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1 Introduction

A decision maker may face a situation in which decision-relevant information
is held privately by other economic agents. For instance, suppose the deci-
sion maker is a refrigerator salesman. In a discussion with a potential buyer
he is thinking about the right price to announce. Naturally, the client’s
private value for a refrigerator of this type is a piece of hidden information
that the salesman would love to know before announcing his price. It would
prevent him from announcing a price that is too high, in which case there
would be no trade, or else a price that is too low, in which case the buyer is
left with surplus that the seller would rather pocket himself. In particular,
the decision maker would like to charge a person with a higher value for the
refrigerator more than a person with a lower value, provided he can at least
cover his actual cost of furnishing the item. — Thus the key question we
would like to ask is, what incentive could an economic agent possibly have
to reveal a piece of hidden information, if an advantage could be obtained by
announcing something untruthful? More specifically, can the decision maker
devise a mechanism that an agent might find attractive enough to partici-
pate in (instead of ignoring the decision maker and doing something else)
and that at the same time induces revelation of private information such as
the agent’s willingness to pay? We would expect that in order for agents to
voluntarily disclose private information to a decision maker, whom we will
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henceforth also refer to as the principal, they must be offered a nonnega-
tive information rent, which they would be unable to obtain without their
private information: an appropriate screening mechanism should make it ad-
vantageous for agents (compared to their status quo or an “outside option”)
to disclose private information, even when this very information is likely
to be used “against” themselves. As shown below, the revelation principle
(cf. Proposition 1) guarantees that without loss of generality the principal
can limit his search of appropriate mechanisms to those in which all agents
find it optimal to announce their private information truthfully (so-called
direct mechanisms). An agent’s piece of private information is commonly re-
ferred to as her type. The refrigerator salesman, before announcing a price
for the product, thus wishes to know the type of the potential buyer allow-
ing him to infer her willingness to pay. As an example, if there are two or
more agents competing for the item, then a truth-revealing mechanism can
be implemented using a second-price auction. In the next section, we will
provide a solution for the refrigerator salesman’s mechanism design problem
when the buyer’s private information is binary (i.e., when there are only two
possible types).

Overview. In this summary we review the basics of static mechanism de-
sign in settings where a principal faces a single agent of uncertain type. The
aim of the resulting “screening contract” is for the principal to obtain the
agent’s type information in order to avert adverse selection, maximizing his
payoffs. We discuss nonlinear pricing as an important application.

2 A Model with Two Types

Consider the refrigerator salesman from the last section and assume that he
could face a buyer of type θL or θH , whereby θL < θH . The buyer’s type
θ ∈ {θL, θH} = Θ is related to her willingness to pay in the following way:
if the salesman announces a price p for a refrigerator of quality q ∈ Q ⊂ R
(with Q compact), the (type-dependent) buyer’s utility is equal to zero if
she does not buy (while exercising her outside option), and it is

u(q, θ)− p ≥ 0, (1)
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if she does buy. The function u : Q×Θ→ R, assumed to be strictly increas-
ing in (q, θ) and convex in q, represents the buyer’s preferences.1 In order
to design an appropriate screening mechanism that distinguishes between
the two types, the salesman needs a contracting device (i.e., an instrument),
such as a product characteristic that he is able to vary. The sales contract
could then specify the product characteristic, say, the product’s quality q,
for which the buyer would need to pay a price p(q).2 The idea for the design
of a screening mechanism is that the salesman proposes a menu of contracts
containing variations of the instrument, from which the buyer is expected
to select her most desirable one. Since there are only two possible types,
the salesman needs at most two different contracts. Let us index the con-
tracts by the quality on offer, q ∈ {qL, qH}. The buyer – no matter what
type – cannot be forced to sign the sales contract: her participation is vol-
untary. Thus, inequality (1) needs to be satisfied for any participating type
θ ∈ {θL, θH}. Furthermore, at price pH the buyer of type θH should prefer
quality qH ,

u(qH , θH)− pH ≥ u(qL, θH)− pL, (2)

and conversely at price pL a buyer of type L should prefer qL, so that

u(qL, θL)− pL ≥ u(qH , θL)− pH . (3)

Assume that the unit costs for a refrigerator of quality q is c(q), where
c : R → R is a strictly increasing continuous function. The contract design
problem is to choose {(qL, pL), (qH , pH)} (with pL = p(qL) and pH = p(qH))
such as to maximize the salesman’s expected profit,

Π̄(pL, pH , qL, qH) = (1− µ) [pL − c(qL)] + µ [pH − c(qH)] , (4)

where µ = Prob(θ̃ = θH) = 1 − Prob(θ̃ = θL) ∈ (0, 1) denotes the sales-
man’s prior belief about the probability of being confronted with type θH
as opposed to θL.3 The optimization problem,

max
{(qL,pL),(qH ,pH)}

Π̄(pL, pH , qL, qH), (5)

1We assume here that the buyer’s preferences are quasi-linear in wealth.
2It is important to note at this point that the instrument needs to be observable by the

buyer and verifiable by a third party, so that a sales contract specifying a payment p(q)
for a quality q can be enforced by a benevolent court of law.

