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Set summation of set Y1 and set Y2:

Intuition. Choose any point, y1 from set Y1 and any point  y2 from set Y2; the set Y consists of 
the set of all points y1 + y2. 

1 2 1 2 1 1 2 2{ : , , }Y Y Y y y y y y Y y Y      

Y1

Y2

y1

y2

y1 +  y2

1 2Y Y Y 

CONCEPT OF SET SUMMATION
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Initial Endowment of commodities by consumer c:

Net output by firm f:  

 Total Supply: 

Define total Initial Endowments

Then, feasible set of total outputs is

1 1

C F
c f

c f

y
 

 

c

f fy Y

1

C
c

c

 




1 2 FY Y Y Y    

FEASIBLE TOTAL OUTPUT IN THE ECONOMY

Remark. Note that this depends on the assumption that there are no externalities in production.  If there are externalities, then the feasible set of total outputs 
is not set summation of individual production sets.
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 y1

1 2 FY Y Y    

1 2 FY Y Y  

y2

TOTAL FEASIBLE OUTPUT IN THE ECONOMY (Cont’d)
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1 1

C F
c f

c f

p y p p y
 

     

Value of Total Output in Economy = Value of Initial Endowments + Sum of Firms’ Profits

VALUING TOTAL OUTPUT AT MARKET PRICES
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1 1p y  

2 2p y  

Y1

Y2

y1

y2

y1+ y2

1 2p y      

INDIVIDUAL MAXIMIZATION IMPLIES GLOBAL MAXIMIZATION
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1

F
f

f

y



 y1
T

y2
T

1

F
f

f

y



1

constant
F

f

f

p y


 

constantp y 

MAXIMUM VALUE OF TOTAL OUTPUT

1 2 FY Y Y  
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Consumer maximizes utility, subject to budget constraint

Equivalently, consumer minimizes expenditure for achieving a certain utility level

* max  ( )

s.t.  

c c c

c c

u u x

p x w



 

*

*

min  

s.t. ( )

c c

c c c

w p x

u x U

 



CONSUMER CHOICE
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Define set of consumption bundles weakly preferred to optimal choice as preference set for 
consumer c:  Rc

Then consumer minimizes expenditure, given xc in Rc

min  
c c

c

x R
p x




CONSUMER CHOICE (Cont’d)
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CONSUMER CHOICE (Cont’d)

*c cp x w 

x1
c

x2
c

* *

                  

( ) ( )

c

c c c c

R

u x U u x 

c*x

- 12 -MGT-621-Spring-2023-TAW

Set summation of individual preference sets is the set of total consumption bundles that allows 
each consumer to have utility at least as high as his/her Uc*. R is the aggregate preference set.

Total consumption in interior of R could allow Pareto-superior allocations to consumers. 

R1

R2

x1

x2

x1+ x2

1 2R R R 

SET SUMMATION OF INDIVIDUAL PREFERENCE SETS

Remark. Note that this depends on the assumption that there are no externalities in consumption.  If there are externalities, then the aggregate preference set 
is not set summation of individual preference sets.
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INDIVIDUAL MINIMIZATION IMPLIES GLOBAL MINIMIZATION

1 1p x w 

2 2p x w 

1 2p x w w w   

R1

R2

x1

x2

x =x1 + x2

1 2R R R 
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x1

x2

R

*x

1

*
c

c

i

p x w p y


   
Note:  This is same
line we saw for the total 
output of the economy

MINIMIZATION OF TOTAL EXPENDITURE

min  
x R

p x



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T

1 2 3 ....T NY Y Y Y     

x1, y1

x2, y2

m ax p y

R

min p x

constant

constant

p y

p x

 
 

COMPETITIVE EQUILIBRIUM MATCHES SUPPLY AND DEMAND
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Competitive equilibrium implies set of economy-wide feasible outputs is separated 
from aggregate preference set, the set of points that allow Pareto-dominant allocation 
(neither set includes interior point of other set).  Therefore, the competitive market 
equilibrium must be a Pareto-optimal allocation

T

1 2 3 ....T NY Y Y Y     

x1, y1

x2, y2

max  p y

R

min  p x

FIRST FUNDAMENTAL WELFARE THEOREM
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T

1 2 3 ....T NY Y Y Y     

x1, y1

x2, y2

max p y

min p x

constant

constant

p y

p x

 
 1 2 FY Y Y    

1 2 CR R R R   

COMPETITIVE EQUILIBRIUM IS PARETO OPTIMAL
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FIRST FUNDAMENTAL WELFARE THEOREM

Definition: Assume that consumer c’s preferences are representable by a 
continuous utility function         . His preferences are locally nonsatiated if for any 
feasible consumption vector                and any             there exists another feasible 
consumption vector                                                                such that .

