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1 Introduction

There is a longstanding tradition, commonly attributed to Frank Knight
(1921, pp. 19–20, 199–232), to distinguish between risk and uncertainty. Af-
ter a whole chapter on the two notions, their differences and commonalities,
Knight concludes (on page 233):

[t]he practical difference between the two categories, risk and un-
certainty, is that in the former the distribution of the outcome
in a group of instances is known (...), while in the case of un-
certainty this is not true, the reason being in general that it is
impossible to form a group of instances, because the situation
dealt with is in a high degree unique.

Just preceding that paragraph he noted,

[w]e can also employ the terms “objective” and “subjective”
probability to designate the risk and uncertainty respectively, as
these expressions are already in general use with a signification
akin to that proposed.

In Knight’s distinction risk corresponds to an objective notion of event prob-
ability which is (at least in principle) verifiable, for instance by experiment.
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Thus, you might agree that the probability of an unweighted coin to show
“tail” after a single toss is approximately 1/2. On the other hand, if you
think about the event of Stanford winning the next “Big Game” in football
against Berkeley (Cal) the subjective assessment of the probability of a Stan-
ford win might be quite different for each one of you. The event would thus
– in the Knightian distinction – fall under uncertainty. We will see, how-
ever, that given a rather small set of assumptions on your preferences over
lotteries, it is possible to construct a unique “subjective” probability distri-
bution over an exhaustive, mutually exclusive list of events ({Stanford wins,
Stanford loses}) dissolving the material difference between risk and uncer-
tainty. In the remainder of this course we will therefore simply disregard the
distinction between risk and uncertainty and use both terms interchange-
ably. We will also assume that a probability distribution of the uncertain
decision-relevant events is given, be it either objectively or constructed by
evaluating subjective preferences over lotteries of outcomes.

If there is no fundamental difference between risk and uncertainty, one might
still be able to argue about the strength of beliefs: for instance, we can be
pretty (though maybe not absolutely) certain that the probability of “tail”
in a single-coin toss is 1/2, whereas you might not have a lot of confidence
in your subjective assessment that with 75 percent probability Stanford will
win the next Big Game. Note though, that a lack of confidence cannot
have any effect on any terminal action that you need to take based on a
subjective probability assessment. Thus, as an example, if you were forced
to make a fair bet of 10 dollars you should be indifferent between betting
the money on Stanford or on the event (“tail”,“tail”) after tossing two coins
simultaneously.1 On the other hand, if the terminal action (making the bet)
is not immediately required, a lack of confidence might provoke you to take
an informational action (e.g., you could find out more about the two teams
and/or consult experts) before you commit to a terminal action.

Overview. In this lecture we will formulate the expected utility paradigm,
show how representations of utility functions are uniquely (up to positive

1There might be behavioral reasons why you might still prefer the coin toss, such as
“ambiguity aversion”: individuals often prefer situations where event probabilities are well
known to situations in which the likelihood of the different outcomes is ambiguous. An
axiomatic explanation of ambiguity aversion (based on a relaxation of the independence
axiom by Von Neumann and Morgenstern, cf. Section 3) has been proposed by Schmeidler
(1989).
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linear transformations) implied by a set of simple choice axioms, and how
risks, after they have been quantified, can be ordered with respect to differ-
ent classes of utility functions. We conclude this lecture with some remarks
on comparative statics under uncertainty and a few applications.

2 The Expected Utility Paradigm

Every decision making problem consists in selecting a preferred action out
of a (closed) set of possible actions A, given a set of possible consequences C.
The occurrence of a particular consequence c(a, ω) depends – in addition to
the decision maker’s action a – on an uncertain state of nature ω which is an
element of the state space Ω. Consequences are related to actions and events
by a consequence function c : A × Ω → C. The decision maker evaluates a
particular consequence using a scalar (measurable) utility function u : C → R
that assigns a value to its desirability.2 The expected utility of an action
a ∈ A is

EU(a) =

∫
Ω
u(c(a, ω))dµ(ω), (1)

where µ is an appropriate probability measure defined on (the Lebesgue-
completion of) R. Representation (1) is very general; depending on the
circumstances it may however be useful to vary it somewhat. We will now
briefly discuss two variations.

1. Countable Partition of Ω. A collection of events {Ek}∞k=1 which are
pairwise disjoint (i.e., Ek ∩Ej = ∅ for any k 6= j) and exhaustive (i.e.,⋃∞
k=1 Ek = Ω), is called a partition of Ω.3 If on any such partition

2Hirshleifer and Riley (1992, pp. 13–21) distinguish between a preference-scaling func-
tion (also called “elementary utility function”) which measures the desirability of conse-
quences and a utility function which measures the desirability of actions. We will call
utility function a measure of the desirability of consequences (which depend on actions
and events) and expected utility the measure of the desirability of an action.

3Strictly speaking, each event Ek is an element of a σ-algebra R ⊂ P (Ω), whereby P (Ω)
denotes the collection of all subsets of Ω. The decision maker assesses the probability
of Ek using a probability measure µ(Ek). The σ-algebra R is a family of subsets of Ω
that contains Ω and is closed under the operations of countable union, intersection, and
difference. A probability measure µ is a real nonnegative function defined on R such
that µ is countably additive (for any countable number of disjoint subsets E1, E2, . . . of Ω:
µ(E1∪E2∪ . . .) = µ(E1) +µ(E2) + · · ·) and µ(Ω) = 1 (normalization). The triplet (Ω,R, µ)
is referred to as a probability space. For a short and rigorous exposition of measure theory
see Kirillov and Gvishiani (1982, pp. 12–37). A classical treatment is by Halmos (1950).
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consequences only depend on an action and on the particular event
(and not on the particular state of nature contained in an event), i.e.,
if c(a, ωk) = ck(a) for all ωk ∈ Ek, k = 1, 2, . . ., then representation (1)
is equivalent to

EU(a) =
∞∑
k=1

µ(Ek)u(ck(a)). (2)

We can therefore replace the state space Ω with the partition of Ω,
reducing the cardinality of the state space and possibly its dimension-
ality. In other words, each event Ek in the partition can be seen as
an elementary event by itself and it is therefore unnecessary to distin-
guish between different elements ω ∈ Ek. By construction, changing
from (1) to (2) does not affect the decision maker’s preferences over
actions.

2. Decomposable Consequences, C = A×X×Ω. If the set of consequences
can be represented as the cartesian product of the action space A, a
cartesian outcome space X ⊂ Rm (for some m ≥ 1) and the state
space Ω, then it is possible to rewrite (1),

EU(a) =

∫
Ω

(∫
X
u(a, x, ω)dν(x; a, ω)

)
dµ(ω), (3)

where ν is a probability measure (actually the cdf) of the random
variable x̃ ∈ X of the form Prob(x̃ < x|a, ω) = ν(x; a, ω). The set
of consequences C is decomposable in this manner, if by selecting an
action a ∈ A the decision maker chooses a probability distribution of
possible outcomes in X .

The following examples outline how an appropriate expression for the ex-
pected utility can be obtained in practical settings.

Example 1 Consider the standard portfolio problem in which an investor
with initial wealth w selects how much she should invest in a risky asset
of uncertain return r̃ ∈ [−1, 1] = Ω and how much she should hold in cash
at zero return. In this decision making problem the investor’s action a is
the amount that she invests in the risky asset: in the absence of borrowing,
a ∈ [0, w] = A. The consequence of any action a also depends on the
uncertain return r̃, so that c(a, r̃) = w + ar̃. Assuming that the investor
always strictly prefers more wealth, her utility function u evaluating the
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consequences is strictly increasing. It is convenient to assume that her utility
function is also continuous.4 Let us now construct a probability measure for
the interesting events {r}, r ∈ Ω. Note first that these events are disjoint but
not countable, so that our expected utility formula (1) does not immediately
apply. In fact the σ-algebra R needed to accommodate all interesting events
is far larger than their union. The construction of a set-measure µ on R
proceeds as follows. First, one can verify that the σ-algebra R generated
by the relevant events {r} is (in addition to containing Ω itself) spanned by
the collection of all half-open intervals [a, b) ⊂ Ω. Second, by additivity it is
µ([a, b)) = µ([−1, b))−µ([−1, a)), so that with the “cumulative distribution
function” (cdf) F (x) = µ([−1, x)) = Prob(r̃ < x) any set in R can be
measured in terms of F . Using the set-measure µ it is possible to construct
a Lebesgue integral which allows computing the weighted sum (1), even if the
underlying state space is not countable (but is merely Lebesgue-measurable):

EU(a;w) =

∫ 1

−1
u(w + ar)dF (r).

The cdf F represents the decision maker’s beliefs about the distribution of
outcomes and needs to be specified in order to determine a solution to the
decision making problem.5 One can show that since u is continuous EU(·)
is also continuous. Since the action set A is compact, an optimal action a∗

maximizes her expected utility, and a solution to her decision problem con-
sists thus in finding

a∗(w) ∈ max
a∈A

EU(a;w).

We will revisit the standard portfolio problem later in this course. �

Example 2 Consider a monopolistic firm that faces the decision (a ∈ [0,∞))
to enter an uncertain market (a > 0) with a new product or not entering

4Proposition 1 provides a necessary and sufficient condition for a utility representation
of preferences. If preferences are continuous (which means that they are preserved under
limits), then the utility representation is also continuous (Mas-Colell et al., 1995, pp. 46–
47).

5The beliefs F could be either exogenously provided as an objective representation of
a cdf, or it could be endogenously constructed based on the decision maker’s preferences
over lotteries. If F is differentiable (almost everywhere), then a probability density function
(pdf) f = F ′ can be obtained and the resulting Riemann-Stieltjes integral is computed by
evaluating the following ordinary Riemann integral: EU(a) =

∫ 1

−1
c(a, r)f(r)dr.
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Figure 1: Timeline for the sequential decision problem in Example 2.

