MGT 621 – MICROECONOMICS

Thomas A. Weber

7. Externalities & Regulation

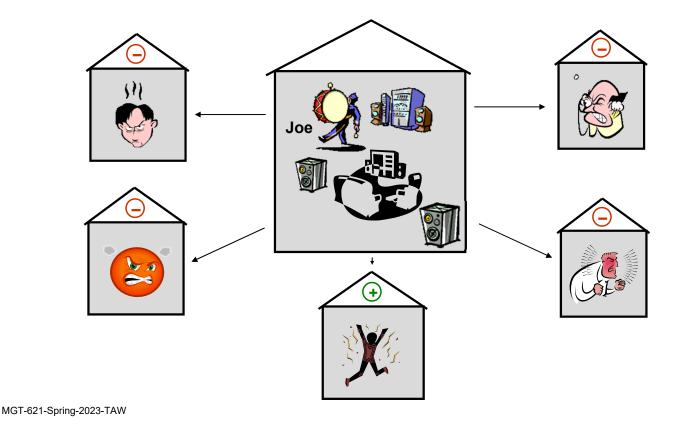
Autumn 2023

École Polytechnique Fédérale de Lausanne College of Management of Technology

> Copyright © 2023 T.A. Weber All Rights Reserved

AGENDA

What are externalities?


Example: Production Externalities

Some Regulatory Options

Uncertainty Matters: Prices vs. Quantities

Key Concepts to Remember

WHAT ARE EXTERNALITIES? Example

WHAT ARE EXTERNALITIES? (Cont'd)

Definition. An externality exists whenever the well-being (utility) of a consumer or the production possibility set of a firm are *directly* affected by the action of another agent in the economy.

Externalities can be "positive" or "negative."

- 3 -

WHAT ARE EXTERNALITIES? (Cont'd) Some Examples

- Drivers' cars release pollutants that deteriorate the air quality
- Cigarette smoke increases the probability of lung cancer for smokers and others
- Chemical plant releases wastes in river; fishing industry becomes less
 productive
- Fish caught by one fishing boat cannot be caught be another fishing boat
- High-tech patents lead to public disclosure of inventions that can be used by other firms (be they complementors or competitors)

MGT-621-Spring-2023-TAW

AGENDA

What are externalities?

Example: Production Externalities

Some Regulatory Options

Uncertainty Matters: Prices vs. Quantities

Key Concepts to Remember

- 5 -

EXAMPLE: PRODUCTION EXTERNALITIES

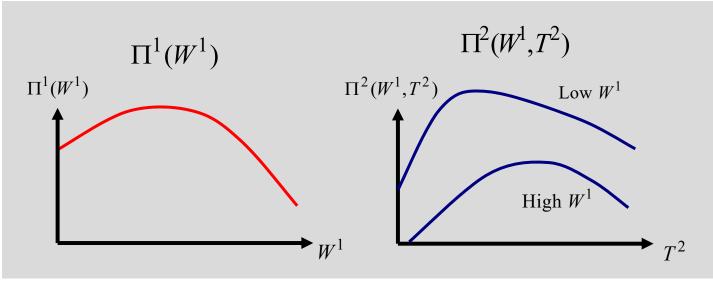
One firm's decisions may have a direct impact on another firm's payoff.

• Our discussion of game theory shows (see, e.g., the Prisoners' Dilemma) that, in general, if each firm individually maximizes its profits, then the sum of both firms' profits may not be maximal.

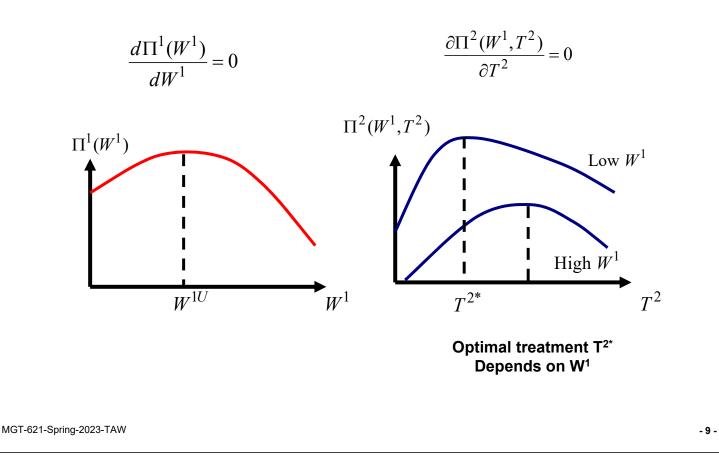
Consider the following situation for two firms, 1 and 2:

- Firm 1's production produces wastewater, resulting in an externality for a downstream fishing company
- Firm 2, impacted by firm 1's waste production could reduce harmful effects, say by treatment of water, but at a cost

PRODUCTION EXTERNALITIES (Cont'd)


-7-

- 8 -


Firm 1 produces a nonnegative amount of waste, W¹

Firm 2, negatively impacted by firm 1's waste production, could reduce the harmful effects through treatment T², which comes at a cost.