Theorem (1st FWT): Assume that for all consumers                     the utility function          
is locally nonsatiated. If                                             is a Walrasian equilibrium, then 
the allocation                                        is Pareto optimal.

},...,1{ Cc

)(cu Ncx  0
}||:||{)(ˆ   

cNcc xyyxUx )()ˆ( c
c

c
c xuxu 

(1) Local nonsatiation is implied by strict monotonicity of consumer c’s utility function. The converse is not true since some of the components of
the consumption vector may not be desirable, i.e., it may contain “bads” instead of “goods”. (However, it is not possible that all consumption goods are
“bads,” since then at 0 would become a (global) satiation point.)

(1)

))ˆ,...,ˆ(),ˆ,...,ˆ(,( 11 FC yyxxp
))ˆ,...,ˆ(),ˆ,...,ˆ(( 11 FC yyxx
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FIRST FUNDAMENTAL WELFARE THEOREM
Proof

Proof: [by contradiction]

Suppose that                                          is a feasible allocation, such that for all 
:

and for some   , say           , we have a strict inequality. Then, necessarily (by utility 
maximization), it is

and local nonsatiation implies that as a consequence of (1), for all                     :(1) 

Hence, using (2),

)),...,(),,...,(( 11 FC yyxx
},...,1{ Cc

)ˆ()( c
c

c
c xuxu 

c 'cc 

'' ˆcc xpxp 

},...,1{ Cc
cc xpxp ˆ

(1)

(1) Otherwise, any               sufficiently close to      must satisfy                     . But by local nonsatiation, there must exist at least one such       for which also
. By transitivity this implies                           , which contradicts the assumption that      solves the utility maximization problem as part of a 

Walrasian equilibrium. If some consumers were local satiated one may be able to transfer small amounts of money from consumers that are locally indifferent
to a  consumer that cares at the margin. 

Ncx  cx cc xpxp ˆ  cx


)()( c
c

c
c xuxu  )ˆ()( c

c
c

c xuxu  cx̂


















 



C

c

c
C

c

c
C

c

c
C

c

c xpxpxpxp
1111

ˆ)ˆ()( (3)

(2)
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FIRST FUNDAMENTAL WELFARE THEOREM
Proof (cont’d)

Feasibility of the WE (i.e., demand = supply) implies

and 

Combining (3)—(5) we obtain

whence





F

f

f
C

c

c
C

c

c yx
111







F

f

f
C

c

c
C

c

c yx
111

ˆˆ 

(4)

(5)


















 



F

f

f
C

c

c
F

f

f
C

c

c ypyp
1111

ˆ


















 



F

f

f
F

f

f ypyp
11

ˆ (6)
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FIRST FUNDAMENTAL WELFARE THEOREM
Proof (cont’d)

Since the allocation                                         is by assumption feasible, we have that                 
for all                     . Profit maximization implies that for all                      : 

But then it must be true that

which contradicts (6). QED

f
f Yy 

ff ypyp  ˆ


















 



F

f

f
F

f

f ypyp
11

ˆ

)),...,(),,...,(( 11 FC yyxx
},...,1{ Ff  },...,1{ Ff 
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The common point is the competitive equilibrium, since 

(1) it minimizes expenditure, 

(2) it maximizes profits, 

(3) it has all supplies equal to all demands, and 

(4) it has all profits allocated to consumers.  

However, wealth is not necessarily consistent with initial endowments.  Thus, a lump-
sum wealth redistribution is likely to be required.

T

1 2 3 ....T NY Y Y Y     

x1, y1

x2, y2

m ax p y

R

min  p x

SECOND FUNDAMENTAL WELFARE THEOREM
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SECOND FUNDAMENTAL WELFARE THEOREM

Theorem (2nd FWT): Assume that for all consumers                     the utility function 
is locally nonsatiated, continuous, and has convex upper contour sets. Let

be some vector of initial resources (endowments). (i) If, starting from , 
the allocation                                          is Pareto optimal, then there exists a price
vector              such that 

• for all                      : 

• for all                      :

(ii) If, in addition, for all                      there exists a vector                such that
, then there is a division of initial resources ,                    , and of 

firm ownership shares,                  , such that is a 
Walrasian equilibrium relative to                     and   .