3Since the buyer’s type is unknown to the decision maker, he treats θ̃ as a random
variable with realizations in the type space Θ.
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is subject to the individual rationality (or participation) constraint (1) as well
as the incentive compatibility constraints (2) and (3). The general solution
to this mechanism design problem is complicated and depends on the form
of u. Its solution is simplified, if u has increasing differences in (q, θ). In
other words, let us assume that u(q, θH) − u(q, θL) is increasing in q, or
equivalently that

q̂ ≥ q ⇒ u(q̂, θH)− u(q, θH) ≥ u(q̂, θL)− u(q, θL). (6)

Condition (6) implies that the marginal gain from additional quality is
greater for type θH (the “high type”) than for type θL (the “low type”).
To further simplify the principal’s constrained optimization problem, we
first show that the low type’s participation constraint is binding. Indeed, if
this was not the case, then u(qL, θL)− pL > 0 and thus,

u(qH , θH)− pH ≥ u(qL, θH)− pL ≥ u(qL, θL)− pL > 0,

which would allow the principal to increase prices for both high and low type
as neither participation constraint is binding. As an additional consequence
of this proof the individual rationality constraint for the high type can be
neglected while it is binding for the low type. This makes the principal’s
problem substantially easier. Another simplification is achieved by noting
that the high type’s incentive compatibility constraint (2) must be active.
If this was not true, then

u(qH , θH)− pH > u(qL, θH)− pL ≥ u(qL, θL)− pL = 0,

whence it would be possible to increase pH without breaking (1) for the high
type: a contradiction. Moreover, it is then possible to neglect (3), since in-
centive compatibility for the low type is implied by the fact that (2) is bind-
ing and the sorting condition (6) holds, pH − pL = u(qH , θH)− u(qL, θH) ≥
u(qH , θL) − u(qL, θL). The last inequality with θH > θL also implies that
qH > qL. To summarize, we can therefore drop the high type’s participa-
tion constraint (1) and the low type’s incentive compatibility constraint (3)
from the principal’s program, which is now constrained by the high type’s
incentive compatibility constraint,

pH − pL = u(qH , θH)− u(qL, θH), (7)

and the low type’s participation constraint,

u(qL, θL) = pL. (8)
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Figure 1: First-best and second-best solution of the model with two types.
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Equations (7)–(8) allow us to substitute pL and pH into the salesman’s
expected profit (4). With this, the contract design problem (5) subject
to (1)–(3) can be reformulated as an unconstrained optimization problem,

max
qL,qH∈Q

{
(1− µ) [u(qL, θL)− c(qL)]

+µ
[
u(qH , θH)− c(qH)−

(
u(qL, θH)− u(qL, θL)

)]}
.

The problem therefore decomposes into the two independent maximization
problems

q∗H ∈ arg max
qH∈Q

{
u(qH , θH)− c(qH)

}
, (9)

and

q∗L ∈ arg max
qL∈Q

{
u(qL, θL)− c(qL)− µ

1− µ

(
u(qL, θH)− u(qL, θL)

)}
. (10)

From (9)–(10) the salesman can determine p∗H and p∗L using (7)–(8). In order
to confirm that indeed q∗H > q∗L as initially assumed, let us first consider the
first-best solution to the mechanism design problem, {(qFB

L , pFB
L ), (qFB

H , pFB
H )},

i.e., the solution under full information. Indeed, if the salesman knows the
type of the buyer, then

qFB
j ∈ arg max

qj∈Q
{u(qj , θj)− c(qj)} , j ∈ {L,H}, (11)

and
pFB
j = u(qj , θj), j ∈ {L,H}. (12)

Comparing (11) and (9) we find that q∗H = qFB
H . In other words, even in the

presence of hidden information the high type will be provided with the first-
best quality level. As a result of the supermodularity assumption (6) on u,
the first-best solution qFB(θ) is increasing in θ. Hence, θL < θH implies that
qFB
L = qFB(θL) < qFB(θH) = qFB

H . In addition, supermodularity of u implies
that for the low type the second-best solution q∗L in (10) cannot exceed the
first-best solution qFB

L in (11), since (u(qL, θH) − u(qL, θL)), a nonnegative
function increasing in qL, is subtracted from the first-best maximand in
order to obtain the second-best solution (which therefore cannot be larger
than the first-best solution). Hence, we have shown that

q∗H = qFB
H > qFB

L ≥ q∗L. (13)
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We conclude that in a hidden-information environment the low type is fur-
nished with an inefficient quality level compared to the first-best. Moreover,
the low type is left with zero surplus (since p∗L = u(q∗L, θL)), while the high
type enjoys a positive information rent (from (7) and (12)),

p∗H = pFB
H − (u(q∗L, θH)− u(q∗L, θL))︸ ︷︷ ︸

Information Rent

. (14)

The mere possibility that a low type exists thus exerts a positive externality
on the high type, whereas the net surplus of the low type remains unchanged
(and equal to zero) when moving from the principal’s first-best to his second-
best solution (cf. Figure 1). — If the principal’s prior belief is such that he
thinks the high type is very likely (i.e., µ is close enough to one), then he
adopts a shutdown solution, in which he effectively stops supplying the good
to the low type. Let q

¯
= minQ be the lowest quality level (provided at

cost c(q
¯
)). Then (10) implies that for

µ ≥
u(q

¯
, θL)− c(q

¯
)

u(q
¯
, θH)− c(q

¯
)
≡ µ0 (15)

the principal shuts down (charges zero price for no product or a costless
minimum-quality product), i.e., he starts selling exclusively to the high
type. In that case, the high type’s information rent collapses to zero, as
she is unable to derive a positive externality from the now valueless (for the
principal) low type. The following example intends to clarify some of the
general notions introduced in this section for a widely used parametrization
of the two-type model.