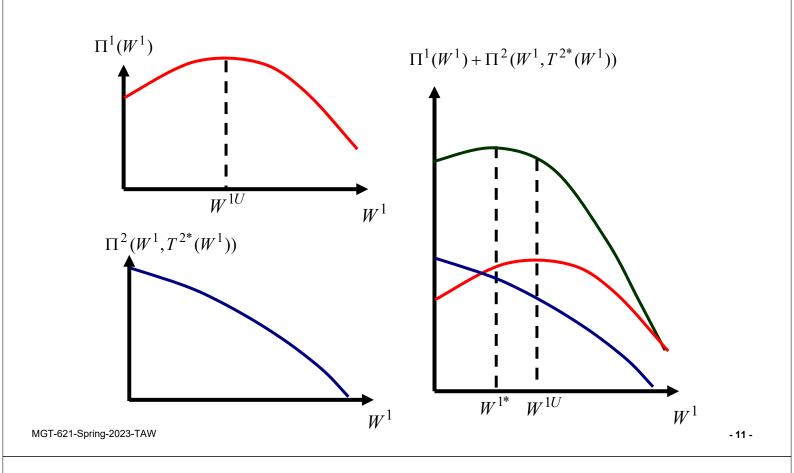
Payoff Functions:

PRODUCTION EXTERNALITIES (Cont'd)

PRODUCTION EXTERNALITIES (Cont'd)

Efficient outcome maximizes total profits,

$$\max_{W^1,T^2 \ge 0} \left\{ \Pi^1(W^1) + \Pi^2(W^1,T^2) \right\}$$


Firm 1: optimality condition for socially optimal W¹ differs from the individual optimality condition,

$$\frac{d\Pi^1(W^1)}{dW^1} + \frac{\partial\Pi^2(W^1, T^2)}{\partial W^1} = 0$$

Firm 2: optimality condition for socially optimal T^2 is same as individually optimal, for any given W^1

$$\frac{\partial \Pi^2(W^1, T^2)}{\partial T^2} = 0$$

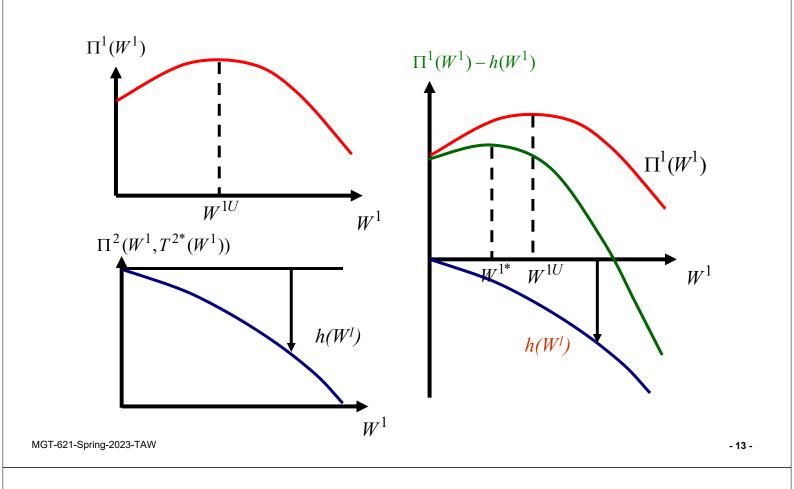
PRODUCTION EXTERNALITIES (Cont'd)

PRODUCTION EXTERNALITIES (Cont'd)

Define Externalities in Terms of Harm

Define harm to firm 2 as a function of W^1 (corresponds to the externality that firm 1 exerts on firm 2)

$$h(W^{1}) = \Pi^{2}(0, T^{2^{*}}(0)) - \Pi^{2}(W^{1}, T^{2^{*}}(W^{1}))$$


Choose W¹ to maximize profit of firm 1, minus harm:

$$\max_{W^1 \ge 0} \left\{ \Pi^1(W^1) - h(W^1) \right\}$$

Choose T² to maximize profit of firm 2:

$$\max_{T^2 \ge 0} \ \Pi^2(W^{1^*}, T^2)$$

PRODUCTION EXTERNALITIES (Cont'd)

PRODUCTION EXTERNALITIES (Cont'd)

Gives FOC for T² identical to optimal

$$\frac{\partial \Pi^2(W^1, T^2)}{\partial T^2} = 0$$

Gives FOC for W¹ identical to optimal

$$\frac{d\Pi^{1}(W^{1})}{dW^{1}} - \frac{\partial h(W^{1})}{\partial W^{1}} = 0$$

$$\frac{d\Pi^{1}(W^{1})}{dW^{1}} - \left\{ -\frac{\partial \Pi^{2}(W^{1}, T^{2^{*}})}{\partial W^{1}} \right\} - \left\{ -\frac{\partial \Pi^{2}(W^{1}, T^{2^{*}})}{\partial T^{2^{*}}} \right\} \left\{ \frac{\partial T^{2^{*}}}{\partial W^{1}} \right\} = 0$$

$$\frac{d\Pi^{1}(W^{1})}{dW^{1}} + \frac{\partial \Pi^{2}(W^{1}, T^{2^{*}})}{\partial W^{1}} = 0$$

AGENDA

What are externalities?

Example: Production Externalities

Some Regulatory Options

Uncertainty Matters: Prices vs. Quantities

Key Concepts to Remember

MGT-621-Spring-2023-TAW

- 15 -

REMEDIES FOR MARKET FAILURE

Idea: How can we correct market to move back toward competitive norm?