},...,1{ Cc

N
 

))ˆ,...,ˆ(),ˆ,...,ˆ(( 11 FC yyxx

},...,1{ Cc

Np 

ccc
c

c
c xpxpxuxu ˆ)ˆ()( 

},...,1{ Ff  ff
f

f ypypYy  ˆ

N
cx 

cc xpxp  ˆ
},...,1{ Cc

 ),...,( 1 C
),...,( 1 C ))ˆ,...,ˆ(),ˆ,...,ˆ(,( 11 FC yyxxp

),...,( 1 C ),...,( 1 C
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SEPARATING HYPERPLANE THEOREM

Definition: A plane separates two sets , if

Hahn-Banach Theorem: Let      and       be two disjoint nonempty convex sets in a 
vector space . If     has an inner point, then there exists a plane     separating     
and     .(1)

Separating Hyperplane Theorem: Let                    be two disjoint nonempty convex 
sets. Then there exists a nonzero vector             and a scalar             such that

for any                        .(2)

A B

(1) For a proof of this theorem, see e.g., Berge, C. (1963), “Topological Spaces,” Oliver & Boyd, Edinburgh and London, UK, pp. 154—157. Reprinted by 
Dover Publications in 1997.
(2) In other words, it is possible to select a linear form in the Hahn-Banach theorem. For a proof of that theorem, see MWG, p. 948.

X A A
B

}1)(:{  xfXxP XBA ,

1)(

1)(




xfBx

xfAx

NBA ,
Np  
ypxp  

BAyx ),(

P

f
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SEPARATING HYPERPLANE THEOREM
Geometric Interpretation
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SECOND FUNDAMENTAL WELFARE THEOREM
Proof

Proof: [proceeds in 7 steps]

Step 1: Apply the Separating Hyperplane Theorem

For all consumers                     , the set of preferred allocations (upper contour set),

is convex. As a result,                            is convex. Similarly, convexity of the 
production set       for all                     implies that

is convex. By assumption we know that the allocation 
is Pareto optimal, i.e.,

In other words, there is nothing that the economy can produce that makes 
everybody better off.

},...,1{ Cc

)}ˆ()(:{)ˆ( c
c

c
c

Nccc xuxuxxV  

 


C

c

cc xVV
1

)ˆ(

fY },...,1{ Ff 

}{
1




F

f
fYY

))ˆ,...,ˆ(),ˆ,...,ˆ(( 11 FC yyxx

















 


YVYxV
F

f
f

C

c

cc }{)ˆ(
11


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SECOND FUNDAMENTAL WELFARE THEOREM
Proof (cont’d)

The separating hyperplane theorem implies that for any                        there exists a 
vector     and a scalar     , such that

Step 2: Show that

Since                                         is feasible, we have                                      , so that by 
Step 1:

Now, for each                    and         , let 

By local nonsatiation(1) it is                           and thus                      . Hence by Step 1:

xpyp  
YVyx ),(

Yyx
F

f

f
C

c

c 



11

ˆˆ

 
















 



C

c

c
F

f

f xpyp
11

ˆˆ


















 



C

c

c
F

f

f xpyp
11

ˆˆ 

p 

))ˆ,...,ˆ(),ˆ,...,ˆ(( 11 FC yyxx

},...,1{ Cc









nn
xnx cc 1

,...,
1

ˆ)(


1n

)ˆ()( ccc xVnx  Vnx
C

c

c 
1

)(










 



C

c

c nxp
1

)(


(1) Actually we are using monotonicity here. For a justification see Step 3, where the same construction is used.
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SECOND FUNDAMENTAL WELFARE THEOREM
Proof (cont’d)

Taking the limit for              gives thus

Step 3: Show that , where

For simplicity, let us assume here that all the commodities are desirable, so that 
local nonsatiation is equivalent to monotonicity of the consumers’ utility functions. 
For any             let

so that by monotonicity,                           and 

Hence, by Step 1,                              , so that after taking the limit for               we 
obtain  

n 

























 





F

f

f
C

c

c
C

c

c

n
ypxpnxp

111

ˆˆ)(lim


xpxpVx
C

c

c 







 

1

ˆ 


 
C

c
xV

c
c

c
c

Nc

cc

xuxuxV
1

)ˆ(

)}ˆ()(:{   









nn
xnx cc 1

,...,
1

)(

Vxc 

)ˆ()( ccc xVnx  Vnx
C

c

c 
1

)(









 



C

c

c nxp
1

)( n

xpxpnxpxp
C

c

c
C

c

c

n

C

c

c 

























 




 111

)(limˆ 
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SECOND FUNDAMENTAL WELFARE THEOREM
Proof (cont’d)

Step 4:                                                  and thus(1)

Step 5:                                                  and thus(1)

Step 6: Show that: if for all consumers                      there exists a vector
such that                      , then                                                    .