(a = 0). Entering the market involves making an irreversible upfront in-
vestment ka > 0, where k is a positive constant representing the “capital
intensity” of the production process. There is uncertainty about both the
demand for the new product (“market risk”) and the efficiency of the pro-
duction process (“technology risk”) which is still to be developed. For sim-
plicity we assume that the two types of risks are independent. To represent
the market risk assume that the firm faces a linear demand curve with un-
known intercept, i.e., at price p it faces a random demand D̃(p) = ω̃ − p,
where ω̃ is distributed on Ω = R+ with cdf F . The technology risk, which
can be influenced by the firm through its investment decision, is represented
by a random marginal cost x̃/a, whereby x̃ is distributed on X = R+ with
cdf G. Increasing a thus in expectation increases productive efficiency by
lowering marginal cost. The firm has to make three decisions in three time
periods t ∈ {0, 1, 2}. At time t = 0, it decides about its upfront investment
ka. Subsequently the technological uncertainty x̃ realizes, and at time t = 1,
the firm fixes its production quantity q∗(a, x). At time t = 2, the demand
realizes and the firm sets its price p∗ (cf. the timeline in Figure 1). To solve
such a dynamic decision making problem under uncertainty it is often useful
to adopt a dynamic programming approach by starting the solution at the
last period working backwards. At time t = 2, the firm’s (deterministic)
profits can be written as

Π2(p; a, q, x, ω) = pmin{q, ω − p} − ka− qx

a
.

Deterministic maximization of Π2 with respect to p, the details of which are
left to the reader, yields6

p∗(q, ω) = max{ω − q, ω/2}.

We can see that the firm prices more aggressively, once demand at the

6Note that the sunk cost portions −ka and −qx/a are irrelevant for the pricing decision.
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Figure 2: Optimal pricing and production decisions in Example 2 under the
assumption that both risks are independent and uniformly distributed.

optimal price reaches the capacity limit (i.e., as soon as ω > 2q), cf. Figure 2.
Using this result we can write the firm’s expected profits at time t = 1,

Π̄1(q; a, x) = EΠ2(p∗(q, ω̃); a, q, x, ω̃)

=

∫ 2q

0

(ω
2
− x

a

) ω
2
dF (ω) +

∫ ∞
2q

(
ω − q − x

a

)
q dF (ω)− ka.

The first-order necessary optimality condition with respect to q is given by

2q +
x

a
=

∫∞
2q ωdF (ω)

1− F (2q)
,

an expression that yields candidates for the optimal production quantity
q∗(a, x). At t = 0, the firm’s expected ex-ante profits are given by

Π̄0(a) = EΠ1(q∗(a, x̃); a, x̃).

Maximizing the last expression determines the firm’s entry and investment
decision as a function of the capital intensity k. Note that the firm’s in-
vestment action a has an informational component, since not only does it
increase productive efficiency, it also decreases the technology risk.7 �

7For the special case in which the technology and market risks are (independently)
uniformly distributed on [0, 1], i.e., x̃, ω̃ ∼ U [0, 1], we obtain q∗(a, x) = [1/2− x/a]+,
cf. Figure 2. The firm’s optimal action a∗(k) at t = 0 is then

a∗(k) =

{ √
k
(
1 +
√

1− 64k
)
/(4k), if k ≤ 1/64,

0, otherwise.

a∗(k) and the resulting investment ka∗(k) are depicted in Figure 3 as a function of the
capital intensity k. For k > k̄ = 1/64 the firm does not enter the market.
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Figure 3: Optimal action a∗(k) and resulting investment ka∗(k) in Exam-
ple 2 as a function of k under the assumption that both risks are independent
and uniformly distributed.

3 Axioms of Choice

So far we have implicitly assumed that actions can be selected by evaluating
an expected utility function. We have seen that if the decision maker chooses
an action a ∈ A, then in fact she singles out a distribution of consequences,
which we will refer to as a lottery. The decision maker thus prefers an
action a over another action â (where a, â ∈ A), if and only if she prefers
the probability distribution implied by a over the one implied by â. Let
P represent the space of all lotteries over outcomes in a given set C. We
will now examine conditions under which preferences over elements of P can
actually be represented by expected utilities.

Definition 1 A preference preordering � over elements of a set S is a
binary relation, so that (i) s � s for any s ∈ S (reflexivity); (ii) For all
s1, s2, s3 ∈ S: s1 � s2 and s2 � s3 implies that s1 � s3 (transitivity).

If for two actions s1, s2 ∈ S it is s1 � s2 and s2 � s1, then we write
s1 ∼ s2 denoting indifference between s1 and s2. If s1 ∼ s2 implies that
s1 = s2 then we call � an ordering (in contrast to a preordering, for which
indifference ∼ only defines an equivalence class of elements). If s1 � s2 but
not s2 � s1, then we denote the implied strict preference of s2 over s1 by
s1 ≺ s2. Preferences per se already imply the existence of utility functions
in many cases.8

8Note the strict preference ≺ does not represent a preference preordering according to
Definition 1 as it is not reflexive. It is of course possible to build all the theory using ≺
instead of � as the basic binary preference relation, cf. Fishburn (1970) and Kreps (1988).
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Proposition 1 For any set S the following two statements are equivalent:9

(i) � is a preference preordering of S and there is a countable subset
Z ⊂ S such that: for any s, ŝ ∈ S with s ≺ ŝ there exists z ∈ Z such
that s � z � ŝ.

(ii) There exists a function u : S → R such that for any s, ŝ ∈ S:

s � ŝ ⇔ u(s) ≤ u(ŝ). (4)

Proof. (i)⇒(ii): Let Z = {z1, z2, . . .} ⊂ S be �-dense in S. For
each zk ∈ Z (k ∈ {1, 2, . . .}) let δ(zk) = 2−k and for any s ∈ S let Z̄(s) =
{z ∈ Z : s � z} and Z̄(s) = {z ∈ Z : z � s}. By the transitivity of the
preference relation,

s � ŝ ⇒ Z̄(s) ⊆ Z̄(ŝ) and Z̄(ŝ) ⊆ Z̄(s). (5)

Let us now introduce the function

u(s) =
∑

z∈Z̄(s)

δ(z)−
∑

z∈Z̄(s)

δ(z)

with values in [0, 1] (by definition of δ). Then, using (5),

u(ŝ)− u(s) =
∑

z∈Z̄(ŝ)

δ(z)−
∑

z∈Z̄(ŝ)

δ(z)−
∑

z∈Z̄(s)

δ(z) +
∑

z∈Z̄(s)

δ(z)

=

{
+
∑

z∈Z̄(ŝ)\Z̄(s) δ(z) +
∑

z∈Z̄(s)\Z̄(ŝ) δ(z) ≥ 0, if s � ŝ,
−
∑

z∈Z̄(s)\Z̄(ŝ) δ(z)−
∑

z∈Z̄(ŝ)\Z̄(s) δ(z) ≤ 0, if ŝ � s,

which implies the utility representation (4) of the preference preordering �.

(ii)⇒(i): Let u : S → R be a function such that (4) holds for any s, ŝ ∈ S.
It is clear that reflexivity holds, since s � s (i.e., u(s) = u(s)) for all s ∈
S. Moreover, transitivity is satisfied, since s1 � s2 (i.e., u(s1) ≤ u(s2))
and s2 � s3 (i.e., u(s2) ≤ u(s3)) implies that s1 � s3 (i.e., u(s1) ≤ u(s3).
Thus, by Definition 1 relation � is indeed a preference preordering. We
now need to show that the representation (4) also implies the existence of a

9If for a preference preordering � of S condition (i) is satisfied for some countable
subset Z ⊂ S, then we say that S is �-separable. Correspondingly, the set Z is said to be
�-dense in S.
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�-dense subset Z of S. Let us denote by Q the countable collection of real
intervals with rational endpoints, i.e.,

Q = {[a, b] : a < b and a, b ∈ Q}.

For each interval I ∈ Q with u(S) ∩ I 6= ∅ select one element s ∈ S such
that u(s) ∈ I. Let F denote the set of all such elements. Clearly, F is
countable. Furthermore, we set

R = {(c, d) ∈ S2 \ F2 : c ≺ d and @ s ∈ F such that c � s � d}.

Hence, if (c, d) ∈ R, then there is no s ∈ S that lies in preference strictly
between c and d, i.e., for which c ≺ s ≺ d. Otherwise there would be an
element f ∈ F with c ≺ f ≺ d, since for any point in the open inter-
val (u(c), u(d)) there exists by construction an interval I in Q with I ⊂
(u(c), u(d)) which contains that point. As a result, there cannot be any
overlap between any intervals (u(c), u(d)) with (c, d) ∈ R, which implies
that R is countable. Hence, the set

G = {s ∈ S \ F : ∃ ŝ ∈ S such that (s, ŝ) ∈ R or (ŝ, s) ∈ R} ,

is countable, which implies that the union Z = F ∪ G is also countable.
Now, if s, ŝ ∈ S \ Z and s ≺ ŝ, then there exists an element z ∈ Z such
that s � z � ŝ. In other words, the set Z ⊂ S is �-dense in S. �

When the set S is countable, then condition (i) in Proposition 1 becomes
trivial by setting Z = S. The following classical example illustrates the
impossibility of finding a utility representation for the preferences when S
is not �-separable.

Example 3 Consider a decision maker with lexicographic preferences �,
defined on the set S = [0, 1]× [0, 1], such that

(s1, s2) � (ŝ1, ŝ2)
def⇔ s1 ≤ ŝ1 or (s1 = ŝ1 and s2 ≤ ŝ2) .

The decision maker thus prefers an improvement in s1 more than any im-
provement in s2. Let us for a moment assume that there exists a utility
function u : S → R that represents these preferences according to (4).
We now show that this inevitably leads to a contradiction. Note first
that (s1, 0) ≺ (s1, 1) and therefore u((s1, 0)) < u((s1, 1)) for all s1 ∈ [0, 1].
If we let

∆(s1) = u((s1, 1))− u((s1, 0)),

10



then ∆(s1) > 0 for all s1 ∈ [0, 1]. As a result, the range [0, 1] of the first
coordinate can be written as a union of the subsets S1k = {s1 : ∆(s1) ≥ 1/k},

[0, 1] =
∞⋃
k=1

S1k.