- "Polluter Pays" Principle
- Litigation to recover harms: "damages"
- Tax per unit on externality: "pollution tax"
- Marketable emissions rights
 - Create market for rights to produce the externality
- Regulation of emissions or other waste
 - Restriction against hazardous waste
 - Limits on emissions rate
- Assign property rights and allow negotiation (Coase Theorem)

"POLLUTER PAYS" PRINCIPLE

Polluter may be required to pay a fee to the government, offsetting the entire damage. In that case, the polluter (firm 1) solves the problem

$$\max_{W^1 \ge 0} \left\{ \Pi^1(W^1) - h(W^1) \right\}$$

If firm 1 maximizes its profit minus harm, it will choose optimal waste (W¹). No money paid to harmed firm (firm 2), who solves the following problem:

$$\max_{T^2 \ge 0} \ \Pi^2(W^{1^*}, T^2)$$

If firm 2 is not compensated for damages, it will choose optimal treatment.

MGT-621-Spring-2023-TAW

- 17 -

LITIGATION RECOVERS DAMAGES

Polluter may be required to pay fee to harmed firm equal to the damage. Then the polluter solves problem:

$$\max_{W^1 \ge 0} \left\{ \Pi^1(W^1) - h(W^1) \right\}$$

If firm 1 maximizes its profit minus harm, it will choose optimal waste (W^1) for whatever is the level of T^2 .

Firm 1 has an incentive to select a socially efficient waste level.

LITIGATION RECOVERS DAMAGES

Damages paid to harmed firm, with damages determined for <u>optimal level of T^2 </u>. Then firm 2 chooses T^2 to solve problem:

$$\max_{T^2 \ge 0} \left\{ \Pi^2(W^1, T^2) + h(W^1) \right\}$$

Monetary damages – harm – do not depend on actual choice of T^2 , so $h(W^1)$ is a constant, from perspective of firm 2.

If firm 2 is compensated a <u>fixed amount</u> for damages, it will maximize its before-harm-payment profit and will choose optimal treatment.

$$h(W^{1}) = \Pi^{2}(0, T^{2^{*}}(0)) - \Pi^{2}(W^{1}, T^{2^{*}}(W^{1}))$$

MGT-621-Spring-2023-TAW

LITIGATION RECOVERS DAMAGES (Cont'd)

Damages paid to harmed firm, with damages determined for <u>actual level of T²</u>. Then firm 2 solves the problem:

$$\max_{T^2 \ge 0} \left\{ \Pi^2(W^1, T^2) + h(W^1) \right\}$$

Monetary damages – harm – do depend on actual choice of T^2 , so $h(W^1)$ is not a constant, from perspective of firm 2, in this case.

$$h(W^{1}) = \Pi^{2}(0, T^{2}(0)) - \Pi^{2}(W^{1}, T^{2})$$

max
$$\left\{ \Pi^{2}(W^{1}, T^{2}) - \Pi^{2}(W^{1}, T^{2}) \right\} + \Pi^{2}(0, T^{2}(0))$$

Profit after damage payment is independent of T²; firm 2 has no incentive to choose optimal treatment.

- 19 -

POLLUTION TAX

The polluter may be required to pay a fee to government equal to a fixed amount t <u>per unit</u> of pollution. Per-unit amount is set equal to the marginal harm. Then polluter solves problem:

$$\max_{W^1 \ge 0} \left\{ \Pi^1(W^1) - t W^1 \right\}$$

Firm 1, maximizing its own after-tax profit, leads to efficient level of waste ($W^1 = W^{1*}$):

$$t = \frac{\partial h(W^{1})}{\partial W^{1}} \bigg|_{W^{1} = W^{1^{*}}}$$
$$\frac{d\Pi^{1}(W^{1})}{dW^{1}} = \frac{\partial h(W^{1^{*}})}{\partial W^{1}}$$

MGT-621-Spring-2023-TAW

MARKETABLE EMISSIONS RIGHTS

Government determines optimal total waste, and issues emissions rights. The number of rights equal to optimal waste. Rights can be bought and sold. Market clearing price will equal marginal cost of waste reduction. Thus, if the optimal total waste is produced, then the price will be equal to marginal harm,

$$p_{pr} = \frac{\partial h(W^1)}{\partial W^1}$$

Firm 1's optimization problem:

$$\max_{W^1 \ge 0} \left\{ \Pi^1(W^1) - p_{pr} W^1 \right\}$$

Profit maximization condition leads Firm 1, maximizing its own after-tax profit, to an efficient level of waste:

$$\frac{d\Pi^1(W^1)}{dW^1} = p_{pr} = \frac{\partial h(W^1)}{\partial W^1}$$

- 21 -

DIRECT REGULATIONS OF EMISSIONS

Government sets maximum allowable waste regulation, after determining the solution of the problem:

 $\max_{W^1 \ge 0} \left\{ \Pi^1(W^1) - h(W^1) \right\}$

Firm required to meet regulation or else face a penalty higher than the cost of meeting the regulation. Incentive to just meet the regulation.