By Step 5,                           implies that                             and (since                           )
also                      . Thus,                                                              for any                 .

By the continuity of            there is a                  such that                                                 .  

But                                             , so that by Step 5                                                  ,
and thus                                                               as claimed.

ypypYy
F

f

f 







 

1

ˆ  ff
f

f ypypYy  ˆ

xpxpVx
C

c

c 







 

1

ˆ ccccc xpxpxVx  ˆ)ˆ(

},...,1{ Cc Ncx 
cc xpxp ˆ ccc

c
c

c xpxpxuxu  ˆ)ˆ()(

)()ˆ( c
c

c
c xuxu 

)1,0(

)(cu )1,0(  cc
c

c
c xxuxu )1()ˆ(  

(1) Just consider the inequality for each consumer/producer individually by setting all other components to       or        ,
so that they cancel out.

cx̂ fŷ

cc xpxp ˆ )ˆ()( c
c

c
c xuxu 

cc xpxp  ˆ cccc xpxxpxp  ))1(( 

)ˆ()1( cccc xVxx   ))1((ˆ ccc xxpxp  
cccc xpxxpxp  ))1((ˆ 
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SECOND FUNDAMENTAL WELFARE THEOREM
Proof (cont’d)

Step 7: It is now enough to choose a division of the initial endowment    ,                 , 
and of firm ownership shares,                  , such that

which completes our proof. QED







F

f

fc
f

cc yppxp
1

)ˆ(ˆ 

),...,( 1 C
),...,( 1 C

- 32 -MGT-621-Spring-2023-TAW

T

1 2 3 ....T NY Y Y Y     

x1
T,y1

T

x2
T,y2

T

m ax p y

R

min p x

If in Competitive 
Equilibrium, 
Allocation is 

Pareto Optimal

NONCONVEXITY (1st FWC)



- 33 -MGT-621-Spring-2023-TAW

T

1 2 3 ....T NY Y Y Y     

x1, y1

x2, y2

NOT max p y

TR

min p x

Pareto Optimal 
Allocation, But 
No Competitive 

Equilibrium 
Exists

NONCONVEXITY (2nd FWC)

- 34 -MGT-621-Spring-2023-TAW

AGENDA

Some Preliminaries

Fundamental Welfare Theorems

Existence of a Competitive Equilibrium

General Equilibrium vs. Partial Equilibrium

Key Concepts to Remember



- 35 -MGT-621-Spring-2023-TAW

HOMOGENEOUS FUNCTIONS

Definition: A function is homogeneous of degree    , if for any 
and              :

Examples:

• The supply function

is homogeneous of degree zero. Indeed, for any            we have that 

• The profit function is also homogeneous of degree 
one, since
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EXCESS DEMAND

Definition: The excess demand function for consumer                     is

Summing up over all consumers and subtracting the firms’ production, the 
function 

denotes excess market demand (also referred to aggregate excess demand 
function).

Exercise: Show that the excess demand function and the excess market demand 
are homogeneous of degree zero.
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WALRAS’ LAW

Proposition (Walras’ Law): For any price vector       the value of excess market 
demand is zero, i.e.,

Proof: Consumer c’s budget constraint implies that

Adding up over all consumers and subtracting the firms’ production yields
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EXISTENCE OF A WALRASIAN EQUILIBRIUM

Proposition: Assume that the supply function and the (finite) demand 
function 

exist for all                     ,                       , and all                                            
Suppose further that

• The production sets are closed, bounded, and strictly convex

• The utility functions are continuous, locally nonsatiated, and with 
strictly convex upper contour sets 

Then there exists a price vector              such that excess market demand is zero, 
i.e.,                   (this price supports a WE)
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EXISTENCE OF A WALRASIAN EQUILIBRIUM
Proof

Proof: The supply function               and the (finite) demand function 

exist for all                     ,                       , are unique as a consequence of the 
imposed convexity/concavity assumptions, and are continuous(1) in            . 
Hence the market excess demand function                                          is unique and 
continuous on . 