Example 1 Assume that the consumer’s private value for the product is
proportional to both her type θ and the product’s quality q,4 so that u(q, θ) =
θq, whereby θ ∈ {θL, θH} with θH > θL > 0 and q ∈ [0, q̄] with some (large
enough) maximum achievable quality level q̄. The cost of a product of qual-
ity q is assumed to be quadratic, c(q) = γq2/2 for some positive constant
γ ≥ θH/q̄ (so that q̄ ≥ θH/γ). Note first that u(q, θ) exhibits increasing dif-
ferences in (q, θ), since u(q, θH)− u(q, θL) = q(θH − θL) is increasing in q so
that condition (6) is indeed satisfied. Assuming a principal’s prior µ ∈ (0, 1)

4In this formulation, the type parameter θ can be interpreted as the marginal utility of
quality, θ = uq(q, θ). The higher the type for a given quality level, the higher the marginal
utility for extra quality. The underlying heuristic is that “power users” are often able to
capitalize more on quality improvements than less sophisticated occasional users.
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Figure 2: Comparison of first-best and second-best solutions in terms of
expected profit (Π̄FB vs. Π̄∗) as well as expected welfare (W̄ FB vs. W̄ ∗) for
Example 1.

of the same form as before, we can therefore use the general results obtained
earlier to get

q∗H = qFB
H = θH/γ,

and

q∗L =

[
θL −

µ

1− µ
(θH − θL)

]
+

/γ < qFB
L ,

whereby qFB
j = θj/γ for j ∈ {L,H}. Let

µ0 =
θL
θH

,

denote the threshold probability for the high type as in (15): for µ ≥ µ0, we
have that q∗L = 0. In other words, if the high type is more likely than µ0, then
the principal offers a single product of (efficient) high quality, while the low
type is excluded from the market. The corresponding second-best prices are
given by p∗L = u(q∗L, θL) = q∗LθL and p∗H = p∗L + (u(q∗H , θH)− u(q∗L, θH)) =
p∗L + q∗H(θH − θL)/(1 − µ) (cf. Figure 2), whence the principal’s expected
profit under this optimal screening mechanism becomes

Π̄∗ = Π̄(p∗L, p
∗
H , q

∗
L, q
∗
H) =


θ2
L + µθ2

H − 2µθLθH
2γ(1− µ)

, if µ ≤ µ0,

µθ2
H

2γ
, otherwise.

By contrast, the first-best profit is

Π̄FB = Π̄(pFB
L , pFB

H , qFB
L , qFB

H ) =
1

2γ

(
θ2
L + µ

(
θ2
H − θ2

L

))
.
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Figure 3: Comparison of first-best and second-best solutions in terms of
expected profit (Π̄FB vs. Π̄∗) as well as expected welfare (W̄ FB vs. W̄ ∗) for
Example 1.

In the absence of type uncertainty, i.e., if µ ∈ {0, 1}, we have that Π̄∗ = Π̄FB.
With uncertainty, i.e., for µ ∈ (0, 1), it is Π̄∗ < Π̄FB. Figure 3 shows how
Π̄∗ and Π̄FB differ as a function of µ. – Let us now consider the social
welfare (i.e., the sum of the buyer’s and seller’s surplus in expectation)
as a function of µ. In the absence of hidden type information, the seller is
able to appropriate all the surplus in an efficient manner, and thus, first-best
expected welfare W̄ FB equals first-best expected profit Π̄FB. The second-best
expected welfare, W̄ ∗ = Π̄∗+µ(u(q∗H , θH)−p∗H) is not necessarily monotonic
in µ: as µ increases the seller is able to appropriate more information rent
from the high type, while at the same time he is losing revenue from the
low type for which he keeps decreasing quality (as a function of µ) until
the shutdown point µ0 is reached, at which all low types are excluded from
the market. From then on, high types are charged the efficient price and
second-best welfare linearly approaches the first best for µ→ 1−. �

3 Mechanism Design

Let us now consider the screening problem in a more abstract mechanism
design setting. A principal faces one agent5 of unknown type θ ∈ Θ ⊂ R
and can offer her a contract (x, t), where x ∈ X ⊂ R is a consumption
input for the agent provided by the principal and t ∈ T ⊂ R denotes a
monetary transfer from the agent to the principal. We assume that for all

5We treat the more general mechanism design problem involving N agents later in the
course, where we discuss the design of auctions.
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θ ∈ Θ an agent’s preference preorder over allocations (x, t) can be obtained
by evaluating u(x, t, θ), where u : X × T × Θ → R is a sufficiently smooth
utility function, that is increasing in x, θ and decreasing in t.

Assumption 1 ut < 0 < ux, uθ.

The principal typically controls the agent’s choice of x; however, as part
of the mechanism the principal can commit to a certain set of rules for
making the allocation decision (cf. Footnote 6). His prior beliefs about
the distribution of agents on Θ are described in terms of a cdf F : Θ →
[0, 1]. — Before the principal provides the agent’s consumption input, the
agent decides about her participation in the mechanism, and she can send
a message m ∈ M to the principal, whereby the message space M is a
(measurable) set specified by the principal. For instance, if the principal
is a salesman as before, the set M might contain the different products on
offer.6 For simplicity let us assume that the message space contains a “null
message” of the type “I would not like to participate.” Allowing the agent
not to participate means that the principal needs to consider the agent’s
individual rationality constraint when designing his mechanism.

Definition 1 Given {Θ, F, u} a communication mechanism Γ = 〈M, y〉
consists of a (measurable) message spaceM and a mapping y :M→ X×T ,
which assigns an allocation y(m) = (x, t)(m) to any message m ∈M.

Let the principal’s preferences over allocations (x, t) for an agent of type θ
be represented by a (sufficiently smooth) utility function v : X ×T ×Θ→ R.
The problem of finding a mechanism that (in expectation) maximizes the
principal’s utility can be greatly simplified using the revelation principle,
which is essentially due to Gibbard (1973), Green and Laffont (1979), and
Myerson (1979), which we present here in a simplified one-agent version.

