MGT-621 MICROECONOMICS Value of a Call Option

Thomas A. Weber^{*}

February 2016

A risk-neutral agent owns a European call option on an asset. The value of the underlying asset at the exercise date is described by a random variable \tilde{x} that takes values in [a, b]. The strike price of the option is equal to $y \in [a, b]$. We show that the agent prefers an *increase in risk* in the value of the underlying asset. Indeed, the (risk-neutral) agent's expected payoff is $E[\tilde{x} - y]_+$. More specifically, consider two random variables \tilde{x} (with cdf F) and \tilde{z} (with cdf G) on [a, b] with $E\tilde{x} = E\tilde{z}$, which each could describe the value of the underlying asset. The agent's expected profit with respect to \tilde{x} is

$$\Pi_{x}(y) = \int_{y}^{b} (x-y)dF(x) = b - y - \int_{y}^{b} F(x)dx = b - y - \left(\int_{a}^{b} F(x)dx - \int_{a}^{y} F(x)dx\right)$$
$$= b - y - \left((b - E\tilde{x}) - \int_{a}^{y} F(x)dx\right) = E\tilde{x} - y + \int_{a}^{y} F(x)dx.$$

Similarly, the agent's expected profit with respect to \tilde{z} is

$$\Pi_z(y) = E\tilde{z} - y + \int_a^y G(z)dz.$$

Hence, $\Pi_x(y) \ge \Pi_z(y)$ if and only if

$$E[\tilde{x} - \tilde{z}] + \int_{a}^{y} F(x)dx - \int_{a}^{y} G(z)dz \ge 0.$$

In other words, since $E\tilde{x} = E\tilde{z}$ by assumption, the agent prefers an increase in (pure) risk, i.e.,

$$\Pi_x(y) \ge \Pi_z(y) \text{ for all } y \in [a,b] \quad \Leftrightarrow \quad \tilde{x} \preceq_2 \tilde{z},$$

which completes the proof. Note that if the strike price y is fixed, then second-order stochastic dominance of \tilde{z} over \tilde{x} is only sufficient (but not necessary) for the agent to prefer \tilde{x} over \tilde{z} .

^{*}Chair of Operations, Economics and Strategy, École Polytechnique Fédérale de Lausanne, Station 5, CH-1015 Lausanne, Switzerland. Phone: +41 (21) 693 01 41. E-mail: thomas.weber@epfl.ch.