielded significantly different measures of scale and 
scope economies. That is to say, their estimated coefficients yielded measures of 
multiproduct, electricity specific and gas specific economies of scale that were not 
exhausted by even the largest firms in the sample, and economies of scope 
prevailed over most of the sample. They attributed the difference between their 
results and Mayo's to the fact that the relatively larger nuclear utifities had 
considerably higher ex post cost levels. In response, Mayo (1986) argued that 
nuclear generation of electric power is a different technique but not a different 
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teehnology, and therefore firms that employ it should not be excluded from the 
sample on a priori grounds. I agree with his position in principle, but the fact 
that the presence of a relatively few large, high cost firms can dramatically alter 
the fange over which economies of scale and scope pertain is clearly a weakness 
of the simple quadratic cost specification. 

From a methodological point of view, these studies dismiss too readily the use 
of multiple dummy variables in attempting to measure the fixed costs of the firms 
in the sample. The use of a single intercept term in a quadratic cost specification 
is overly restrictive because it assumes away product specific fixed costs and 
reduces the determination of scope economies to the interplay between the level 
of fixed costs and the magnitude of the coefficient of the quadratic interaction 
term. In the two-output case, it is possible to use dummy variables to attempt to 
measure the fixed costs associated with all possible product sets. That is, it is a 
simple matter to estimate the function F{S} VS c_ N. What is more, it is 
possible to do this using only two dummy variables. Mayo did this in his Flexible 
Fixed Cost Quadratic (FFCQ) model. Unfortunately, he decided to favor the 
single intercept quadratic model on questionable statistical grounds. 

Recall what it is one hopes to accomplish via the use of dummy variables. 
Under the maintained hypothesis that variable costs a r e a  quadratic function of 
electricity and gas output levels, the object of using dummy variables is to 
distinguish the intercept (fixed cost) terms of the cost functions of three types of 
firms: those producing gas only, electricity only, and both electricity and gas. Ler 
FG, FE and FB, respectively, denote the true intercept terms of these three cost 
functions. Then an appropriate estimating equation would be given by 

C = Bo + BIE + B2t~ + c. 

Here, E(B) are dummy variables that take on a value of 1 if electricity only 
(both electricity and gas) are produced by the firm and zero otherwise and c is a 
quadratic function of gas and electricity output levels. If this equation is 
estimated appropriately, the stand-alone fixed cost of gas production, FG, is 
estimated by the ëstimated value of the parameter flo, FE by r »  and FB by fl2- 

Now consider the cost function estimating equation Mayo used: 

C = Co + a lE + a2G + c. 

In this equation, E(G) are dummy variables that take on a value of 1 whenever 
electricity (gas) is produced by the firm and zero otherwise, and c is a quadratic 
function of gas and electricity output levels. This specification directly estimates 
the incremental fixed costs of electricity and gas production as a 1 and a a  
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respectively. Thus, FG is measured by a o + aa, FE by a 0 + « »  and FB by 

a o + a 1 + a 2. 
Mayo performed an F-test that indicated that one could not reject the 

hypothesis that a 1 = a 2 = 0. However, the fact that one cannot be 90 percent or 
95 percent certain that a coefficient is not zero does not make it appropriate to 
treat it as zero in one's calculations. (The estimate of a 0 in Mayo's Quadratic 
model is not significantly greater than zero, yet he uses its positive value in 
computing the degrees of scale and scope economies.) 

4. 4. Empirical studies of telecommunications 

The U.S. Department of Justice filed an antitrust suit against the Bell System in 
1974, seeking divestiture of the Bell Operating Companies, AT & T Long Lines, 
Western Electric and Bell Telephone Laboratories. Although it was not the main 
focus of the legal case raised by the DOJ, a part of AT & T's iNtiM defensive 
position was that the break-up of the Bell System's "natural monopoly" would 
result in a loss of economic efficiency. This issue was also at least implicit in the 
policy debate concerning the entry of MCI and others into AT & T's long-dis- 
tance monopoly markets. The Bell System's position was that these long-distance 
markets were natural monopolies and that wasteful duplication of facilities would 
result if competitive entry were permitted and protected. 