Proposition 1 (Revelation Principle) If for a given mechanism Γ =
〈M, y〉 an agent of type θ ∈ Θ finds it optimal to send a message m∗(θ),
then there exists a direct revelation mechanism Γd = 〈Θ, yd〉, such that
yd(θ) = y(m∗(θ)) and the agent finds it optimal to report her type truthfully
under Γd.

6To obtain more general results we can assume that M contains all possible (probabilis-
tic) convex combinations over its elements, so that m ∈ M in fact represents a probability
distribution over M.
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Proof. The proof is trivial. Since under mechanism Γ = 〈M, y〉 the
agent finds it optimal to report m∗(θ), it needs to be the case that

m∗(θ) ∈ arg max
m∈M

u(y(m), θ) (16)

for θ ∈ Θ. If the principal sets yd(θ) = y(m∗(θ)), then clearly it is optimal
for the agent to send md(θ) = θ in the new mechanism Γd, which is therefore
a direct revelation mechanism. �

The revelation principle implies that in his search for an optimal mechanism
the principal can limit himself – without loss of any generality – to direct
(i.e., truth-telling) mechanisms. Note that the fact that the principal is
able to commit to a certain mechanism is essential for the revelation princi-
ple to work. Commitment to a mechanism allows the principal to promise
the agent(s) that indeed a revelation mechanism is applied so that truthful
messages are incentive compatible.7

Definition 2 A direct mechanism 〈Θ, y〉 is implementable, if the direct al-
location y : Θ → X × T satisfies the agent’s incentive compatibility (or
truth-telling) constraint, i.e., if

u(x(θ), t(θ), θ) ≥ u(x(θ̂), t(θ̂), θ), (17)

for all θ, θ̂ ∈ Θ.

Note that the direct mechanisms in Proposition 1 are implementable. Re-
lation (17) is just a restatement of (16). – In the analysis that follows
we restrict our attention to differentiable mechanisms, i.e., mechanisms in
which the allocation function y is differentiable (and all the relevant sets are
convex and open).

Assumption 2 (Sorting Condition) The marginal rate of substitution
between the agent’s consumption input (i.e., the “good”) and money is mono-
tonic in the agent’s type, i.e.,

∂

∂θ

(
−ux(x, t, θ)

ut(x, t, θ)

)
> 0. (18)

7In environments with renegotiation, where the principal is unable to commit to a
revelation mechanism, the revelation principle fails to apply and it may become optimal
for the principal to select an indirect mechanism.
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For quasi-linear utility functions of the form u(x, θ)−t, sorting condition (18)
is nothing else than increasing differences in (x, θ), i.e., (18) reduces to (6) or
– given differentiability – to the familiar supermodularity condition uxθ > 0.
The following proposition provides a complete and useful characterization
of an implementable direct mechanism.

Proposition 2 (Implementation Theorem) The direct mechanism 〈Θ, y〉
with y = (x, t) : Θ→ X ×T twice differentiable is implementable if and only
if for all θ ∈ Θ:

ux(θ, x(θ), t(θ))x′(θ) + ut(θ, x(θ), t(θ))t′(θ) = 0, (19)

and
x′(θ) ≥ 0. (20)

Proof. ⇒: Consider an agent of type θ ∈ Θ and a direct mechanism
〈Θ, y〉. In choosing her message m(θ), the agent solves,

m(θ) ∈ arg max
θ̂∈Θ

u(x(θ̂), t(θ̂), θ),

for which the first-order necessary optimality condition can be written as

ux(x(θ̂), t(θ̂), θ)x′(θ̂) + ut(x(θ̂), t(θ̂), θ)t′(θ̂) = 0. (21)

Hence, any direct mechanism must necessarily satisfy (21) for θ̂ = θ, i.e.,
equation (19) for all θ ∈ Θ. The necessary optimality condition (21) becomes
sufficient if in addition the corresponding second-order condition,

uxx(x′)2 + 2uxtx
′t′ + utt(t

′)2 + uxx
′′ + utt

′′ ≤ 0, (22)

is satisfied at a θ̂ that solves (21). At a truth-telling optimum, relation (22)
needs to be satisfied for θ̂ = θ. Differentiating equation (19) (note that it
holds for all θ ∈ Θ) with respect to θ we obtain(

uxxx
′ + uxtt

′ + uxθ
)
x′ + uxx

′′ +
(
uxtx

′ + uttt
′ + utθ

)
t′ + utt

′′ = 0,

so that the second-order condition (22) becomes

uxθx
′ + utθt

′ ≥ 0,

or equivalently, using the fact that by (19) t′ = −uxx′/ut,

utx
′ ∂

∂θ

(
ux
ut

)
≥ 0.
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Since by Assumption 1 the agent’s utility decreases in her transfer to the
principal, i.e., ut < 0, we have by Assumption 2 that necessarily x′ > 0
on Θ. ⇐: In order to demonstrate that (19) and (20) are sufficient for the
direct mechanism 〈Θ, (x, t)〉 to be implementable, we need to show that (17)
in Definition 2 holds for all θ, θ̂ ∈ Θ. If we set

U(θ̂, θ) = u(x(θ̂), t(θ̂), θ),

then the first-order and second-order optimality conditions can be written
in the form U1(θ, θ) = 0, and U11(θ, θ) ≤ 0. If θ̂ ≤ θ, then

U(θ, θ)− U(θ̂, θ) =

∫ θ

θ̂

U1(ϑ, θ)dϑ (23)

=

∫ θ

θ̂

ut(x(ϑ), t(ϑ), θ)

(
ux(x(ϑ), t(ϑ), θ)

ut(x(ϑ), t(ϑ), θ)
x′(ϑ) + t′(ϑ)

)
dϑ.