Since the interval [0, 1] is uncountable, some of the sets S1k have to be
uncountable as well. Let S1k̄ be such an uncountable set for an appropri-
ate k̄ ∈ {1, 2, . . .}. Let ∆̄ = u((1, 1))−u((0, 0)) be the largest possible utility
difference between any two elements in S and let K > k̄∆̄ + 1 be an integer.
Then for any K elements σ1, . . . , σK ∈ S1k̄ with σ1 < σ2 < · · · < σK we
have

u((σk, 0))− u((σk−1, 0)) > u((σk−1, 1))− u((σk−1, 0)) > 1/k̄

for any k ∈ {2, . . . ,K}, so that

∆̄ = u((1, 1))− u((0, 0))

= [u((1, 1))− u((σK , 0))] + [u((σK , 0))− u((σK−1, 0))] + · · ·
+ [u((σ2, 0))− u((σ1, 0))] + [u((σ1, 0))− u((0, 0))]

> 0 + 1/k̄ + · · ·+ 1/k̄ + 0 = (K − 1)/k̄ > ∆̄,

i.e., a contradiction. A utility representation of lexicographic preferences is
therefore not possible. The intuition is that because of the nonseparability
of the choice set with respect to �, any finite difference in the first attribute
must yield an unbounded utility difference, which results from adding up the
uncountably many finite utility differences (generated by variations in s2 for
each fixed s1) in between. �

It turns out that the utility representation (4) of a preference preordering �
is unique up to a strictly increasing transformation.

Proposition 2 Let S be a set and u, û two utility representations of a pref-
erence preordering � of S in the sense of (4). Then there is a function
ϕ : R → R such that (i) ϕ is increasing on {v : v = u(s) for some s ∈ S}.
(ii) û = ϕ ◦ u. — In addition, for any increasing function φ : R → R, the
function φ ◦ u is a representation of � in the sense of (4).

Proof. (ii) Let V = {v : v = u(s) for some s ∈ S} and define a function
ϕ : R → R such that for any v ∈ V: ϕ(v) = û(s), where s is such that
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v = u(s). Moreover, on R \ V define ϕ such that it is monotonic (which
is possible as a consequence of the separability implied by Proposition 1).
(i) Let v1, v2 ∈ V such that v1 ≤ v2. Then by virtue of the fact that u, û are
utility representations of the form (4) over S it is

v1 ≤ v2 ⇔ s1 ≤ s2 ⇔ ϕ(u(s1)) = û(s1) ≤ ϕ(u(s2)) = û(s2),

where vi = u(si) for i = 1, 2. In addition, for any increasing function
φ : R→ R we have that

s1 ≤ s2 ⇔ u(s1) ≤ u(s2) ⇔ φ(u(s1)) ≤ φ(u(s2)),

which completes the proof. �

In what follows we present one approach to the ordering of the actions based
on objective probabilities by Von Neumann and Morgenstern (1944).10 The
axiomatic approach to choice yields a representation of preferences. We
will show that if a decision maker’s preferences satisfy three basic axioms
(completeness, continuity, independence), then it is possible to represent her
preferences in an expected utility form. For modelling practice, the choice-
theoretic axiomatizations are likely to be only of limited relevance. We are
interested in these approaches only insofar as they allow us a representation
of preferences over actions, which is – as pointed out earlier – implied by a
representation of preferences over lotteries.

To avoid mathematical complexities it is convenient to assume that the state
space Ω and the action space A be finite.11 Let the space of consequences
be of the form C = A×X ×Ω, where the outcome space X = {x1, . . . , xN}
is finite containing N elements. For each action-state pair (a, ω) ∈ A ×
Ω, the outcome x̃ is a random variable with support X . The set of all
probability measures over the outcomes can be represented by the (N −
1)-dimensional simplex ∆ ⊂ RN+ . Since there are |Ω| states, the agent’s

10A different approach using subjective probabilities is due to Savage (1954). Anscombe
and Aumann (1963) derived subjective probabilities based on a set of axioms that is very
similar to those by Von Neumann and Morgenstern.

11Kreps (1988, pp. 52–63) discusses the Von Neumann-Morgenstern approach for mea-
surable utilities, when the set of lotteries is infinite. The underlying theory, which in-
volves the notion of “mixture spaces,” is due to Herstein and Milnor (1953). Kreps (1988,
pp. 99–111) also treats the Anscombe-Aumann approach (termed “horse race lotteries and
roulette wheels”) in the same mixture-space framework. A standard reference in choice
theory is Fishburn (1970).
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preferences over actions correspond to preferences over lotteries in the |Ω|-
fold cartesian product ∆|Ω| = P ⊂ R|Ω|N . Each element p ∈ P is thereby of
the form p = (pω1 , . . . , p

ω
N )ω∈Ω, where for all ω ∈ Ω:12

N∑
k=1

pωk = 1.

To be very clear, choosing an action a in this framework corresponds to
selecting an element p of P, which specifies a distribution of payoffs for each
possible state ω ∈ Ω.

Von Neumann and Morgenstern (1944, pp. 24–29, 619–632) showed that the
following three axioms on a preference preordering over the space of lotteries
P (with outcomes in X ) are sufficient for a representation of the expected
utility in the form (1).

Axiom 1 (Completeness) The preference preordering � of P is complete,
i.e., for any p, q ∈ P either p � q or q � p (or both).

Axiom 2 (Continuity) The preference preordering of P is continuous,
i.e., for any p, q, r ∈ P such that p � q � r there exists t ∈ [0, 1] such
that tp+ (1− t)r ∼ q.

Axiom 3 (Independence) The preference preordering is independent of
irrelevant alternatives, i.e., for any p, q, r ∈ P and t ∈ (0, 1): p ≺ q ⇒
tp+ (1− t)r ≺ tq + (1− t)r.

Given these three axioms we are now ready to formulate the main represen-
tation theorem. We present here a rather general version (though, only for
finite choice sets) that includes state-dependent utilities.

Proposition 3 Let � be a complete preference preordering of P satisfying
the continuity and independence axioms. (i) Then � can be represented in
expected utility form, i.e., there is a function u : X × Ω → R such that for

12The element p ∈ P can be represented in the form of a Markov matrix: instead of
writing p as a column vector, each element in P can be expressed as an (N × |Ω|)-matrix
P = [pωk ](k,ω), whose elements are probabilities and whose columns sum to one.
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any p, q ∈ P: 13

p � q ⇔
∑
ω

(∑
k

pωku(xk, ω)

)
≤
∑
ω

(∑
k

qωk u(xk, ω)

)
. (6)

(ii) The function u in part (i) is unique up to a positive linear transfor-
mation: For any u, v which represent � in the expected utility there exist
constants α, β with α > 0, such that u = αv + β.

Proof. (i) The proof of the first part proceeds in six steps. Assume for
convenience that in P there exists a best lottery p̄ and a worst lottery p

¯
, such

that p
¯
≺ p̄ and for any p ∈ P: p

¯
� p � p̄. (Should p

¯
∼ p̄, then p ∼ q for any

p, q ∈ P and the expected utility representation (6) holds trivially for u = 0.)

Step 1: If p ≺ q and t ∈ (0, 1), then p ≺ tp+ (1− t)q ≺ q.

The first claim means that a strict mixture of two lotteries p, q ∈ P achieves
an intermediate preference. This follows from the independence axiom: in-
deed, for r = p we obtain from Axiom 3: p ≺ tp+ (1− t)q for all t ∈ (0, 1).
Similarly, for r = q independence yields tp + (1 − t)q ≺ q, which concludes
the first step.

Step 2: For any s, t ∈ (0, 1): sp̄+ (1− s)p
¯
≺ tp̄+ (1− t)p

¯
⇔ s < t.

⇐: Let s < t. Then for θ = (t − s)/(1 − s) ∈ (0, 1) we have that
tp̄ + (1 − t)p

¯
= θp̄ + (1 − θ)(sp̄ + (1 − s)p

¯
), since θ + (1 − θ)s = t and

(1− θ)(1− s) = 1− t. By Step 1, it is furthermore r = sp̄+ (1− s)p
¯
≺ p̄, so

that by applying Step 1 again for r ≺ p̄: r ≺ θp̄+ (1− θ)r = tp̄+ (1− t)p
¯
,

which is nothing else than (1−s)p
¯
≺ tp̄+(1− t)p

¯
. ⇒: Assume that the con-

verse is true, i.e., s ≥ t. If s = t, then naturally sp̄+ (1− s)p
¯
∼ tp̄+ (1− t)p

¯
,

which is a contradiction. Similarly, if s > t, then we can show as before that
tp̄+ (1− t)p

¯
≺ sp̄+ (1− s)p

¯
, which is also a contradiction. — This proves

13Given the probability space (Ω, P (Ω), µ), the representation (6) is equivalent to the
standard expected utility representation,

p � q ⇔
∑
ω

µ(ω)

(∑
k

pωk û(xk, ω)

)
≤
∑
ω

µ(ω)

(∑
k

qωk û(xk, ω)

)
,

as long as one chooses û : X × Ω→ R such that u(xk, ω) = µ(ω)û(xk, ω).

14



our second claim.

Step 3: For any p ∈ P there is a unique t̂(p) ∈ [0, 1] such that t̂p̄+(1−t̂)p
¯
∼ p.

Existence follows directly from Axiom 2 and the fact that by assumption
p
¯
� p � p̄ for all p ∈ P. Uniqueness can be obtained as follows. Assume

that ŝ, t̂ ∈ (0, 1) are such that ŝp̄ + (1 − t̂)p
¯
∼ p ∼ t̂p̄ + (1 − t̂)p

¯
. (Note

that for t̂ ∈ {0, 1} or ŝ ∈ {0, 1} uniqueness holds trivially.) Without loss of
generality we can assume that s̃ ≤ t̃. If s̃ < t̃ then by Step 2 we have that
ŝp̄ + (1 − ŝ)p

¯
≺ t̂p̄ + (1 − t̂)p

¯
, a contradiction. Thus ŝ = t̂ which implies

uniqueness.