Thus, empirically determining the extent of economies of scale in the telecom- 
munications industry became more than a mere academic exercise. As in the case 
of railroads and trucking, the presence or absence of empirically estimated 
economies of scale was thought to be vitally important for public policy pur- 
poses. However, in the case of telecommunications, it was recognized rather early 
on that the multiproduct nature of the technology should play an important role 
in the empirical work. Unfortunately, none of the studies conducted during the 
late 1970s and early 1980s using U.S. data attempted to shed light upon the 
multiproduct cost concepts developed earlier in this chapter. However, multi- 
product cost studies were made employing data from Bell Canada. All of this 
work is discussed in detail in an important survey article by Fuss (1983). The 
discussion that follows draws heavily from that source. 

The studies covered by Fuss's survey include Fuss and Waverman (1981), 
Denny et al. (1981), Nadiri and Shankerman (1981), Breslaw and Smith (1980), 
Denny and Fuss (1980), and Christensen et al. (1983). All of these are translog- 
based studies. The survey restricts its attention to these papers because the 
maintained hypotheses (homogeneity, constant elasticities of substitution, Hicks- 
neutral technical change, etc.) in earlier studies were statistically tested and 
rejected using the more flexible translog specification. Of course, it is not 
immediately clear that flexibility of the cost function with respect to input prices 
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is the most important criterion to use when attempting to evaluate empirical 
estimates of its multiproduct cost properties. 

The first issue that must be faced when using the translog flexible functional 
form to characterize a multiproduct cost function is how to handle observations 
which contain zero values for orte or more output variables. The translog cost 
function is undefined at such points, since it is a quadratic function of the 
logarithms of the independent variables. This issue does not arise in the estima- 
tion of the traditional single product translog cost function, since the indepen- 
dent variables (output and factor prices) could take on only strictly positive 
values. Even if all output levels are strictly positive throughout the sample, 
calculation of important, multiproduct cost measures such as the degrees of 
economies of scope or product specific economies of scale require evaluating the 
cost function at points at which one or more output levels are zero. 

Fuss and Waverman (1981) circumvent that problem by employing a Box-Cox 
transformation of the output variables: )~i = (yO _ 1)/0. Here, 0 is a parameter 
to be estimated and ~; replaces [log yi] in the translog estimation equation. Since 
)~~ approaches [ln y~] as 0 approaches 0, the translog specification can be approxi- 
mated arbitrarily closely by a sufficiently small value of 0. Similarly, when 0 = 1, 
a linear specification results. Thus, for 0 in the unit interval, this hybrid translog 
cost function can be thought of as a mixture of linear and log-linear functional 
forms. 

Even when the problems posed by zero output levels are solved, there remains 
the difficulty of calculating and interpreting the multiproduct cost constructs 
obtained from the estimated equations. For flexible functional forms, measures of 
economies of scale and other multiproduct cost constructs depend upon output 
levels as well as the values of estimated parameters. This is a desirable property, 
since one intuitively expects that the degree of economies scale or scope decline 
with size. However, this poses a difficult problem for the researcher attempting to 
summarize his results concisely, since the degrees of economies of scope and 
(various types of) economies of scale will be different at each point in the sample. 
The standard technique employed in practice is to normalize the data by dividing 
the values of each observed variable by its sample mean. Since both [log Yi] and 
.9~ are zero when Yi = 1, most of the coefficients of second-order terms in the 
formulae for the degree of economies of scale and scope are eliminated when 
these measures are evaluated at the sample means. Thus, it has become standard 
to summarize regression results by reporting the magnitudes of interest at the 
sample mean of the variables in the regression equation. However, it is important 
to remember that this normalization in no way eliminates the substantial varia- 
tion in, say, the degree of scale economies that may in fact be present over the 
range of output levels in the sample. 