From (19) and (20), together with Assumption 2, we obtain that for ϑ ≤ θ:

0 =
ux(x(ϑ), t(ϑ), ϑ)

ut(x(ϑ), t(ϑ), ϑ)
x′(ϑ) + t′(ϑ) ≥ ux(x(ϑ), t(ϑ), θ)

ut(x(ϑ), t(ϑ), θ)
x′(ϑ) + t′(ϑ).

By Assumption 1, ut < 0, so that the RHS of (23) is nonnegative, i.e.,
U(θ, θ) ≥ U(θ̂, θ). If θ̂ > θ, then (23) still holds. By reversing the inte-
gration bounds we obtain that similarly Assumptions 1 and 2 lead us to
the same conclusion, namely that the RHS of (23) is nonnegative. In other
words, the direct mechanism 〈Θ, (x, t)〉 is by (17) implementable, which com-
pletes the proof. �

The implementation theorem implies a representation of all implementable
direct mechanisms, which the principal can use to find an optimal screening
mechanism:

1. Choose an arbitrary increasing schedule x(θ) for the agent’s consump-
tion good.

2. For the x in the last step, find a transfer schedule t(θ)− t0 by solving
the differential equation (19). Note that this transfer schedule is only
determined up to a constant t0. The constant t0 can be chosen so as
to satisfy the agent’s participation constraint.

3. Invert the schedule in step 1, i.e., find ϕ(x) = {θ ∈ Θ : x(θ) = x},
which may be set-valued. The (unit) price schedule as a function of
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the consumption choice, p(x) ∈ t(ϕ(x)) can then be written in the
form8

p(x) =

{
t(θ), for some θ ∈ ϕ(x) 6= ∅,
∞, if ϕ(x) = ∅.

Note that whenever ϕ(x) is set-valued, different types obtain the same
price for the same consumption choice. This is referred to as bunching,
since different types are “bunched” together. Bunching occurs for
neighboring types, whenever x′(θ) = 0 on an interval of positive length.

In the following section we discuss a solution of the mechanism design prob-
lem for differentiable contracts and a continuum of types for the special case,
when both the principal’s and the agent’s utility functions are quasi-linear
in wealth.

4 A Model with a Continuum of Types

Consider again the refrigerator salesman from the first section, but this time
assume that the potential buyer he meets may stem from a continuum of
types Θ ⊂ R (where Θ is convex and compact), Θ = [θ

¯
, θ̄]. Let both the

principal’s and the agent’s utility be quasi-linear in wealth. The principal’s
prior beliefs of the distribution of agent types is given by the cdf F : Θ →
[0, 1]. The principal wishes to maximize his expected utility,∫

Θ
(v(x, θ) + t(θ)) dF (θ), (24)

subject to

x′(θ) ≥ 0, (25)

ux(x(θ), θ)x′(θ)− t′(θ) = 0, (26)

for all θ ∈ Θ, and ∫
Θ

(u(x, θ)− t(θ)) dF (θ) ≥ u0. (27)

From (26) we obtain

t(θ) = t0 +

∫ θ

θ
¯

ux(x(ϑ), ϑ)x′(ϑ)dϑ,

8This transformation is sometimes referred to as “taxation principle.”
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where t(θ
¯
) = t0. We can thus rewrite the principal’s objective function in

the form ∫
Θ

(
v(x(θ), θ) + t0 +

∫ θ

θ
¯

ux(x(ϑ), ϑ)x′(ϑ)dϑ

)
dF (θ).

The constant t0 can be chosen such that the agent’s individual rationality
constraint is satisfied in expectation (i.e., (27) holds), so that

t0 =

∫
Θ

(
u(x(θ), θ)−

∫ θ

θ
¯

ux(x(ϑ), ϑ)x′(ϑ)dϑ− u0

)
dF (θ).

The principal’s optimization problem thus simplifies to

max
x(·)

∫
Θ

(u(x(θ), θ) + v(x(θ), θ)) dF (θ), (28)

subject to
x′ ≥ 0.

Let ξ(θ) = x′(θ). Then the principal’s contract design problem can be rewrit-
ten as an optimal control problem (OCP) (cf. Appendix). The Hamiltonian
for this OCP is

H(x, ξ, ψ, θ) = (u(x(θ), θ) + v(x(θ), θ)) f(θ) + ψ(θ)ξ(θ). (29)

According to Pontryagin’s maximum principle (Proposition 4), necessary
optimality conditions for the OCP are as follows:

ψ′(θ) = −Hx(x∗(θ), ξ∗(θ), ψ(θ), θ) = − (ux(x∗(θ), θ) + vx(x∗(θ), θ)) f(θ),
(30)

dx∗(θ)

dθ
= ξ∗(θ), (31)

ψ(θ
¯
) = ψ(θ̄) = 0 (32)

ξ∗(θ) ∈ arg max
ξ≥0

H(x∗(θ), ξ, ψ(θ), θ). (33)

Since there is no initial condition for x(θ) we can set ψ(θ
¯
) = 0 (which implies

an initial condition on x, since the equations for the evolution of x(θ) and
ψ(θ) are coupled). Thus,

0 = ψ(θ̄)− ψ(θ
¯
) = −

∫ θ̄

θ
¯

(ux(x∗(θ), θ) + vx(x∗(θ), θ)) dF (θ). (34)
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The Hamiltonian is linear in ξ and thus we have a complementary slackness
condition, that(

dx∗(θ)

dθ

)(∫ θ

θ
¯

(ux(x(ϑ), ϑ) + vx(x(ϑ), ϑ)) dF (ϑ)

)
= 0,

for all θ ∈ [θ
¯
, θ̄]. If ξ > 0 over an interval, then ψ = 0 there, thus also

ψ′ = ux + vx = 0 there. If ξ = 0 over an interval [θ0, θ1], then by continuity
of ψ:

ψ(θ0) = ψ(θ1) = 0;

by continuity of x∗:
x∗(θ0) = x∗(θ1).