Step 4: The function Φ : P → R with Φ(p) = t̂(p) represents the preference
preordering � of P, i.e., relation (4) in Proposition 1 holds for S = P.

Indeed for any p, q ∈ P we have: p � q if and only if t̂(p)p̄ + (1 − t̂(p))p
¯
�

t̂(q)p̄+ (1− t̂(q))p
¯
. Step 2 therefore implies that

p � q ⇔ t̂(p) ≤ t̂(q),

which proves our claim.

Step 5: The expected utility function Φ is linear on P.

Let p, q ∈ P and γ ∈ [0, 1]. For our claim to hold it is enough to show that
Φ(γp+ (1− γ)q) = γΦ(p) + (1− γ)Φ(q). By construction of the function Φ
it is

p ∼ Φ(p)p̄+ (1− Φ(p))p
¯
,

q ∼ Φ(q)p̄+ (1− Φ(q))p
¯
,

and thus by using Axiom 3 (independence):

γp+ (1− γ)q ∼ γ
(
Φ(p)p̄+ (1− Φ(p))p

¯

)
+ (1− γ)

(
Φ(q)p̄+ (1− Φ(q))p

¯

)
∼ [γΦ(p) + (1− γ)Φ(q)] p̄+ [1− (γΦ(p) + (1− γ)Φ(q))] p

¯
,

so that necessarily Φ(γp+(1−γ)q) = γΦ(p)+(1−γ)Φ(q), which establishes
the linearity of Φ.
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Step 6: The expected utility function Φ(·) has the representation in (6).

Note first that as a direct consequence of the linearity of Φ for any p ∈ P
we can write Φ(p) as a linear combination of the elements of p:

Φ(p) = Φ

∑
ω,k

pωkρ
ω
k

 ,

where ρωk are appropriate coefficients. Let u : X ×Ω→ R be a map that as-
signs u(xk, ω) = ρωk . The function u can be interpreted as a state-dependent
utility function. Thus, we obtain

Φ(p) =
∑
ω

(∑
k

pωku(xk, ω)

)
,

which completes the last step.

(ii) Let us assume, essentially for the same reasons as in part (i), that there
exists a best lottery p̄ and a worst lottery p

¯
, such that p

¯
≺ p̄ and for any

p ∈ P: p
¯
� p � p̄. From part (i) it is clear that if u is a representation of

�, then (6) holds. Let us first show that (6) then also holds for v = αu+ β,
where α, β are arbitrary real constants with α > 0. Indeed,

∑
ω

(∑
k

pωk v(xk, ω)

)
= α

∑
ω

(∑
k

pωku(xk, ω)

)
+ β|Ω|

≤ α
∑
ω

(∑
k

qωk u(xk, ω)

)
+ β|Ω|

=
∑
ω

(∑
k

qωk v(xk, ω)

)
,

if and only if the inequality in (6) holds. If on the other hand both u and
v are chosen such that the expected utility representation (6) for � is valid,
then one can find constants β and α > 0 such that u = αv + β. Indeed,
given any p ∈ P we can define ϑ(p) = (Φ(p)− Φ(p

¯
))/(Φ(p̄)− Φ(p

¯
)) ∈ [0, 1].

Since Φ(p) is a representation of the preference preordering � of P, it is by
part (i) linear. Thus

ϑ(p)Φ(p̄) + (1− ϑ(p))Φ(p
¯
) = Φ(ϑ(p)p̄+ (1− ϑ(p))p

¯
)
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and necessarily p ∼ ϑ(p)p̄ + (1 − ϑ(p))p
¯
. Similarly, since v is part of a

representation of � in the form (6) with expected utility Ψ(·) defined on P,
we must have

Ψ(p) = Ψ(ϑ(p)p̄+ (1− ϑ(p))p
¯
)

= ϑ(p)Ψ(p̄) + (1− ϑ(p))Ψ(p
¯
)

= ϑ(p)
(
Ψ(p̄)−Ψ(p

¯
)
)

+ Ψ(p
¯
), (7)

so that Ψ(p) = αΦ(p) + γ, with α = (Ψ(p̄) − Ψ(p
¯
))/(Φ(p̄) − Φ(p

¯
)) and

γ = Ψ(p
¯
) − Φ(p

¯
)α. Hence part (ii) of our proposition obtains by setting

β = γ/|Ω|. �

Remark Even though probably quite clear by now, it may still be useful
to clarify the relation of Proposition 3 to a representation of preferences
over the decision maker’s actions. Let Φ : P → R be an expected utility
representation, i.e., for any p ∈ P:

Φ(p) =
∑
ω

(∑
k

pωku(xk, ω)

)
for an appropriate state-dependent u : X × Ω → R. Furthermore, let
ψ : A → P be a mapping from the decision maker’s action space to the
space of lotteries. This mapping is normally implied by the setup of a par-
ticular problem. Then we can express the expected utility (cf. footnote 13
on page 14) form (6) of any action a ∈ A as

EU(a) = Φ(ψ(a)).

The expected utility EU(·) is unique up to a positive linear transformation.
It represents a complete preference preordering of the action set A.

4 Risk Aversion

Consider an agent with utility function u : X → R and wealth w. To
keep the discussion as simple as possible, we restrict attention to uncertain
events with monetary outcomes in a set X ⊆ R. We further assume that
u is twice differentiable and strictly increasing.14 When confronted with a
money lottery of uncertain payoff x̃, his expected utility is Eu(w + x̃).

14Smoothness assumptions on utility functions are quite uncritical as they are hard to
refute given any finite amount of data on choice outcomes.
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Definition 2 The agent is risk averse if he dislikes any zero-mean lottery,
i.e., if for x̃ with Ex̃ = 0 it is Eu(w + x̃) < u(w) for all wealth levels w.

Naturally, the agent is risk loving if he strictly prefers accepting any zero
mean lottery over doing nothing. In case of indifference for all wealth levels
the agent is risk neutral. We now provide a full characterization of risk
aversion.

Proposition 4 The agent is risk averse if and only if his utility function is
strictly concave.

Proof. Assume first that the agent is risk averse. Then for any zero-mean
random variable x̃ and any wealth level w we have that Eu(w+ x̃) < u(w).
Let ỹ = w+x̃ and thus Eu(ỹ) < u(Eỹ) which by Jensen’s inequality (cf. Ap-
pendix) implies strict concavity. Similarly, if the agent’s utility function u
is strictly concave, the converse follows immediately, again using Jensen’s
inequality. �

Clearly, a risk-averse agent is willing to pay a positive amount π in order
not to be exposed to a pure risk x̃ (with Ex̃ = 0). This amount is called his
risk premium π = π(u;w, x̃) and can be computed as follows:

Eu(w + x̃) = u(w − π(u;w, x̃)), (8)

where w is the agent’s initial wealth and u his utility function (cf. Figure 4).
If the agent is risk loving, then π might become negative. If instead of
pure risk, the agent is exposed to a random payoff ỹ = µ + x̃, so that
Eỹ = µ, then the amount an agent would require to be paid in order to
make him indifferent between accepting the money lottery or taking his
wealth w for sure is called his certainty equivalent CE = CE(u;w, ỹ). The
certainty equivalent satisfies

Eu(w + ỹ) = u(w + CE(u;w, ỹ)). (9)

Comparing (8) and (9) we find that w− π = w− µ+ CE or in other words,

CE(u;w, ỹ) = µ− π(u;w + µ, x̃).

We would like to order utility functions in a way that leads to unambiguous
changes in the risk premium, independent of the underlying risk.15

15Let us consider a simple numerical example to see how the algebra works: an individual
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Figure 4: Risk premium π and certainty equivalent CE of a money lottery
x̃ ∈ {x1, x2} with Ex̃ = µ and initial wealth w.

Definition 3 Agent U with utility function u is more risk averse than agent V
with utility function v, if at any equal wealth level agent U rejects all lotteries
that V rejects.

The following statement provides necessary and sufficient conditions for
agent U to be more risk averse than agent V. Before we formulate this
proposition it is useful to define the Arrow-Pratt coefficient of absolute risk
aversion for, say, agent U:

ρA(u;w) = −u
′′(w)

u′(w)
. (10)

Proposition 5 Assume that agents U and V have the same initial wealth
w and suppose that their utility functions u and v are twice differentiable.
Then the following statements are equivalent:

of wealth w = 0 faces a money lottery ỹ, which with equal probability of 1/2 yields
y1 = 0 or y2 = −16 . Preferences are represented by a utility function u(y) =

√
16 + y for

y ≥ −16. The expected payoff of the lottery ỹ is µ = Eỹ = −8 and its certainty equivalent
can be determined from (9), which gives CE(u; 0, ỹ) = −12. The pure risk associated with
the lottery ỹ is given by x̃ = ỹ − µ. From (8) we obtain the risk premium at wealth µ:
π(u;µ, x̃) = 4. Thus, we have verified that indeed CE(u;w, ỹ) = µ− π(u;w + µ, x̃).

19



(i) Agent U is more risk averse than agent V.

(ii) There is a strictly increasing concave function ϕ such that u = ϕ ◦ v.

(iii) Agent U’s absolute risk aversion is larger than agent V’s absolute risk
aversion, i.e., ρA(u;w) ≥ ρA(v;w) for all w.

(iv) The risk premium that agent U is willing to pay exceeds the risk pre-
mium that agent V is willing to pay, i.e., π(u;w) ≥ π(v;w) for all w.