Using this approach, it is straighfforward to show that, for both the translog 
and hybrid translog cost functions, the degree of multiproduct economies of scale 
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evaluated at the sample mean is given by S = 1/[~fii]. In order to measure the 
extent of economies of scope or product specific economies of scale, it is 
necessary that the cost function specified be defined when one or more output 
levels are zero. Thus, these magnitudes cannot be measured from an estimated 
translog tost function. However, for the hybrid translog cost function, the degree 
of scale economies specific to output i evaluated at the sample mean, for 
example, is given by 

S ,=  {exp[ao] - exp[a o - f l J O  + 8 i i / 2 O 2 ] } / { a i  • exp[ao] } . 

Summarizing the results of the translog studies referred to äbove, the estimates 
of overall economies of scale, evaluated at sample means, range from 0.94 for 
Fuss and Waverman's (1981) hybrid translog to Nadiri and Shankerman's (1981) 
estimate of 2.12, with all studies except the former yielding estimates significantly 
greater than 1. 40 Since the calculation of the degrees of economies of scope or 
product specific economies of scale requires that the cost function in question be 
defined for zero output levels, only the Fuss and Waverman (1981) hybrid 
translog study could provide empirical tests for the presence or absence of these 
economies. They find no evidence of economies of scope in the operations of Bell 
Canada. They did find evidence of product specific increasing returns to scale for 
private line services at the sample mean. However, they determined that these 
increasing returns would be exhausted if Bell Canada were to serve the entire 
Canadian private line market in 1980. Thus, the stfictures of Proposition 12 do 
not hold, and one c a n n o t  conclude that industry cost minimization requires that 
all private line services be provided by Bell Canada. 

The two studies that yielded the upper and lower extremes of the estimates of 
the degree of overall scale economies also raise two important issues in empirical 
cost function studies: the treatment of technological change and the specification 
of the functional form to be estimated. The Nadiri and Shankerman (1981) study 
was focused on assessing technological change and the growth of total factor 
productivity in the Bell System. They obtained the highest estimate of the degree 
of overall scale economies. As mentioned above, the Fuss and Waverman study 
was the only one of the group employing the hybrid translog cost function. They 
obtained the lowest estimate of overall economies of scale. 

Nadiri and Shankerman's study differed Dom the others under discussion in 
two primary respects: they used R&D expenditures to characterize technological 
change and they used U.S. rather than Canadian data. [Interestingly, the study of 
Christensen et al. (1983) shared these two characteristics and produced estimates 
of overall economies of scale nearly as large: 1.73.] While it may be the case that 
economies of scale are simply greater in the United States than in Canada, the 

4°See Fuss (1983, table 4, p. 19). 
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larger size of the U.S. telecommunications system would suggest exactly the 
opposite, i.e. that there should be more unexploited scale economies in Canada. 
Thus, it would be wise to give some weight to the possibility that the differing 
treatment of technological change played a deterrnining role in the results. 

Why is the specification and measurement of technological change such an 
important issue when attempting to estimate the degree of economies of scale 
experienced by a firm? In an industry (like telecommunications) that is expeilenc- 
ing both rapid technological change and demand growth, there are two effects 
that are lowering observed unit costs over time: technological advances that shift 
down the cost curve and output growth that moves the firm down along a falling 
average cost curve. When a cost function is to be estimated using time seiles data, 
it is important to separate the two effects in order to get an accurate estimate of 
the magnitude of either. For example, when output is growing, data that indicate 
a downward trend in unit costs could result from a downward shift over time of a 
constant average cost curve. Alternatively, such observations could be the result 
of output expansion over time down a stable falling average cost curve. Without 
careful measurement and specification of a measure of the stare of technological 
progress, it is impossible to separate the two effects. 