The last two equations yield the two unknowns θ0, θ1.

5 Application: Nonlinear Pricing

Let us consider the application of the model with a continuum of types to
nonlinear pricing. Let the principal’s and agent’s utility be as in the last
section. The standard approach to nonlinear pricing makes use of a slightly
different version of the implementation theorem for quasi-linear utilities.

Proposition 3 (Implementation Theorem; alternate version) Let 〈Θ, (x, t)〉
(where Θ = [θ

¯
, θ̄]) be a differentiable direct mechanism and set U(θ, θ) =

u(x, θ)− t(θ). The mechanism is implementable if and only if

U(θ, θ) = U(θ
¯
, θ
¯

) +

∫ θ

θ
¯

uθ(x(ϑ), ϑ)dϑ (35)

and x′(θ) ≥ 0 for all θ ∈ Θ.

Let v(x, θ) = −c(x). It is useful to rewrite the principal’s objective function,
t(θ)− c(x(θ)), in terms of social surplus,

s(x(θ), θ) = u(x(θ), θ)− c(x(θ)).

In this manner, we obtain – using Proposition 3 – his mechanism design
problem in a “relaxed” form (i.e., neglecting x′ ≥ 0 for a moment),

max
x(·)

∫ θ̄

θ
¯

[
s(x(θ), θ)−

∫ θ

θ
¯

uθ(x(ϑ), ϑ)dϑ

]
dF (θ).
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Note that via integration by parts (with F differentiable and F ′ = f), we
get ∫ θ̄

θ
¯

(∫ θ

θ
¯

uθ(x(ϑ), ϑ)dϑ

)
dF (θ) =

∫ θ̄

θ
¯

uθ(x(θ), θ)
1− F (θ)

f(θ)
f(θ)dθ.

Thus, the principal solves the following relaxed problem:

max
x(·)

E[Φ(x(θ̃), θ̃)],

where we have set Φ(x, θ) = s(x(θ), θ) − uθ(x(θ), θ)(1 − F (θ))/f(θ). This
maximization can be performed by pointwise maximizing the argument of
the expectation operator. MCS of x in θ are obtained, if Φ is supermodular
in (x, θ), i.e., if

Φxθ ≥ 0.

Since

Φxθ = sxθ −
uxθθ
h

+ uxθ
h′

h
,

where h = f/(1−F ) is the hazard rate, it is sufficient to assume that uxθ > 0,
uxθθ ≤ 0, and h′ ≥ 0.9 Examining the first-order necessary optimality
condition, Φx = sx − uxθ/h = 0 or equivalently

(ux − cx)f = (1− F )uxθ,

it becomes apparent that for θ = θ̄, the instrument x is provided at the
efficient level (since ux(x(θ̄), θ̄) = cx(x(θ̄))), i.e., there is no second-best
distortion at the top of the type scale. Lower types, as in the two-type
model, are however underprovided with the instrument (e.g., quality) at
inefficient levels.

6 Notes

The implementation theorem is due to Mirrlees (1971); the version presented
here is by Guesnerie and Laffont (1984). The treatment of mechanism de-
sign in Section 3 and 4 is based on Laffont (1989, pp. 153–163) and a set
of unpublished lecture notes by Lars Stole. Following are some remarks on

9The increasing-hazard rate condition is satisfied for many important distributions,
such as uniform, exponential, or normal. It excludes distributions, which for instance
have “strong bimodal bumps.”
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the literature on product differentiation. – The notion of product differenti-
ation as such can be traced back at least to Launhardt (1885; pp. 141–189),
who examines the impact of transportation costs on competition and thus
predates the classical analysis in Hotelling’s (1929) seminal paper on hor-
izontal competition. Since then numerous contributions have been made
to product differentiation.10 The corresponding literature can be divided
into locational models in the tradition of Hotelling, where each firm is at-
tributed an “address” in product space, and into so-called “non-address”
models in the spirit of Chamberlins (1933) monopolistic competition, where
a representative consumer exhibits (probabilistic) preferences for different
products.11 An important distinction between the two groups of models is
that in the latter group, each product is competing with each other, while in
the former consumers are truly heterogeneous in their preferences, and some
products may have no overlap, i.e., may never be in direct competition. The
locational approach tends to capture consumer heterogeneity well and allows
for an explicit consideration of participation constraints that inevitably arise
when dealing with a spatial distribution of endowed unobservable consumer
characteristics. In fact, Lancaster (1966) first realized,

“[t]he good, per se, does not give utility to the consumer; it pos-
sesses characteristics, and these characteristics give rise to utility
(...) In general a good will possess more than one characteristic,
and many characteristics will be shared by more than one good.”
(p. 65)

We refer to these Lancasterian characteristics as product attributes, and
naturally products contain a number of different such attributes, which fac-
ing a heterogeneous consumer base of unknown types allows a monopolist
(the principal) to screen the agents. The product attributes can be used as
instruments in the screening process. Using multiple instruments to screen
consumers of a one-dimensional type has been earlier examined by Matthews
and Moore (1987), whereas the inverse case of a single instrument (price)
given consumers of multidimensional types has been considered among oth-
ers by Laffont, Maskin, and Rochet (1987). This line of work on second-
degree price discrimination dates back to Mussa and Rosen (1978), based

10For a good bibliography see Anderson et al. (1992), Beath and Katsoulacos (1991,
pp. 194–199), as well as Tirole (1988, pp. 166-168, 302–303).