Proof. (i)⇔(iv): Agent U is more risk averse than agent V if and only
if (by definition) for any random payoff ỹ with Eỹ = µ and for any wealth
level w:

v(w+µ−π(v)) = Ev(w+ ỹ) < v(w)⇒ u(w+µ−π(u)) = Eu(w+ ỹ) < u(w),

where π(u) = π(u;w) and π(v) = π(v;w) are the risk premiums for agents U
and V. This is equivalent with

µ− π(v) < 0 ⇒ µ− π(u) < 0,

which is equivalent to π(u) ≥ π(v), as claimed. (ii)⇔(iii): Since any agent
prefers a higher payoff to less (u, v are strictly increasing) and given that
their utility functions are twice differentiable, there exists a twice differen-
tiable strictly increasing function ϕ : R → R, such that u = ϕ ◦ v. Taking
the first and second derivative of u we obtain therefore u′ = ϕ′(v)v′ and
u′′ = ϕ′′(v)(v′)2 + ϕ′(v)v′′. Dividing the expression for u′′ by u′ and using
the expression for u′ we obtain

u′′

u′
=

ϕ′′(v)

ϕ′(v)v′
+
v′′

v′
,

or by introducing the definition of the Arrow-Pratt coefficient of absolute
risk aversion,

ρA(u;w) = ρA(v;w)− ϕ′′(v)

ϕ′(v)v′
,

so that ρA(u;w) ≤ ρA(v;w) if and only if ϕ′′(v(w)) ≤ 0. (ii)⇒(iv): There is
a strictly increasing and concave function ϕ : R → R such that u = ϕ ◦ v.
Thus, for any wealth level w and random payoff ỹ with Eỹ = µ we have
Eu(w+ ỹ) = u(w+µ−π(u)) = ϕ(v(w+µ−π(u)). Using Jensen’s inequality,
since ϕ is concave: u(w + µ − π(u)) = Eϕ(v(w + ỹ)) ≤ ϕ(Ev(w + ỹ)) =
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ϕ(v(w + µ− π(v))) = u(w + µ− π(v)). As a result, π(u) > π(v). (ii)⇐(iv):
By definition of the risk premium, Ev(w + ỹ) = v(w + µ − π(v)). Thus
ϕ(Ev(w+ ỹ)) = u(w+µ−π(v)). On the other hand, Eϕ(v(w+ ỹ)) = u(w+
µ− π(u)). Since by assumption π(u) ≥ π(v), we have that Eϕ(v(w + ỹ)) ≤
ϕ(Ev(w+ ỹ)). Thus, by Jensen’s inequality (since ỹ and w are arbitrary) ϕ
is a concave function. This concludes the proof of the proposition. �

Remark The coefficient of relative risk aversion is defined as

ρR(u;w) = wρA(u;w). (11)

A family of functions with constant absolute risk aversion (CARA) can be
derived by solving the homogenous ordinary differential equation u′′−ρu′ =
0 for any real constant ρ. One obtains (up to a positive linear transforma-
tion) a representation of CARA functions (with ρA = ρ):

u(w) = − exp(−ρw).

Similarly one can derive all (CRRA) functions with constant relative risk
aversion ρR = ρ:

u(w) =

{
w1−ρ/(1− ρ), if ρ 6= 1,
ln(w), otherwise.

5 Stochastic Dominance

It is now our goal to order risks in a way that leads to unambiguous changes
in the risk premium16 for a class U of utility functions u. Given two random
variables x̃ and ỹ it is π(u, x̃) ≥ π(u, ỹ) for all u ∈ U , if and only if

Eu(x̃) ≤ Eu(ỹ) ∀u ∈ U . (12)

Definition 4 If (12) holds, the risk ỹ is said to stochastically dominate
x̃ with respect to U , denoted by x̃ �U ỹ. Necessary and sufficient condi-
tions on x̃ and ỹ for (12) to hold are called a stochastic dominance order
(representation) relative to U .

Note that for U ′ ⊂ U the stochastic dominance order will be weaker, as
it has to characterize (12) for less functions. There are two sets of utility
functions that are of particular practical interest:

16Without loss of generality we assume that wealth w is equal to zero, and we omit it
in most of this section.
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1. The stochastic dominance order relative to all increasing functions (the
set U1) is called first-order stochastic dominance.

2. The stochastic dominance order relative to all increasing and concave
functions (the set U2) is called second-order stochastic dominance.

In addition to these two widely used stochastic orders, we will consider cen-
tral dominance in Section 5.3, which proves useful in certain applications. In
order to construct stochastic dominance orders, let us first reformulate (12)
by representing the set U in terms of convex combinations of functions from
a simpler set, B ⊂ U .

Definition 5 Let B = {b(·, θ) : θ ∈ Θ} ⊂ U , where Θ is a compact index set.
If for any u ∈ U there exists an increasing measurable function H : Θ→ R+

and real constants α, β with β > 0 such that

u(·) = α+ β

∫
Θ
b(·, θ)dH(θ), (13)

then B is called a basis of U . If H is nonnegative and satisfies the normal-
ization condition ∫

Θ
dH(θ) = 1, (14)

it is called the transform of u with respect to B.

Note that given any particular u ∈ U if (14) holds, we can interpret H,
its transform with respect to B, as a cumulative distribution function of a
random variable θ̃ that assumes values in Θ. Then, relation (13) is equivalent
to u(·) = Eb(·, θ̃). We will now see that using a basis of U it is possible to
considerably simplify (12).

Proposition 6 If B is a basis of U , then (12) can be rewritten as

Eb(x̃, θ) ≤ Eb(ỹ, θ) ∀θ ∈ Θ. (15)

Proof. The proof is almost trivial. Let B be a basis of U . (12)⇒(15):
Since for all θ ∈ Θ we have that b(·, θ) ∈ U , relation (12) implies that
Eb(x̃, θ) ≤ Eb(ỹ, θ) for all θ ∈ Θ (15)⇒(12): Since any u ∈ U can be
represented as u(·) = Eb(·, θ̃) for some increasing measurable function H(θ),
relation (12) follows immediately from (15) by convex combination. �

22



5.1 First-Order Stochastic Dominance

Let U1 = {u : x < y ⇒ u(x) ≤ u(y)} be the set of all increasing utility func-
tions, u : [a, b]→ R for some real constants a < b. We would like to construct
a stochastic dominance order �1, so that x̃ �1 ỹ is equivalent to (12) for
U = U1. If we let Θ = [a, b], then the set of step functions

B1 = {b(·, θ) ∈ U1 : b(x, θ) = 1{x≥θ}, θ ∈ [a, b]}

is a basis of U1, which can be readily verified. Indeed, for H(θ) = u(θ),
α = u(a) and β = 1 we have17

u(x) = u(a) +

∫ x

a
du(θ) = α+ β

∫ b

a
b(x, θ)dH(θ).

By Proposition 6 and linearity of the expectation operator we find that
relation (12) with U = U1 is equivalent to E1{x̃≥θ} ≤ E1{ỹ≥θ} for all θ ∈ Θ,
which in turn is equivalent to

F (θ) ≥ G(θ) ∀θ ∈ Θ, (16)

where F is the cdf of x̃ and G the cdf of ỹ. Condition (16) thus characterizes
first-order stochastic dominance: x̃ �1 ỹ if and only if (16) holds.

MPR and MLR Stochastic Orders. A sufficient condition for first-
order stochastic dominance is that the probability ratio π(θ) = Prob(x̃ ≤
θ)/Prob(ỹ ≤ θ) = F (θ)/G(θ) is monotonically decreasing in θ. The stochas-
tic order �MPR is generally referred to as monotone probability ratio (MPR)
order. Similarly, if the likelihood ratio `(θ) = F ′(θ)/G′(θ) is decreasing in θ,
then this is sufficient for first-order dominance. The implied stochastic order
�MPR is the monotone likelihood ratio (MLR) order. It turns out (cf. Gol-
lier (2001, pp. 102–104) or Athey (2002)) that �MPR is weaker than �MLR;
in other words: x̃ �MLR ỹ ⇒ x̃ �MPR ỹ.

5.2 Second-Order Stochastic Dominance

Let U2 = U1 ∩ {u : tu(y) + (1− t)u(x) ≤ u(ty + (1− t)x), t ∈ [0, 1]} be the
set of all increasing and concave utility functions, u : [a, b]→ R. We would

17We assume here for convenience that u(b) > u(a). If u(b) = u(a), then the function
u ∈ U1 is necessarily constant on [a, b] and relation (13) holds trivially. Note also that any
monotone function defined on a compact set is measurable.
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Figure 5: FOSD condition (16) and SOSD condition (18) for comparing two
risks x̃ ∼ F and ỹ ∼ G, so that x̃ �1 ỹ and x̃ �2 ỹ respectively.

like to construct a stochastic dominance ordering �2, so that x̃ �2 ỹ is
equivalent to (12) for U = U2. We first show that

B2 = {b(·, θ) ∈ U2 : b(x, θ) = min{x, θ}, θ ∈ [a, b]}

is a basis of U2 by constructing appropriate functions H(θ). Let α, β be real
constants with β > 0. To get an idea about what requirement appropriate
H function needs to satisfy for a given u ∈ U2, let us first assume that we
have already found such a function. Relation (13) can – using integration
by parts – be written as

u(x) = α+ β

∫ b

a
b(x, θ)dH(θ) = α+ β

∫ b

a
min{x, θ}dH(θ)

= α+ β

(
xH(b)− aH(a)−

∫ x

a
H(θ)dθ

)
,

for all admissible x, so that18

u′(x)
a.e.
= β(H(b)−H(x)).

Note that the last relation implies that u′(b) = 0, which is not a requirement
of being a member of the set U2. Since the set of twice differentiable concave
increasing functions is dense in U2 it seems reasonable, based on the previous
derivations to require that

H ′(θ) = −u′′(θ),
18Note that u ∈ U2 is as a convex function differentiable almost everywhere.
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Figure 6: FOSD and SOSD shifts for random variables x̃, ỹ, z̃ on a discrete
support {1, 2, 3, 4}, so that x̃ �2 ỹ �1 z̃. Note that x̃ ∼1 ỹ and x̃ �2 z̃.

for such functions (in particular, H should be differentiable then). Integrat-
ing the last relation on both sides on [a, x], we obtain that

H(x) = u′(a)− u′(x), (17)

where we have set H(a) = 0 without loss of generality. The reader is urged to
verify using (13) that (17) (together with α = −(au′(a) + u(a)) and β = 1)
is indeed an appropriate choice of H for any u ∈ U2. By Proposition 6
relation (12) is therefore equivalent to

E [min{x̃, θ}] ≤ E [min{ỹ, θ}] ∀θ ∈ Θ.