Even the beginning student of econometrics is continually reminded of the fact 
that any hypothesis tests or parameter estimates resulting from his analysis are 
conditional on the validity of the functional form specified for the estimating 
equation. That is why there has been considerable emphasis of late on the 
estimation of so-called flexible functional forms such as the tl"anslog which 
reduce to more restrictive functional forms (e.g. Cobb-Douglas) for certain 
parameter values. With respect to the empiilcal studies of the telecommunica- 
tions industry under discussion, it should be remembered that, here, the translog 
is the restrictive functional form, being one limiting value of the hybrid translog. 
Fuss and Waverman tested the implied restriction and were able to reject it. It is 
interesting to note that their unrestricted estimate of the degree of overall scale 
economies of 0.92 is substantially below the next lowest estimate [Breslow and 
Smith's (1980) 1.29] and the modal estimate of about 1.45. However, when 
estimated over their sample, the translog specifications yields an estimate of the 
degree of overall economies of scale of 1.43, in line with the results of the other 
studies. 

This evidence suggests that imposing the translog specification on the data may 
lead to an upward bias of the estimate of the degree of scale economies. That is 
the same conclusion reached by Guilkey and Lovell (1980) in their Monte Carlo 
study. 

Throughout this discussion, the thoughtful reader will have noted that the 
policy issue motivating the discussion - i.eo whether or not telecommunications is 
a natural monopoly-has been addressed only tangentially. For the analysis 
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presented in Subsection 2.5 points out that overall economies of scale are neither 
necessary nor sufficient for a multiproduct industry to be a natural monopoly. 
Even when combined with evidence on economies of scope and  product specific 
economies of scale, as in Fuss and Waverman, to reach definitive conclusions on 
the presence or absence of natural monopoly requires more than point estimates 
of such economies at the sample mean. 

Evans and Heckman (1984) were the first to attack the problem directly. They 
test the subadditivity of a two output (toll and local) translog cost function 
estimated using time series data from the Bell System. The approach that they 
take is straightforward. A cost function is subadditive for some output level if it 
is cheaper to produce the quantity in question with a single firm than with any 
multifirm alternative. Thus, as noted in Subsection 2.5, in order to establish that 
a cost function is subadditive over some output region it is necessary to perform 
this calculation for each output level in the region and for each multifirm 
alternative industry structure. However, as Evans and Heckman recognize, to 
show that a cost function is not subadditive reqnires only that this test falls for 
some output level in the region for one multifirm alternative. 

Evans and Heckman's strategy was to perform this test for all possible two 
firm alternatives to observed Bell System output levels that lie in their "admissi- 
bie region". This region is defined by the intuitive notion that any output vector 
assigned to a firm in a hypothetical multifirm alternative must be at least as large 
(in both dimensions) as that of the smallest sample point and comprise a ratio of 
local to toll no smaller (larger) than the smallest (largest) actually observed in the 
sample used to estimate the cost  function. This enabled them to avoid 
the problems caused by extrapolation outside the sample used to estimate the 
underlying cost function. 

Their results can be summarized as follows. There were 20 data points, 
1958-77, for which it was possible to find two firm alternatives in the admissible 
region. For all of these, Evans and Heckman found that there existed a two firm 
alternative industry configuration that would have resulted in a lowering of 
industry costs; orten a statistically significant lowering. 41 These results enabled 
them to conclude, directly, that the necessary conditions for the subadditivity of 
the estimated Bell System cost function could not be satisfied, and that, therefore, 
the Bell System was not a natural monopoly. Note that Evans and Heckman were 
able to obtain their results even though the translog cost function they employed 
could not have been used to test for many of the necessary (economies of scope) 
or sufficient (economies of scope plus declining average incremental costs) 
conditions for cost subadditivity derived in Subsection 2.4. That is an important 
advantage of their direct approach when attempting to disprove subadditivity. 

41See Evans and Heckman (1984, table 1). 
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5. Concluding remarks 

~C. Panzar 

The last decade has seen considerable advances in both theoretical and empirical 
work on the technologieal determinants of firm and industry structure. In 
particular, there has been a dramatic increase in the number of empirical studies 
that take explicit account of the intrinsic multiproduct nature of most real world 
industries. In addition to the papers discussed above, the Bibliography offers a 
(nonexhaustive) selection of empirical cost studies of hospitals, insurance firms, 
banks, airlines, railroads, motor carriers, automobile producers, to cite just a few 
examples. 
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