MGT-621-Spring-2023-TAW

- 23 -

PROPERTY RIGHTS AND RENEGOTIATION

Generally applicable only with a very small number of firms

General approach

- Assign property rights to either party
 - Right to pollute or Right to no pollution
- Allow negotiation
- Efficient outcome either way
- Distribution of profits differs

Coase Theorem

PROPERTY RIGHTS AND RENEGOTIATION

Give property rights to either (\rightarrow Case 1 and 2)

Case 1. Assume give right to polluter for some high pollution level. Then impacted firm will pay to firm 1 some amount of money, B, to reduce pollution.

$$\begin{aligned} &\Pi^1(W^{1*}) + \Pi^2(W^{1*}, T^{2*}) > \Pi^1(W^{1U}) + \Pi^2(W^{1U}, T^{2U}) \\ &\Pi^2(W^{1*}, T^{2*}) - \Pi^2(W^{1U}, T^{2U}) > \Pi^1(W^{1U}) - \Pi^1(W^{1*}) > 0 \end{aligned}$$

Then B can be chosen such that

 $\Pi^{2}(W^{1*}, T^{2*}) - \Pi^{2}(W^{1U}, T^{2U}) > B > \Pi^{1}(W^{1U}) - \Pi^{1}(W^{1*}) > 0$

whence

$$\Pi^{2}(W^{1*}, T^{2*}) - \Pi^{2}(W^{1U}, T^{2U}) - B > 0$$
Firm 2 increases profit
$$\Pi^{1}(W^{1*}) - \Pi^{1}(W^{1U}) + B > 0$$
Firm 1 increases profit
MGT-621-Spring-2023-TAW

PROPERTY RIGHTS AND RENEGOTIATION

Case 2. Assume give to affected firm right to face no pollution. Then polluting firm will pay firm 2 some amount of money, F, to allow pollution. (Assume no abatement, i.e., $T^2 = 0$, when there is no pollution)

$$\Pi^{1}(W^{1*}) + \Pi^{2}(W^{1*}, T^{2*}) > \Pi^{1}(0) + \Pi^{2}(0, 0)$$
$$0 > \Pi^{2}(W^{1*}, T^{2*}) - \Pi^{2}(0, 0) > \Pi^{1}(0) - \Pi^{1}(W^{1*})$$

Then F can be chosen such that

$$0 > \Pi^{2}(W^{1*}, T^{2*}) - \Pi^{2}(0, 0) > -F > \Pi^{1}(0) - \Pi^{1}(W^{1*})$$

whence

$$\Pi^{2}(W^{1*}, T^{2*}) - \Pi^{2}(0, 0) + F > 0$$

Firm 2 increases profit

$$\Pi^{1}(W^{1*}) - \Pi^{1}(0) - F > 0$$

Firm 1 increases profit

MGT-621-Spring-2023-TAW

- 25 -

COASE THEOREM

Coase Theorem. If all parties can negotiate with each other costlessly and with perfect information, then bargaining will lead to an efficient outcome.

The outcome will be efficient, no matter how the initial property rights are determined.

A Caveat

If property rights are not firmly established, so that agents spend resources trying to reallocate property rights, then the final outcome, including the costs of reallocating property rights, will not be efficient.

MGT-621-Spring-2023-TAW

AGENDA

What are externalities?

Example: Production Externalities

Some Regulatory Options

Uncertainty Matters: Prices vs. Quantities

Key Concepts to Remember

PRACTICAL PROBLEM: REDUCING GLOBAL CARBON OUTPUT

To bound global warming to less than 2 degrees Celsius by 2050, worldwide carbon emissions need to be reduced by 50% in that timeframe (IPCC 2008). Hence, need to provide incentives for ...

- carbon abatement by implementing an efficient carbon pricing policy
- technological innovation by encouraging the necessary investments

<u>Remark</u>: For details on the material in the following slides, see Weber, T.A., Neuhoff, K. (2010) "Carbon Markets and Technological Innovation," *Journal of Environmental Economics and Management*, Vol. 60, No. 2, pp. 115—132; an earlier version is also available at <u>http://ssrn.com/abstract=1333244</u>

THE MODEL Primitives

- Unit mass of firms, indexed by $\theta\in\Theta$, distributed on type space Θ such that

$$\mu = \int_{\Theta} \theta dF(\theta) < \infty$$
 and $\sigma_{\theta}^2 = \int_{\Theta} (\theta - \mu)^2 dF(\theta) < \infty$

- Each firm θ has business-as-usual (BAU) level of emissions $e_0(\theta) > 0$
- BAU emissions levels of all firms are subject to a common macroeconomic shocks, modeled by the additive zero-mean noise $\tilde{\varepsilon}$ such that

$$\sigma_{\varepsilon}^2 = \int_{\Theta} \varepsilon^2 dG(\varepsilon) < \infty$$

Expected total emissions:

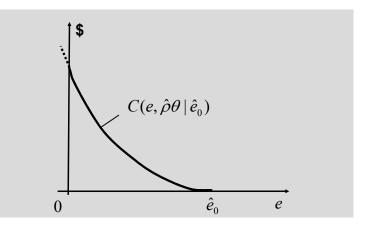
$$e_0 = E[\int_{\Theta} (e_0(\theta) + \widetilde{\varepsilon}) dF(\theta)] < \infty$$