11A notable exception in this dichotomy, is the model by Perloff and Salop (1985)
that combines characteristics from both groups, driven by symmetry assumptions in the
preferences of a representative consumer who is faced with localized products.
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on methods developed earlier by Mirrlees (1971) in the context of optimal
income taxation, who treat the case for consumers of a single characteristic
and single vertical-attribute products. Wilson (1993) and Armstrong (1996)
provide generalizations for fully nonlinear pricing models in the multiprod-
uct case. A multidimensional screening model generalizing these approaches
has been advanced by Rochet and Choné (1998). Rochet and Stole (2003)
provide an excellent overview of recent results.

7 Problems

Problem 1 (Monopolistic Price Discrimination) An airline serves a
certain resort destination (that is also a popular conference haven!) ex-
clusively. The airline would like to distinguish between tourists (θT ) and
conference travellers (θC) as their sensitivities to price seem to be quite
different. The airline executive committee asks you for an appropriate ap-
proach and you suggest advance purchase time τ as a possible instrument.
You suggest the following quasi-linear model for the utility of a traveller of
type θ ∈ {θC , θT } in case he or she buys a ticket at price p:

u(τ, p, θ) = ū− θp− τ,

where θT > θC > 0 and ū is a positive constant. You think that the ra-
tio of conference travellers to tourists is about λ = µ/(1 − µ) ∈ (0, 1) and
the executive committee suggests you assume that the cost for transport-
ing a passenger is equal to c > 0. (i) Determine the optimal mechanism
{(τC , pC), (τT , pT )} the airline should adopt to segment the market. (ii)
Assume that the market has a size of one. What is the expected profit in-
crease of the scheme proposed in (i) over a one-product solution? (iii) When
does the solution in (i) imply shutdown (i.e., only one type of traveller is
served) and what does this imply? Are there any practical problems with a
shutdown solution?

Problem 2 (Adverse Selection in Insurance) A risk-averse individual
of initial wealth w > 0 faces a probability θ of suffering a loss of size
L ∈ (0, w). You work for a monopolist insurance company and would like to
offer the individual an insurance contract of the form (c1, c2), where c1 is the
individual’s leftover wealth in case there is no loss and c2 is the amount the
individual has left to consume, if a loss occurs. The insurance premium in
the event of no loss is therefore w−p1 and the net payment received from the
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insurance if a loss occurs, is c2 − (w−L). The individual’s preferences over
wealth are represented by a smooth utility function u : R→ R. (i) Charac-
terize the set of first-best insurance contracts (each of the form (cFB

1 , cFB
2 )),

when the loss probability θ is observable by all parties. (ii) Unfortunately
you have no way of exactly knowing θ as it pertains to the individual’s pri-
vate information. For simplicity assume that θ̃ ∈ {θL, θH} with θH > θL > 0
and a prior Prob(θ̃ = θH) = µ ∈ [0, 1]. What are the optimal second-best
contract offerings of the form (c∗1, c

∗
2) that you can offer? Draw a picture

in (c1, c2)-space. How does your solution in (ii) vary with µ? (iii) Consider
your solution in (ii). Is one type of individual being “rationed” in terms of
being able to acquire insurance? Describe. Comment also on the external-
ity between the two types. (iv) Determine the information rent in (ii) as a
function of µ. Who gets it?

Problem 3 (Multidimensional Screening) Consider a monopolistic firm
that can produce special utility vehicles of a certain performance q ∈ [0, 1]
and of a certain color z ∈ [0, 2]. Consumers all agree on the performance
ranking (=vertical characteristic) for vehicles of the same color. However,
they differ in their tastes for a specific color (=horizontal characteristic).
Each consumer is characterized by her ideal color, x ∈ X = R/2Z (i.e., X
is isomorph to a circle of radius 1/π), and her marginal utility for perfor-
mance, θ ∈ Θ = [0, 1]. Consumers are of type (x, θ) and have a utility that
is quasi-linear in wealth: at price p for a product of characteristics (z, q) a
consumer’s net utility is