In other words, ∫ θ

a
F (x)dx ≥

∫ θ

a
G(y)dy ∀θ ∈ [a, b], (18)

where F and G are the cumulative distribution functions for x̃ and ỹ respec-
tively. Condition (18) defines second-order stochastic dominance: x̃ �2 ỹ if
and only if (18) is satisfied.19 If E[ỹ − x̃] = 0, then a second-order stochas-
tically dominated deterioration of risk is referred to as a mean-preserving
spread.

Remark Rothschild and Stiglitz (1970) show that a mean-preserving spread

19Note that since the identity function u(x) = x is in U2, the relation x̃ �2 ỹ means
that the expected difference E[ỹ − x̃] is nonnegative, as a direct consequence of (12).
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is equivalent to the addition of independent white noise ε̃, so that

x̃ = ỹ + ε̃ (19)

with E [ε̃|ỹ] = 0. Using Jensen’s inequality and the law of iterated expecta-
tions, sufficiency of (19) for (12) can be readily established:

Eu(x̃) = Eu(ỹ + ε̃) = E [E[u(ỹ + ε̃)|ỹ]] ≤ E [u(ỹ + E[ε̃|ỹ])] = Eu(ỹ).

Rothschild and Stiglitz also establish necessity in their seminal paper.

First-order stochastic dominance (FOSD) implies second-order stochastic
dominance (SOSD), since condition (16) is more restrictive than (18). Fig-
ure 5 illustrates the two conditions next to each other. The intuitive dif-
ference between FOSD shifts and SOSD shifts can be easily grasped by
looking at random variables on a discrete support. Figure 6 provides such
an example.

5.3 Central Dominance

Consider the portfolio problem discussed earlier, whereby we assume that
the investor is risk averse, so that by Proposition 4 his utility function is
strictly concave. The first-order necessary optimality condition for an inte-
rior maximum of the expected utility with respect to the investment action a
is

EU ′(a) = Er̃u′(w + ar̃) = 0. (20)

The interesting question is, what shifts in the distribution of returns would
prompt the investor to increase his optimal investment? To describe such
shifts let us fix a ∈ (0, 1) such that (20) holds and let x̃ = ar̃ be the outcome
distribution associated with this action.

Definition 6 The random variable x̃ is centrally dominated by the random
variable ỹ at w, if

Ex̃u′(w + x̃) = 0 ⇒ Eỹu′(w + ỹ) ≥ 0, (21)

for all u ∈ U2.

It is clear that if ỹ centrally dominates x̃ at w, then the investor would
increase her investment action a > 0 as the distribution of returns shifts
from x̃/a to ỹ/a. We will characterize central dominance in the next section
using the diffidence theorem (cf. Example 4 on page 29).
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6 Comparative Statics under Uncertainty

The term “comparative statics” refers to the practice of determining the
impact of parameter changes in models. Analyzing the comparative statics
for your model typically yields some of the main insights for your applied
research paper. Note that it is often possible to make statements about com-
parative statics without being able to actually solve the underlying model
explicitly.

6.1 The Diffidence Theorem

Consider first the simple case of a model parameter α that can take only
two values, α ∈ {α1, α2}. Let ϕ(x̃;α) be some function of interest in your
model (e.g., a firm’s profit) that depends on a random outcome x̃ and the
exogenous parameter α. For simplicity, let us write f(·) = ϕ(·;α1) and
g(·) = ϕ(·;α2) and assume that f and g are measurable functions. We are
interested in necessary and sufficient conditions on f, g which guarantee that

Ef(x̃) ≥ Eg(x̃), (22)

for any x̃ with support in the compact interval [a, b] (to keep technicalities
to a minimum). Since (22) needs to hold for all degenerate random variables
x̃ = x ∈ [a, b] a necessary condition is that

f(x) ≥ g(x), (23)

for all x ∈ [a, b]. On the other hand, the last condition is also sufficient,
since (23) directly implies (22) for any x̃ with support in [a, b]. Thus, (22)
and (23) are equivalent.

Let us now consider the somewhat more interesting case, where a little more
is known about your model. For instance, a firm’s expected profit might be
zero when α = α1 for some randomly distributed outcome, i.e., Ef(x̃) = 0
for a particular x̃ with support in [a, b]. With this additional structure in
hands, inequality (22) is weakened to

∀x̃ : Ef(x̃) = 0 ⇒ Eg(x̃) ≤ 0. (24)

We can expect that a necessary and sufficient condition for (24) will be
weaker than (23), since it only has to hold for random variables x̃ that
satisfy the additional zero-expected-profit condition. It turns out that quite
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a few problems can be rewritten in the form (24) so that a characterization of
this relation is of great interest. The following theorem (due to unpublished
work by Gollier and Kimball (1997)) provides such a characterization.20

Proposition 7 (Diffidence Theorem) Let f, g : R → R be measurable
functions. The following two statements are equivalent. (i) For any real
random variable x̃ on a support in [a, b]: Ef(x̃) = 0 ⇒ Eg(x̃) ≤ 0.
(ii) There exists a real constant λ such that g(x) ≤ λf(x) for almost all
x ∈ [a, b].

Proof. The proof given here is somewhat informal: cf. Gollier (2001,
pp. 82–86) for details. Let us first assume that there is a pdf h(·) of x̃,
defined on [a, b]. By definition, h ≥ 0 and∫ b

a
h(x)dx = 1. (25)

The condition Ef(x̃) = 0 can be written as∫ b

a
f(x)h(x)dx = 0. (26)

Thus for any given f, g relation (24) holds if and only if

sup
h(·)

∫ b

a
(g(x)− λf(x)− µ)h(x)dx+ µ ≤ 0 (27)

for some constants λ and µ, subject to (25)–(26). The last inequality has
been obtained from the condition Eg(x̃) ≤ 0 by adding the constraints (25)–
(26) multiplied by µ and λ respectively. Given that h ≥ 0 and (25) holds, a
sufficient condition for (27) is

g(x)− λf(x) ≤ 0

for almost all x ∈ [a, b] and some λ (which needs to be nonnegative, since
f, g ≥ 0). The last condition is also necessary, for if there is no λ such that
g(x) ≤ λf(x) on [a, b] (almost everywhere), then the LHS in (27) becomes

20This theorem is somewhat related to hyperplane separation theorems in Hilbert
spaces. For details on such separation theorems, see for instance Aubin (1998, pp. 27–34),
Berge (1963, pp. 154–157, pp. 162–167) or more specifically Jewitt (1986). Its peculiar
name is related to the concept of “diffidence” which we introduce on page 29.
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positive even though the random variable x̃ satisfies (26). �

An agent of initial wealth w and utility function u dislikes any zero-mean
lottery if and only if

Ex̃ = 0 ⇒ Eu(w + x̃) ≤ u(w). (28)

If the last condition holds for all wealth levels w, then by Definition 2 we
obtain (weak) risk aversion, which by Proposition 4 is equivalent to u being
concave.21 If (28) only holds for certain wealth levels, then concavity of u
(i.e., risk aversion) is too strong a condition and it is appropriate to introduce
the concept of diffidence to characterize this weaker notion of local aversion
to zero-mean lotteries.

Definition 7 The agent is diffident at wealth w if (28) holds.

If u is differentiable at w, then diffidence at that wealth level corresponds
to local concavity of u in that point.

Example 4 As a first application of the diffidence theorem, let us charac-
terize central dominance introduced in Section 5.3. Using the basis B2 for
U2 as before in Section 5.2 we know that any u ∈ U2 can be represented as
expectation,

u(x) =

∫ b

a
b(x, θ)dH(θ) =

∫ b

a
xdH(θ) +

∫ b

a
min{x, θ}dH(θ),

given a suitable cdf H over the basis functions b(·, θ) ∈ B2, θ ∈ [θ
¯
, θ̄] = Θ.

Thus,
u′(x) = 1 + 1{x≤θ̃}.

Let f(θ) = Ex̃
(
1 + 1{w+x̃≤θ}

)
and g(θ) = −Eỹ

(
1 + 1{w+ỹ≤θ}

)
, so that we

can rewrite (21) in the familiar form

Ef(θ̃) = 0 ⇒ Eg(θ̃) ≤ 0.

Assuming without loss of generality that a ≤ θ
¯
−w < θ̄−w ≤ b, Proposition 7

then yields: x̃ centrally dominates ỹ at w, if and only if there exists a
constant λ such that∫ ϑ

a
ydG(y) + Eỹ ≥ λ

(∫ ϑ

a
xdF (x) + Ex̃

)
(29)

21Naturally we need to replace all strict inequalities in Definition 2 and Proposition 4
by weak inequalities.
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for all ϑ ∈ [θ
¯
− w, θ̄ − w]. For pure risks with Ex̃ = Eỹ = 0 this condition

simplifies to ∫ ϑ

a
ydG(y) ≥ λ

∫ ϑ

a
xdF (x) (30)

for all ϑ ∈ Θ− w. �

Other applications of the diffidence theorem are given in the appendix (al-
ternative proof of Jensen’s inequality) and Problem 6.

6.2 Monotone Comparative Statics

Let us now consider a parameter set T ⊂ R and let us examine changes of
maximizers

a(t) = arg max
â∈A

ϕ(â; t), (31)

where the objective function φ : A × T → R is here assumed to be at
twice continuously differentiable for simplicity.22 In addition, let the finite-
dimensional action set A be nonempty, compact and convex. We say that
the optimization problem (31) exhibits monotone comparative statics, if
a(t) is monotonically increasing on the parameter set T . The following
proposition23 guarantees smoothness properties of the maximizer a(t).