Let us now define                                         

and the corresponding vector

Then the mapping                   with

is well-defined and continuous on .
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(1) This can be concluded e.g., from Berge’s maximum theorem (cf. an earlier lecture).
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EXISTENCE OF A WALRASIAN EQUILIBRIUM
Proof (cont’d)

Brower’s fixed-point theorem implies that the mapping h possesses a fixed point p* 
in , i.e., 

Using Walras’ Law we find

and therefore

which implies that
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(1) This can be concluded e.g., from Berge’s maximum theorem (cf. an earlier lecture).
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EXISTENCE OF A WALRASIAN EQUILIBRIUM
Proof (Cont'd)

In addition, since                                        , good i can be in excess supply, i.e., 

, only if it is worthless, that is to say only if              .

In particular,                                                                              implies that

One can also show that the fixed point p* needs to occur in the interior of the 
simplex , (cf. MWG, p. 586) so that the excess demand must vanish in
equilibrium,

QED
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GENERAL VS. PARTIAL EQUILIBRIUM ANALYSIS

To see how General Equilibrium Theory can yield predictions that are radically 
different from Partial Equilibrium Theory, consider the following example.

Example: Tax Incidence

Consider an economy with N cities (where N is a large number). 

• In each city there is a single price-taking firm that produces a single 
consumption good using the increasing, strictly concave production 
function

• There are M identical workers. Each worker is free to move between cities 
to be paid the highest wage. 

• Each worker derives utility from the single consumption good that is 
available. Without loss of generality the price of the consumption good 
can be normalized to 1.

Question: If a tax on labor is levied in city 1, who bears the cost (firms or workers)?

)(f
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GENERAL VS. PARTIAL EQUILIBRIUM (cont’d)

Analysis I (Partial Equilibrium) – Consider only City 1

• Before the tax is introduced, given that workers can move freely, wages 
must be equal in each city, i.e.,

which yields each firm’s equilibrium profit,

• The supply of workers in city 1 must be completely elastic, and thus the 
equilibrium wage after the tax          is introduced must still be equal to

• Hence, we find that in city 1, output drops to  

where the labor used in city 1,     , is such that 

• As a result, since                  , some labor moves away from city 1, but all 
the tax is borne by producers!
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GENERAL VS. PARTIAL EQUILIBRIUM (cont’d)

Analysis II (General Equilibrium)

• Before the tax is introduced, we obtain the same analysis as before. 

• Let                                   be the common equilibrium wage in all cities after 
the tax            is introduced

• Demand = Supply yields                                        , where           is the 
equilibrium labor demand in cities 2,…,N, and         is the equilibrium labor 
demand in city 1

• Profit maximization yields                                  and 

• Using the boundary condition for          , when                                     , we 
find by differentiating the optimality conditions and evaluating at          :

so that                         . In other words, the wage rate in all cities declines
with an imposition of a tax on labor
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GENERAL VS. PARTIAL EQUILIBRIUM (cont’d)

• Let us now consider the change of firm profits, which again can be done 
by differentiating profits with respect to t and evaluating at t=0:(1)

In other words, aggregate profits are very little affected (and in the limit 
unaffected) by a (small) tax.

• We therefore find that (at least for small taxes) virtually all of the tax in 
city 1 is incurred by the workers, which is the opposite conclusion of what 
we obtained using partial equilibrium analysis!
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(1) A more detailed proof of this statement can be given as follows. Let                                                 
be the sum of the firms' profits at the tax rate t. Note that (supply = demand) implies that                              , so that                                                               . We
obtained earlier that                        , and                                   . We can therefore differentiate        with respect to    and evaluate at          :

The significance of this result is that small deviations from zero in the tax level have an arbitrarily small impact on aggregate profit, whereas the impact on the
workers' utilities has a strictly positive slope. In other words, in the limit a very small positive tax is borne entirely by the workers.
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KEY CONCEPTS TO REMEMBER

• Set Summation

• Walrasian Equilibrium (Competitive Equilibrium) (w/ or w/o transfers)

• Fundamental Welfare Theorems

• Separating Hyperplane Theorem 

• Walras’ Law

• General Equilibrium vs. Partial Equilibrium