- 29 -

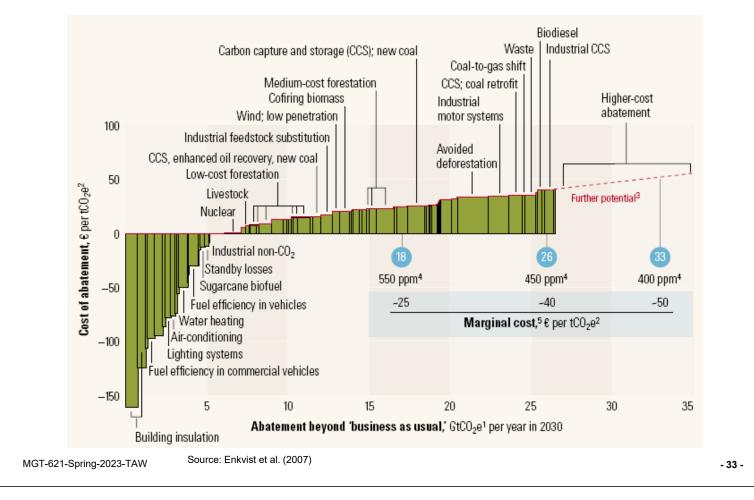
THE MODEL (Cont'd) Timing

The actions take place in three periods, indexed by $t \in \{0,1,2\}$

- <u>Regulation Stage</u> (t=0)
 - Regulator commits to a regulatory policy in the form of a cap-and-trade scheme with price controls, denoted by R = (E, L, U)
 - *E* : Emissions cap (e.g., set by number of issued emissions permits)
 - *L* : Price floor in market for emissions permits
 - *U* : Price cap in market for emissions permits
- Innovation Stage (t=1)
 - Each firm θ decides about its innovation activity $y \ge 0$ at the cost of $K(y) = cy^2/2$ where $c \ge 0$ determines the slope of the marginal cost
 - An innovation activity of y results in the realization ρ of a random cost improvement $\tilde{\rho}(y) > 0$, where $y = E[\max{\{\tilde{\rho}(y), l\} \mid y]} 1$
 - $\rho \leq 1$: Innovation unsuccessful current practice is (weakly) better
 - $\rho > 1$: Innovation successful firm exercises option of using it

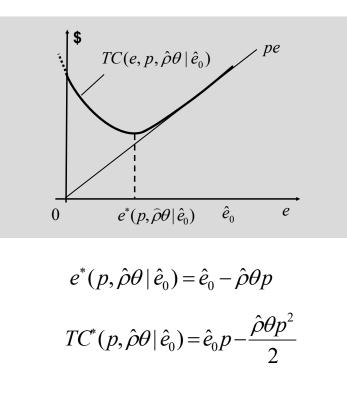

MGT-621-Spring-2023-TAW

- 31 -


THE MODEL (Cont'd) Timing

- Implementation Stage (t=2)
 - The macroeconomic uncertainty ε realizes
 - Each firm θ , based on the outcome $\hat{\rho} = \max\{\rho, l\}$ of its innovation activity in the last stage and the current price p for carbon emissions, decides about its emission level $e(p, \hat{\theta}) = e(p, \hat{\rho}\theta) \ge 0$
 - Firm θ 's total cost of abating its emissions to a level $e \leq \hat{e}_0 = e_0(\theta) + \varepsilon$ is

$$TC(e, p, \hat{\rho}\theta \,|\, \hat{e}_0) = C(e, \hat{\rho}\theta \,|\, \hat{e}_0) + pe = \frac{(\hat{e}_0 - e)^2}{2\hat{\rho}\theta} + pe$$



MARGINAL ABATEMENT COST ALMOST LINEAR

MODEL SOLUTION Implementation (t = 2)

Each firm θ chooses emissions so as to minimize its total emissions cost.

MODEL SOLUTION (Cont'd) Innovation (t = 1)

Each firm θ chooses a level of innovation y to maximize its expected net payoff,

$$\pi(p, y, \theta) = \frac{\theta y p^2}{2} - K(y) = \frac{\theta y p^2}{2} - \frac{c y^2}{2}$$

resulting in the optimal innovation of

$$y^*(p,\theta) = \frac{\theta p^2}{2c}$$

and the positive expected payoff

$$\pi^*(p,\theta) = \frac{\theta^2 p^4}{8c}$$

MGT-621-Spring-2023-TAW

MODEL SOLUTION (Cont'd) Regulation (t = 0)

The set of feasible cap-and-trade schemes is

$$\mathfrak{R} = \{ (E, L, U) \in \mathbf{R}^3_+ : L \le U \}$$

The total carbon emissions output in the economy conditional on the market price for carbon and the macroeconomic condition is

$$Q(p,\varepsilon) = \int_{\Theta} e^*(p,(1+y^*(p,\theta))\theta | e_0(\theta) + \varepsilon)dF(\theta) = e_0 + \varepsilon - \mu p(1+\frac{\mu^2 + \sigma_\theta^2}{2\mu\varepsilon}p^2)$$

Environmental damages (measured in \$) are assumed to be quadratic in total emissions,

describes innovation (for $\beta = 0$: no innovation)

β

$$D(Q) = \frac{dQ^2}{2}$$

MGT-621-Spring-2023-TAW

- 36 -

- 35 -

MODEL SOLUTION (Cont'd) Regulation (t = 0)

Given a feasible cap-and-trade scheme R = (E, L, U), the market-clearing condition set by the regulator,

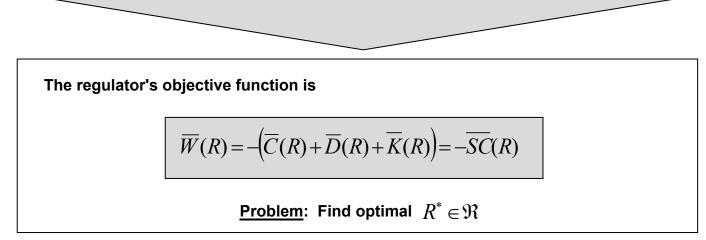
 $H(p,\varepsilon,R) = (U-p)(p-L)(E-Q(p,\varepsilon)) = 0$