Proposition 8 (Maximum Theorem; Berge, 1963) If ϕ(·; t) is contin-
uous for any t ∈ T , then: (i) a(t) is compact-valued and upper hemicontin-
uous (uhc) on T . (ii) ϕ(a(t); t) is continuous on T .

Proof. See Berge (1963, pp. 115–117).

We thereby say that a (set-valued) mapping a(t) is upper hemicontinuous at
a point t0 ∈ T , if for each open set S ⊃ a(t0) there exists a neighborhood
U(t0) such that: t ∈ U(t0) ⇒ a(t) ⊂ S. The mapping a(t) is uhc on the
open set T if it is uhc at every point of T . If a(t) is single-valued, then

22The smoothness assumptions are not necessary in the least for the main results to
hold. Since main insights are based on lattice-theory everything carries over to discrete
optimization, which – however – is beyond the scope of this course.

23The maximum theorem is due to Berge (1963, p. 116) and it is very important to keep
it in mind when solving optimization problems. All conclusions (i.e., uhc of maximizer
and continuity of ϕ(a(t); t)) still hold if in addition to the version stated here we let the
action set A(t) 6= ∅ depend on the parameter t as well. The set-valued map A : T → P (A)
then needs to be continuous in the topological sense (i.e., pre-image of every open set is
open).
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uhc is nothing else than continuity. At points of indifference, where a(t) is
set valued, the maximized function ϕ(a(t), t) is also continuous, whereas the
maximizer might “step over” intermittently without ever really “jumping.”
The following example clarifies the implications of the maximum theorem.

Example 5 Consider a portfolio problem with ex-post payment under lim-
ited liability. You can imagine a situation in which an investor (of initial
wealth w) has to pay a pre-agreed price p ≥ 0 after an uncertain return
r̃ has realized. The investor signed this ex-post payment contract in or-
der to take part in this unique investment opportunity. The question is,
how does his optimal investment action a(p) change as the ex-post price p
increases. To make things concrete, assume that r̃ ∈ {−1, ρ} with equal
probability on the outcomes r = −1 (lose all invested money) and r = ρ > 1
(note that the expected value of the investment opportunity is positive).
Let w ≥ (ln ρ)/(1 + ρ) for simplicity and let the investor’s utility for money
be CARA (cf. page 21), such that for any monetary outcome x his utility is
given by u(x) = − exp(−x). Thus, for any price p the investor solves

a(p) ∈ arg max
â∈[0,w]

Eu ([w − p+ âr̃]+) ,

provided that it is small enough so that the expected utility of the investment
opportunity is at least u(w). Assume that p ≤ w, then we can rewrite the
investor’s problem,

a(p) ∈ arg max
â∈[0,w]

−
(
e−[w−p−â]+ + e−(w−p+âρ)

)
⊆
{

ln ρ

1 + ρ
, w

}
.

The investor is indifferent between the interior maximizer ai = (ln ρ)/(1+ρ)
and “going for broke” (i.e., investing everything, ā = w), if and only if

1 + e−(w−p+wρ) = e−(w−p)
(
ρ
− 1

1+ρ + ρ
− ρ

1+ρ

)
,

so that the solution to the investor’s maximization problem (provided he
accepts the contract) can be written as

a(p) =

{
(ln ρ)/(1 + ρ), if p ≤ p0,
w, if p ≥ p0,

where
p0 = w − ln

(
ρ
− 1

1+ρ + ρ
− ρ

1+ρ − e−wρ
)
.
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Note that a(p) is piecewise constant and single-valued for all admissible
p 6= p0. At p = p0 the investor is indifferent (a(p0) contains two elements)
and “smoothly steps over” from one maximizer to the other (cf. Figure 7).
The maximized expected utility Eu([w−p+a(p)r̃]+) is therefore continuous
in p as asserted by Berge’s maximum theorem. �

Monotone Comparative Statics Under Certainty. Necessary and suf-
ficient conditions on ϕ so that a(t) exhibits monotone comparative statics
(MCS) have been provided by Milgrom and Shannon (1994). Before con-
sidering their result, let us briefly examine the implicit function approach
that can be used if the maximand is sufficiently smooth (twice continuously
differentiable) in its arguments and the maximizer is single-valued. The
first-order necessary optimality condition for (31) is

ϕa(a(t); t) = 0, (32)

for all t ∈ T , so that by differentiating with respect to t we obtain that

a′(t) = −ϕat(a(t); t)

ϕaa(a(t); t)
, (33)

provided that ϕaa 6= 0. If ϕ is strictly concave in a, then a necessary and
sufficient condition for a(t) to exhibit MCS is that

ϕat(a(t); t) ≥ 0. (34)

The last condition appears in many economic papers, although it does re-
quire the rather strong assumption that ϕ be concave. The beauty of Mil-
grom and Shannon’s result is that it does not depend on such assumptions
at all! All that matters for MCS is a weak complementarity property be-
tween the arguments of the objective function, typically referred to as single-
crossing property or more generally as quasi-supermodularity.

Before we report the full characterization of MCS under certainty, let us
formulate and prove a simpler (here only one-dimensional result) due to
Topkis (1968, p. 55). This result uses the concept of increasing differences,
which can be readily interpreted in terms of complementarity.

Definition 8 The function ϕ : A × T → R has increasing differences in
(a, t), if for any (â, t̂) ≥ (a, t): ϕ(â, t̂)− ϕ(a, t̂) ≥ ϕ(â, t)− ϕ(a, t).
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Figure 7: Maximizer a(p) and maximized objective function ϕ(a(p), p) =
Eu ([w − p+ a(p)r̃]+) in Example 5.
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The fact that the objective function has increasing differences means that
the incremental gain from choosing â over a increases in t. Similarly, the
incremental gain from having a high parameter t̂ instead of t increases in
the decision maker’s action, since ϕ(â, t̂) − ϕ(â, t) ≥ ϕ(a, t̂) − ϕ(a, t) by
symmetry of Definition 8. Note that the sets A and T do merely have to be
(partially) ordered for increasing differences to make sense; they could be
discrete for instance. It is clear that if ϕ is twice continuously differentiable
that ϕ has increasing differences if and only if ϕat ≥ 0. The property of
increasing differences is thus directly related to MCS by (34), as will become
clear with the following result.

Proposition 9 (Topkis, 1968) Let ϕ : A×T → R have increasing differ-
ences and be upper semicontinuous in a. Then a(t) exists for all t ∈ T and
possesses a smallest element a

¯
(t) and a largest element ā(t). Furthermore,

a
¯

(t) and ā(t) are increasing in t.

Proof. Given a particular t ∈ T , select an increasing sequence
(ak(t))∞k=0 ⊂ a(t) with ak+1 ≥ ak. Define ā = limk→∞ a

k, which is finite
for A is bounded. Since ϕ is upper semicontinuous at ā, for any ε > 0 there
exists a neighborhood U(ā) such that: a ∈ U(ā) ⇒ ϕ(a; t) ≤ ϕ(ā; t) + ε.
Hence, there is a K > 0 such that for all k ≥ K: ak ∈ U(ā) and thus
ϕ(ak; t) ≤ ϕ(ā; t) + ε. Thus, for any a ∈ A: ϕ(ak, t) ≥ ϕ(a, t) ⇒ ϕ(ā, t) ≥
ϕ(a, t). (If ϕ(ā, t) < ϕ(a, t) then just select ε > 0 small enough, so that
necessarily ϕ(ak, t) < ϕ(a, t) for all k ≥ K(ε).) Hence ā(t) ∈ a(t), i.e.,
ā(t) is indeed a maximizer. The proof proceeds analogously to show that
a
¯
(t) ∈ a(t). We will now show the monotonicity of ā(t). For this, let t̂ ≥ t

and a ∈ a(t), â ∈ a(t̂). Then ϕ(a; t) − ϕ(min{a, â}; t) ≥ 0, since a ∈ a(t).
If a ≤ â, then the LHS of the last inequality is in fact zero. If on the other
hand a ≥ â, then the inequality becomes ϕ(a; t) − ϕ(â; t) ≥ 0. As a re-
sult of both of these cases: ϕ(max{a, â}; t) − ϕ(â; t) ≥ 0 and thus by the
increasing-differences property of ϕ:

ϕ(max{a, â}; t̂)− ϕ(â; t̂) ≥ ϕ(max{a, â}; t)− ϕ(â; t) ≥ 0.

We have therefore shown that max{a, â} maximizes ϕ(·; t̂). If we now set
a = ā(t) and â = ā(t̂), then ā(t̂) ≥ ā(t). One can conclude in a similar
manner that a

¯
(t̂) ≥ a

¯
(t), which concludes the proof. �

Note that for Proposition 9 to hold, in addition to A being compact the sets
A and T merely have to be partially ordered. The following results based on
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the concept of (quasi-)supermodularity are technically more involved as they
use lattice-theoretic methods, which are beyond the scope of this course. For
more details, see Topkis (1998, Chapter 2).

Definition 9 Let g : T → R and T ⊂ R. (i) g satisfies single-crossing
in t (SC1), if there exists t0 ∈ T such that (t− t0)(g(t)− g(t0)) ≥ 0 for all
t ∈ T . (ii) Let A ⊂ Rn, where A = A1 × · · · × An with Ak ⊂ R for all
k = 1, . . . , n. The function ϕ : A× T → R satisfies single-crossing in (a, t)
(SC2), if for all aH > aL: g(t) = ϕ(aH ; t)−ϕ(aL; t) satisfies SC1. (iii) The
function h : A → R is quasi-supermodular if it is SC2 in (ak, aj) for all
k, j ∈ {1, . . . , n} with k 6= j.

A function is quasi-supermodular if it satisfies a single-crossing property
(SC2) in all possible variable pairs. The following result completely charac-
terizes MCS.

Proposition 10 (MCS; Milgrom and Shannon, 1994) Let A ⊂ Rn be
a product set as in Definition 9 (ii). The maximizer a(t) in (31) is increasing
if and only if the objective function ϕ : A× T → R is quasi-supermodular.