u(z, q, p;x, θ) = θq − |z − x| − p,

if she buys the product, and zero otherwise. The firm assumes that consumer
types (x, θ) are uniformly distributed on the outside of a cylinder X × Θ.
The unit cost for a vehicle of performance q is cq2, where c is a positive
constant. (i) If the firm can produce only one vehicle model, determine its
optimal choice for (z, q, p). (ii) You are a consultant and recommend that
the firm produce two different vehicle types (zi, qi, pi), i ∈ {1, 2}, to segment
the market. Determine the profit-maximizing choice of (zi, qi, pi). Draw
a picture showing how the market is segmented by this product offering.
(iii) Describe the gains and losses of the approach in (ii) when compared to
the first-best solution. (iv) Can your solution in (ii) be easily extended to
three or more products, or even a fully nonlinear pricing model? Why or
why not? [Hint: be careful to examine the shutdown solutions as a function
of c.]
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Problem 4 (Multiattribute Versioning) Observing the remarkable suc-
cess in the special utility vehicle industry achieved by your recommendations
discussed in Problem 3, the CEO of a little software startup in Silicon Val-
ley asks you if such a scheme would work for him. In the software industry,
he explains, the cost structure is a little different though: it typically costs
cq2 to create a product of quality q (where q measures the number of fea-
tures contained in the product; a lower-q product having less features). But
this only holds for the highest-quality product in a product portfolio. Once
a high-quality (“flagship”) product has been established it becomes cheap
for the firm to create lower quality versions. In fact it is sufficient to sim-
ply disable features of the flagship product to obtain lower-quality versions,
which can be done at a small (but positive) versioning cost cV per additional
product.12 (i) Neglecting the taste dimension and assuming uniformly dis-
tributed consumers of type θ ∈ Θ = [0, 1] with net utility θq−p in case they
buy the product (otherwise zero), what are the optimal qualities and prices
you would recommend for an n-product portfolio? In other words, deter-
mine an optimal menu, {(qi, pi)}ni=1, of sale contracts. (ii) Does the solution
obtained in (i) depend on the fact in which order products are introduced
into the market. If yes, how? If no, why? (iii) “This is all very interesting,”
says the CEO after you presented him with your conclusions in (i) and (ii),
“but” he continues, “our market seems to have a second dimension that is
more like ‘taste’: some people want their software for small businesses, some
for home use, and others work somewhere in between.” Can you help him
out? Introduce a taste dimension into the model and solve for a simple (but
nontrivial) case. (iv) From a practical point of view, why might a manager
object to introducing n differentiated versions of the same product, even
though the model indicates that this could increase profits substantially?
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Appendix

Let us briefly discuss dynamic optimization, which is useful for many practi-
cal problems. The single most important achievement in dynamic optimiza-
tion within the last century was no doubt Pontryagin’s maximum principle,
which provides necessary optimality conditions for a large class of so-called
optimal control problems (OCPs).13 We first formulate the standard OCP
and then state the maximum principle. Let x ∈ X be the state of a sys-
tem, where X is a nonempty convex and compact subset of Rn. The choice
variable or control u ∈ U of the system is a bounded measurable function
u : R → U with values in the nonempty compact convex set U ⊂ Rm. At
time t ∈ [0, T ] ⊂ R (for some T > 0), the evolution of the state of the system
is governed by the state equation,14

dx

dt
= f(x, u, t), (36)

where f : X × U × R → X is a function, continuous with respect to u and
continuously differentiable with respect to x. The initial condition of the
system at time t = 0 is captured by the condition

x(0) = x0, (37)

for some given x0 ∈ X . The OCP consists in solving the problem

max
u(·)

∫ T

0
h(x(t), u(t), t)dt, (38)

where h : X × U × R → R is a function continuous with respect to u, t
and continuously differentiable with respect to x. The function h(x, u, t)
describes instantaneous payoffs that accrue through the use of the (possibly
costly) control u while traversing state x at time t. Define

H(x, u, ψ(t), t) = h(x, u, t) + ψ(t) · f(x, u, t),

13Optimal control theory is widely used in economics. Seierstad and Sydsæter (1987)
provide a rigorous introduction with regards to problems in economics. Sethi and Thomp-
son (2000) is a useful volume that contains many applications of control theory to man-
agerial problems. A word of caution: despite the beauty of its methods, optimal control
theory is not easy to apply to nonlinear systems (and many economic systems are highly
nonlinear!); often the level of modelling detail must be kept very low due to the analytical
complexities that solving the model entails.

14The state equation in the screening problem (on page 15) is particularly easy; it
features neither “time” (i.e., the type) nor the “state” (i.e., the instrument) on the RHS.
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as the Hamiltonian of the system, where the function ψ : R → Rn is called
the adjoint variable. The n-dimensional adjoint variable ψ(t) is somewhat
of a dynamic analogue to Lagrange multipliers in standard constrained op-
timization problems. It represents the “shadow value” of the system in
motion at time t. Proposition 4 provides necessary optimality conditions for
problem (38) subject to (36)–(37) and u ∈ U .

Proposition 4 (Pontryagin’s Maximum Principle) Let (x∗(t), u∗(t)) de-
scribe an optimal state-control trajectory for the OCP for all t ∈ [0, T ]. Then
the following conditions are satisfied:

ψ′(t) = −∂xH(x∗(t), u∗(t), ψ(t), t), (39)

for all t ∈ [0, T ], with the boundary condition

ψ(T ) = 0. (40)

Moreover,

u∗(t) ∈ arg max
û∈U

H(x∗(t), û, ψ(t), t), (41)

for all t ∈ [0, T ].

Proof. See Pontryagin et al. (1962, pp. 79–114; see Theorem 8 on p. 81
and Theorem 3 on p. 50 for a statement of the maximum principle together
with the transversality conditions somewhat more general than here).

Remark If the Hamiltonian H is strictly concave in the control variable u,
the optimal control u∗ is unique and the conditions in Pontryagin’s maximum
principle become also sufficient for optimality. – Pontryagin’s maximum
principle provides a full set of conditions to identify candidates for optimal
state-control trajectories. Its use in actual problems requires sometimes a
little analytical ingenuity, since the two-point boundary problem for the
system of differential equations governing the evolution of (x(t), ψ(t)) is not
easy to solve, if those equations are coupled. Note also that the optimal
control u∗(t) does not have to be continuous, even for problems in which
all the primitives (i.e., f and h) are arbitrarily smooth. – For problems in
which T → ∞, the transversality condition (40) is not guaranteed (even in
the limit), and the necessary optimality conditions implied by Pontryagin’s
maximum principle are not enough to determine candidates for optimal
state-control trajectories. By careful extension of the maximum principle to
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the infinite horizon via successive approximations it is sometimes possible
to find bounds on the adjoint variable, which can be used to construct a full
set of optimality conditions, cf. Weber (2006).

27