determines the price $p \in [L, U]$ for carbon

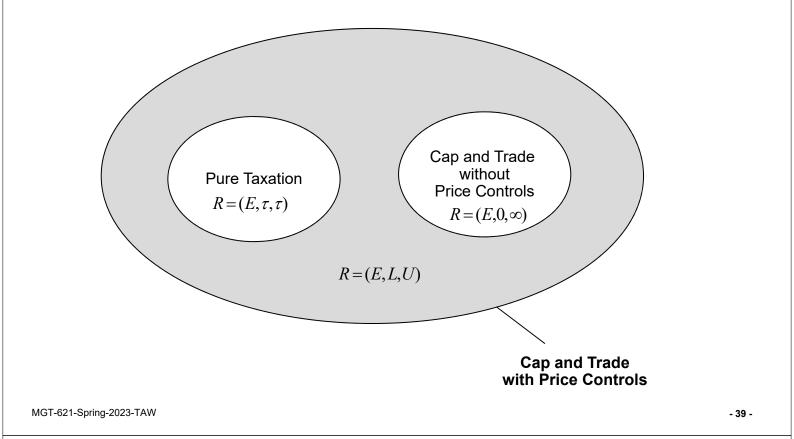
Hence, expected environmental damages are

$$\overline{D}(R) = E[D(Q(\widetilde{p},\widetilde{\varepsilon})) | H(\widetilde{p},\widetilde{\varepsilon},R) = 0]$$

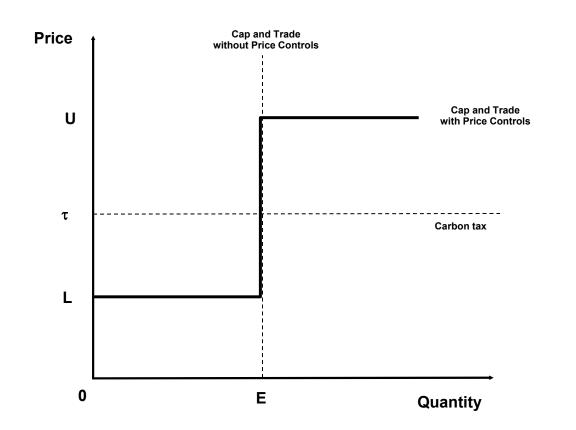
Similarly, expected abatement cost are


$$\overline{C}(R) = E[C(e^*(\widetilde{p}, (1+y^*(\widetilde{p}, \widetilde{\theta}))\widetilde{\theta}) | e_0 + \widetilde{\varepsilon}) | H(\widetilde{p}, \widetilde{\varepsilon}, R) = 0]$$

MGT-621-Spring-2023-TAW


MODEL SOLUTION (Cont'd) Regulation (t = 0)

In addition, the regulator may want to consider the firms' cost of innovation


$$\overline{K}(R) = E[\lambda K(y^*(\widetilde{p}, \widetilde{\theta})) | H(\widetilde{p}, \widetilde{\varepsilon}, R) = 0]$$

RELATION BETWEEN COMMON REGULATORY SCHEMES Cap and Trade with Price Control = True Generalization

COMMON REGULATORY SCHEMES (Cont'd)

PURE TAXATION

Under pure taxation, there is no price uncertainty, but there is uncertainty about the environmental damage.

Let $\overline{W}(\tau)$ be the planner's objective function;

$$\overline{W}(\tau) = -\frac{\tau^2}{2} - \frac{d}{2}(\sigma_{\varepsilon}^2 + (e_0 - \tau)^2)$$

and the optimal tax becomes

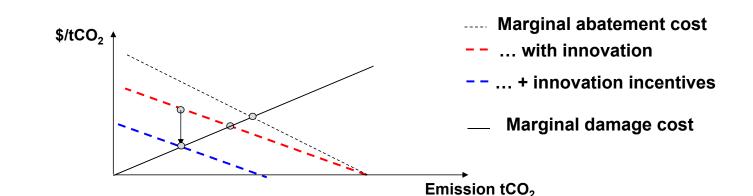
$$\tau^* = \frac{de_0}{1+d}$$

MGT-621-Spring-2023-TAW

Optimal carbon tax – numerical example

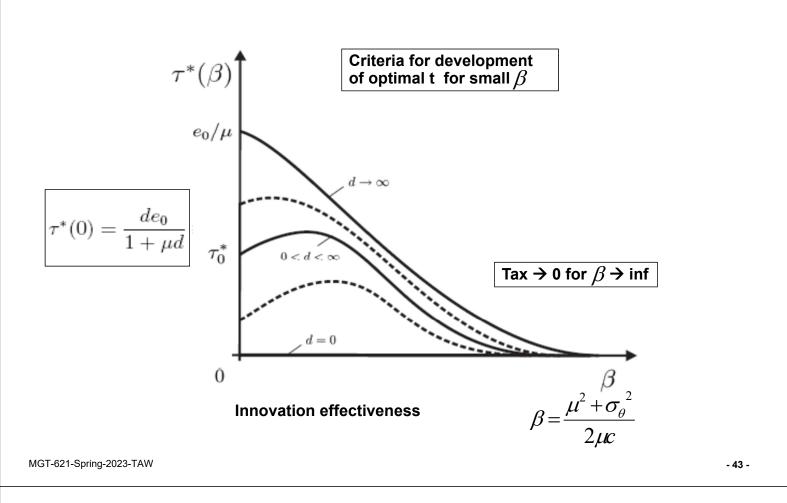
Assume:

Without innovation $\tau = 40$ /tCO₂


 $E_0 = 13.5 \text{ GT} (OECD)$

10% reduction from existing technologies: $\mu = 33 \ 10^6 \ tCO_2^{2/\2

Innovation delivers additional 33% reductions: c = 100\$ * 10⁹


Result

 $(\lambda = 0)$ $\tau = 46$ \$/t CO₂

- 41 -

Optimal Carbon Tax

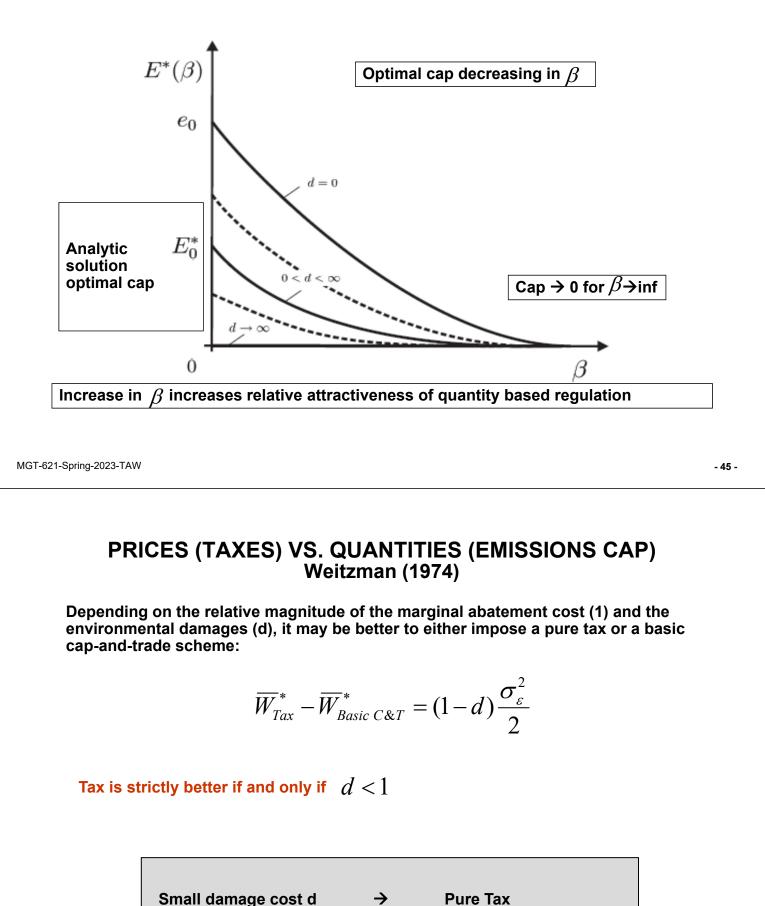
BASIC CAP AND TRADE (WITHOUT PRICE CONTROLS)

Under basic cap and trade, there is no output uncertainty, but there is price uncertainty.

Let $\overline{W}(E)$ be the planner's objective function;

$$\overline{W}(E) = -\frac{(e_0 - E)^2 + \sigma_{\varepsilon}^2}{2} - \frac{dE^2}{2}$$

and the optimal emissions cap becomes

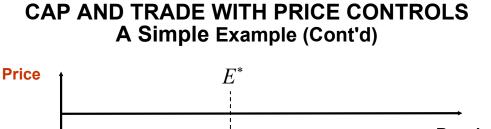

$$E^* = \frac{e_0}{1+d}$$

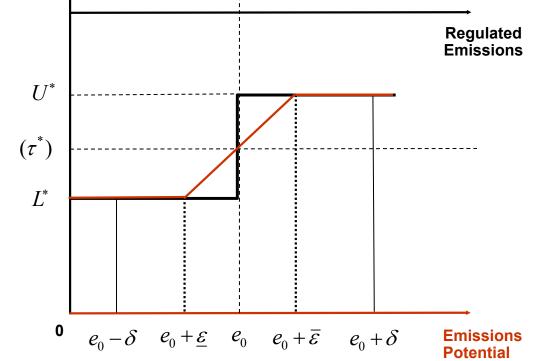
Note that expected price under this cap is the same as the optimal tax, i.e.,

$$\overline{p}^* = E[p(\widetilde{\varepsilon}, E^*) | E^*] = \tau^*$$

BUT, this does not mean that the two are equivalent!