Proof. See Milgrom and Shannon (1994).

Since it is in most situations not that easy to verify quasi-supermodularity,
we are interested in simpler sufficient conditions for MCS. A property that
can be checked more easily is supermodularity. Its definition is most natural
using the ∨ (“join”) and ∧ (“meet”) operators. For any two vectors x, y ∈ Rn
and function h : Rn → R we define x ∨ y = inf {z ∈ Rn : z ≥ x and z ≥ y}
and x ∧ y = sup {z ∈ Rn : z ≤ x and z ≤ y}.

Definition 10 Let h : Rn → R. (i) The function h is supermodular,24 if
for any x, y ∈ Rn: h(x ∨ y) + h(x ∧ y) ≥ h(x) + h(y). (ii) If h > 0 the
function h is log-supermodular, if log h is supermodular,25 i.e., if for any
x, y ∈ Rn: h(x ∨ y)h(x ∧ y) ≥ h(x)h(y).

If h is twice continuously differentiable, then h is supermodular if and only if
all cross-partial derivatives (with respect to different variables) are nonneg-
ative. For n = 2, supermodularity and the increasing-differences property

24The function h is submodular, if the inequality is reversed. If h is both supermodular
and submodular, it is called a valuation.

25For the definition to make sense, it is enough that h ≥ 0 and the inequality is satisfied.
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in Definition 8 are equivalent.

Monotone Comparative Statics Under Uncertainty. Let us now focus
on the situation, when the decision maker’s objective function ϕ : A×T → R
can be formulated as expected utility, in the form (cf. (1) on page 3)

ϕ(a; t) = EU(a; t) =

∫
Ω
u(a, ω)f(ω; t)dω, (35)

where u is a utility function representation of the decision maker’s von
Neumann-Morgenstern preferences and f : Ω×T → R+ is a (parametrized)
pdf.26 We know by Proposition 10 that the maximizer a(t) in (31) exhibits
MCS if and only if ϕ is quasi-supermodular. Athey (2002) provides nec-
essary and sufficient conditions for the primitives u and f in (35) so that
ϕ becomes quasi-supermodular. We focus on sufficient conditions, as the
necessary conditions (based on the construction of appropriate indicator
functions) is not easy to operationalize for any given model.

Proposition 11 (MCS Under Uncertainty; Athey, 2002) Let the de-
cision maker’s objective function ϕ : A × T → R be represented in the
form (35). Then each of the following conditions is sufficient for the max-
imizer a(t) in (31) to exhibit MCS: (i) u ≥ 0 is log-supermodular and f is
log-supermodular. (ii) u satisfies SC2 and f is log-supermodular.

Proof. See Athey (2002): in particular Lemmas 4,5 and Theorems 1,2.

7 Notes

There are a number of criticisms related to the expected utility paradigm.
Those criticisms, such as the framing effect, the Ellsberg and Allais para-
doxes, endowment effect to mention a few are often founded on quite robust
empirical evidence. The edited volume by Kahneman and Tversky (2000)
provides an excellent introduction to the field of “behavioral economics.”
There is currently substantial research activity in this area, especially in

26Note that the representation (35) does not cover the more general case (3) under
decomposable consequences (on page 4). The reason is that the action a in (35) does not
enter the pdf directly. Nevertheless, sometimes it is possible to still use Athey’s results
such as in Example 5 (cf. Problem 8) for instance.
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providing rational foundations for empirical observations by formally inte-
grating decision biases into choice models. The second half of these notes
owes a lot to Pratt (1964) and Gollier (2001). For a more detailed treatment
of stochastic orders, see Shaked and Shantikumar (1994) or more recently
Müller and Stoyan (2002). Topkis (1998) is an excellent resource for details
on MCS; there is also an unfinished (and unpublished) research monograph
by Athey, Milgrom, and Roberts that can currently be downloaded from
Susan Athey’s Stanford homepage.

8 Problems

Problem 1 (Optimization Practice) (i) Carefully characterize optimal
actions for the decision problems outlined in Example 1 and Example 2.
Justify any simplifying assumptions you need to make in order to arrive at
such representations. (ii) [Sensitivity Analysis] Can you make statements
about how optimal actions change if problem parameters shift?

Problem 2 (Utility Representation) Mr. A is not only interested in his
own wealth, wA, but also in Ms. B’s wealth, wB. Mr. A always strictly
prefers more collective wealth, wA+wB to less. In choices that are invariant
in collective wealth, he strictly prefers more equitable allocations of wealth
between Mr. A and Ms. B. Try to find a utility-representation of Mr. A’s
preferences. (i) Assume that both Mr. A’s and Ms. B’s potential wealth lie
in the bounded interval [0, w̄] for some positive w̄ < ∞. Suppose further
that there exists a smallest finite money increment ε > 0 between two dif-
ferent wealth levels (e.g., ε = 1 cent). Is it possible to represent Mr. A’s
utility function? Why or why not? If yes, provide an explicit expression for
u(wA, wB) — is it unique? (ii) Let w̄ → ∞ and/or ε → 0+. Is it possible
to represent Mr. A’s utility function? Why or why not? If yes, provide
an explicit expression for u(wA, wB) — is it unique? (iii) How would you
describe the effect of finiteness comparing (i) and (ii)?

Problem 3 (Machina Triangle) Consider a money lottery x̃ ∈ X , which
can have three real-valued outcomes, X = {x1, x2, x3} with x1 < x2 < x3.
Let pi be the probability of outcome xi. Since p3 = 1− p1− p2, each lottery
can be described completely by the tuple p = (p1, p2). The set of all admissi-
ble tuples P = {(p1, p2) ∈ R2

+ : p1+p2 ≤ 1} is called the “Machina triangle.”
The lottery p = (.2, .4) is thus a point in the Machina triangle. (i) Mark the
set L1 of all lotteries that first-order stochastically dominate p. (ii) Mark the
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set L2 of all lotteries that second-order stochastically dominate p. (iii) Mark
the set of all lotteries LMPR that dominate p in the sense of the monotone-
probability-ratio stochastic order. (iv) Mark the set LMLR of all lotteries
that stochastically dominate p in the sense of the monotone-likelihood-ratio
stochastic order. (v) Examine and prove all possible inclusion relationships
between the different sets L1, L2, LMPR, and LMLR (e.g., L1 ( L2). (vi) Let
u be a utility-representation of a decision maker’s preferences, which satisfy
the von Neumann-Morgenstern axioms. What does the set L0 of all lotteries
that provide the same expected utility to the decision maker as p look like?
Describe L0 in general and draw it for a numerical example (i.e., specific
values for u(xi), i = 1, 2, 3) that you make up.

Problem 4 (Third-Order Stochastic Dominance) Let

U3 = {u ∈ C3[a, b] : u′′ ≤ 0 ≤ u′, u′′′}

for some real constants a < b. (i) Show that U3 is convex and find an
appropriate basis B3. (ii) Establish the corresponding stochastic dominance
order, �3. (iii) Mark the set L3 of all lotteries that third-order stochastically
dominate p in Problem 3. [Hint: for a classical treatment of third-order
stochastic dominance, see Whitmore’s original 1970 paper.]

Problem 5 (Value of a Call Option) A risk-neutral agent owns a Eu-
ropean call option on an asset. The value of the underlying asset at the
exercise date is described by a random variable x̃ that takes values in [a, b].
The strike price of the option is given and equal to y. (i) Show that the agent
prefers an increase in risk in the value of the underlying asset. (ii) What
happens if the agent owns more than one call option on the same asset with
different exercise prices?

Problem 6 (Covariance Rule) Let f : R→ R be an increasing differen-
tiable function (such that f ′ ≥ 0). Let x̃ be an arbitrary random variable.
(i) Show that Ef(x̃)g(x̃) ≤ Ef(x̃)Eg(x̃) if and only if the differentiable func-
tion g : R→ R is decreasing (i.e., g′ ≤ 0). (ii) If Ef(x̃) = x0 (for otherwise
arbitrary x̃), then the inequality in (i) holds if and only if there is a real
constant λ(x0) such that g satisfies the following single-crossing condition

(g(x)− λ(x0))(x0 − x) ≥ 0.

This result is related to the covariance rule, cov(ỹ, z̃) = Eỹz̃ − EỹEz̃, by
setting ỹ = f(x̃) and z̃ = g(ỹ). [Hint: use the diffidence theorem.]
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Problem 7 (Risk Aversion vs. Diffidence) Consider the utility func-
tions u(x) = min{1, x} and v(x) =

√
x for x ≥ 0. (i) Is one more risk averse

than the other? (ii) Is one more diffident than the other; if yes, where?

Problem 8 (Monotone Comparative Statics) Examine the compara-
tive statics in Examples 2 and 5. In Example 5 assume that Ω = R and
that returns are distributed according to a pdf f : R → R+. Discuss this
example for a larger class of utility functions u than CARA. [Hint: it may
sometimes be useful to change variables.]
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Appendix

Let us now formulate and prove Jensen’s inequality, which has been instru-
mental in Section 4. The proof can be given as a straightforward application
of the diffidence theorem discussed in Section 6.

Proposition 12 (Jensen’s Inequality) The function u : R → R is con-
cave if and only if for any real random variable x̃ with support in [a, b]:
Eu(x̃) ≤ u(Ex̃).
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Proof. Let us first rewrite Jensen’s inequality in the following form:

Ex̃ = µ ⇒ Eu(x̃) ≤ u(µ) (36)

for any real random variable x̃ (for which a finite mean µ exists). Using the
diffidence theorem (Proposition 7) with f(x) = x−µ and g(x) = u(x)−u(µ)
implies that (36) is equivalent to

u(x)− u(µ) ≤ λ(x− µ)

for some constant λ and all x. In other words, u(x) lies (weakly) below the
tangent u(µ) + λ(x − µ) on u in µ. And since this is true for all µ ∈ [a, b],
it is equivalent to u being concave on [a, b]. �
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