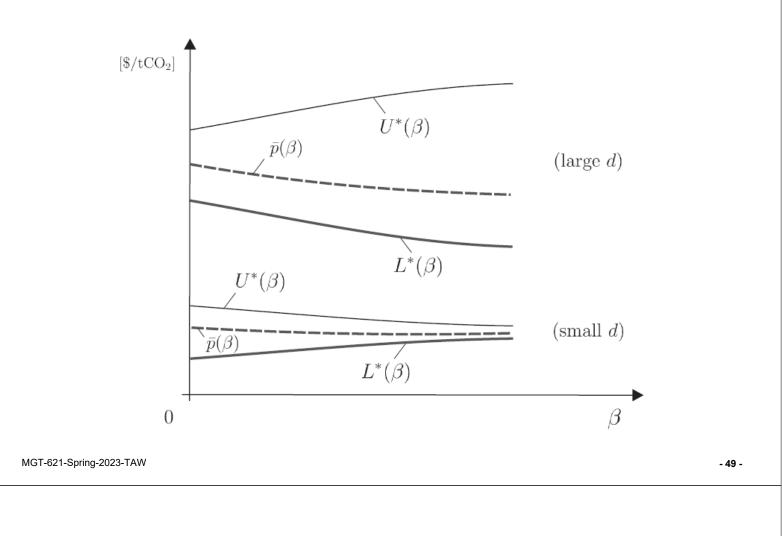
OPTIMAL CAP

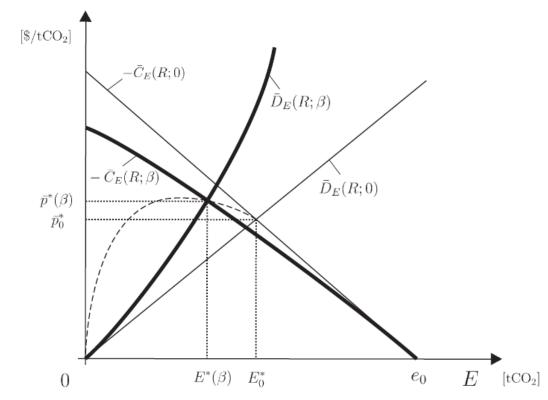



CAP AND TRADE WITH PRICE CONTROLS A Simple Example

Example. Assume that the macroeconomic shock $\tilde{\varepsilon}$ is uniformly distributed on $[-\delta, \delta]$, where $\delta > 0$. Then,

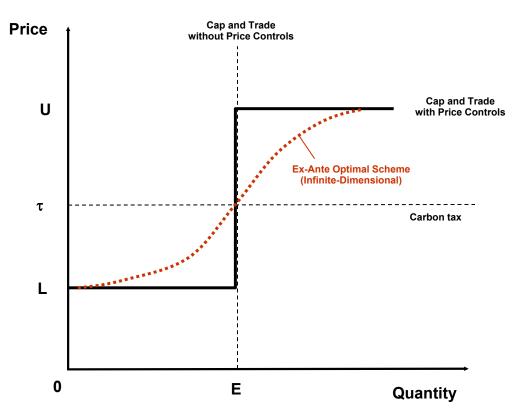
$$E^* = \frac{e_0}{1+d}$$
$$L^* = d\left(\frac{e_0}{1+d} - \frac{\delta}{2+d}\right)$$
$$U^* = d\left(\frac{e_0}{1+d} + \frac{\delta}{2+d}\right)$$

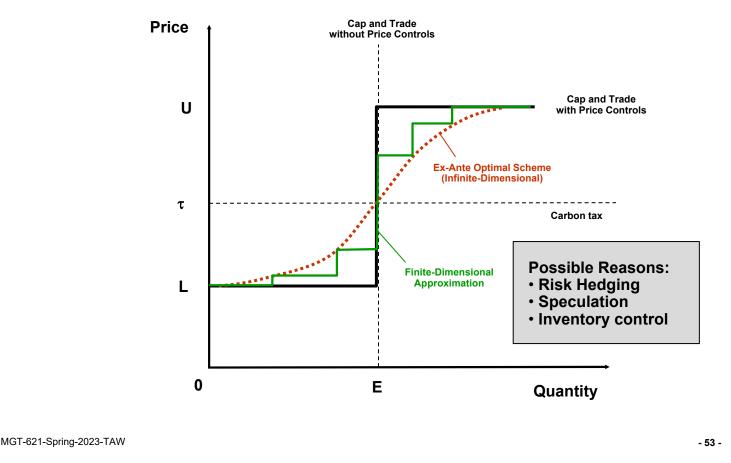

MGT-621-Spring-2023-TAW



- 47 -

OPTIMAL HYBRID SCHEME


EXPECTED MARKET PRICE VARIES WITH INNOVATION EFFECTIVENESS


OPTIMAL REGULATION Is Cap and Trade with Price Controls Really the Best One Can Do?

OPTIMAL REGULATION Ex-Ante (Infinite-Dimensional) Solution Might Be Quite Different

MULTI-CAP AND TRADE Implementation (e.g.) via Derivative Securities such as Options

ANOTHER IMPORTANT QUESTION: REGULATORY COMMITMENT

When the macroeconomic uncertainty has realized the regulator may want to deviate from his announced regulatory policy R and deviate to R'

- Is it good for a regulator to commit ex ante to a scheme R?
- What are credible commitment devices?
- What degree of commitment is optimal?

Additional policy instruments available at the implementation stage

- Incentives
- Supplementary regulation
- Emissions banking
- Mode of permit allocation

DYNAMIC POLICY ISSUES A consistent policy mix is credible

Carbon pricing

- Short-term address risk from extreme carbon prices (e.g., via price controls)
- Medium-term flexible price response to deliver target (e.g., national targets, minimize leakage)
- Long-term global mechanism with joint carbon price, where equity can be implemented via "green fund" (e.g., on per-capita-emission basis)

Complementary policies

- Common trajectory to ensure action across governments
- Fairness in the design of regional and global mechanism

Technology policy

- Innovation incentives (e.g., provided by law, technology competitions)
- Aggressive standard setting
- Certification (e.g., green labelling)

MGT-621-Spring-2023-TAW

AGENDA

What are externalities?

Example: Production Externalities

Some Regulatory Options

Uncertainty Matters: Prices vs. Quantities

Key Concepts to Remember

KEY CONCEPTS TO REMEMBER

- Positive/Negative Externalities
- Production Externalities
- Market Failure
- Regulatory options to deal with market failure due to externalities
- Coase Theorem
- Prices vs. Quantities, and how to regulate both!

MGT-621-Spring-2023-TAW