MGT 621 - MICROECONOMICS

Thomas A. Weber

6. Oligopoly

Autumn 2023

École Polytechnique Fédérale de Lausanne College of Management of Technology

OLIGOPOLY THEORY
 Introduction

So far in this course we have not emphasized strategic interactions between firms.

- We have seen that externalities can lead to significant distortions of the market outcome, even if all firms are price takers
- When a monopolist has market power, it can use second-degree price discrimination to segment a heterogeneous consumer base. For that analysis we did consider strategic interactions, but obtained a pure optimization problem, since the monopolist is able to move first by committing to a pricing scheme, anticipating the consumers' actions

When multiple firms select their actions simultaneously, and those actions directly influence each others' payoffs (i.e., there are externalities), then we need game theory to produce reasonable predictions about the outcome of the interaction.

Game theory is a fundamental tool in the analysis of strategic interactions between multiple firms with market power.

AGENDA

What is Game Theory?

Building Blocks and Key Assumptions

Market Structure \& Strategy Analysis

- Cournot Quantity Competition
- Bertrand Price Competition

Key Concepts to Remember

GAME THEORY

GAME THEORY

JOHN VON NEUMANN
 (1903-1957)

Oskar Morgenstern (1902-1976)

JOHN FORBES NASH (1928-2015)

GAME THEORY

Game Theory is the analysis of strategic interactions among agents.

A strategic interaction is a situation in which each agent, when selecting his or her most preferred action, takes into account the likely decisions of the other agents.

Example: War
"In war the will is directed at an animate object that reacts."

- Carl von Clausewitz, On War

The objective of game theory is to provide predictions about the behavior of agents (players) in strategic interactions. The more precise these predictions are, the higher their "predictive power."

AGENDA

What is Game Theory?

Building Blocks and Key Assumptions

Market Structure \& Strategy Analysis

- Cournot Quantity Competition
- Bertrand Price Competition

Key Concepts to Remember

NORMAL-FORM GAME

Building Blocks

- Players, $i \in N=\{1, \ldots, n\}$
- Action Sets (Strategy Spaces), A_{i}, with elements $a_{i} \in A_{i}$
- Individual Payoffs ${ }^{(1)}, u_{i}(a)$, where $a=\left(a_{i}, a_{-i}\right) \in A=A_{1} \times \cdots \times A_{n}$ and $a_{-i} \in A_{-i}=A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{n}$
- (Mixed) Strategies, ${ }^{(2)} \sigma_{i} \in \Delta\left(A_{i}\right)$ and $\sigma_{-i} \in \Delta\left(A_{-i}\right)$

Definition: A Normal-Form Game Γ_{N} is a collection of players, action sets, and payoffs,

$$
\Gamma_{N}=\left\{N,\left\{\Delta\left(A_{i}\right)\right\},\left\{u_{i}(\cdot)\right\}\right\}
$$

PRISONER'S DILEMMA
 Example

Two suspects, 1 and 2 , are being interrogated separately about a crime

- If both confess, each is sentenced to five years in prison
- If both deny their involvement, each is sentenced to one year in prison
- If just one confesses, he is released but the other one is sentenced to ten years in prison
Assume that each player's payoffs are proportional to the length of time of his prison sentence.

Formulate this game in normal form.

PRISONER'S DILEMMA (Cont'd) Example

Normal-Form Representation

- Players, $i \in N=\{1,2\}$
- Action Sets, $A_{i}=\{$ Deny,Confess $\}$
- Individual Payoffs, $u\left(a_{1}, a_{2}\right)$, defined by "payoff matrix"
- (Mixed) Strategies, $\sigma_{i}=\left(\sigma_{i}(\right.$ Deny $), \sigma_{i}($ Confess $\left.)\right) \geq 0$, with

$$
\sigma_{i}(\text { Deny })+\sigma_{i}(\text { Confess })=1
$$

Payoff Matrix ${ }^{(1)}$
Player 2

		Confess
	Deny	
Player 1	Confess	$(-5,-5)$
	$(0,-10)$	
	Deny	$(-10,0)$

PRISONER'S DILEMMA (Cont'd)
 Example

Find Prediction about Outcome of this Game
Player 2

		Confess	Deny
Player 1	Confess	$(-5,-5)$	$(0,-10)$
	Deny	$(-10,0)$	$(-1,-1)$

- Consider player 1's "best response" when fixing player 2's strategy
- Consider player 2's "best response" when fixing player 1's strategy

Hence, each player has a dominant strategy: no matter what the other player does, it is optimal (i.e., payoff-maximizing) for player \mathbf{i} to select $a_{i}=$ Confess .
Note also that the outcome is inefficient (i.e., does not maximize social surplus).

FUNDAMENTAL ASSUMPTIONS

Question: What assumptions are necessary to arrive at predictions about outcomes of normal-form games?

Assumption 1: All players are rational, i.e., they maximize (expected) payoffs.

Assumption 2: The players' payoff functions and action sets are common knowledge, i.e., ${ }^{(1)}$

- Each player knows the rules of the game
- Each player knows that each player knows the rules
- Each player knows that each player knows that each player knows the rules
Each player knows that each player knows that each player knows that each player knows the rules
Each player knows that each player knows that each player knows that each player knows that each player knows the rules

WHAT HAPPENS IF PLAYERS ARE NOT RATIONAL? Relaxing Assumption 1

Relaxing the rationality assumption leads to boundedly rational agents, which is compatible with empirical observations. Some features of real-world agents which violate the rationality assumption are:

- Overconfidence
- Sensitivity to framing of the problem
- Satisficing behavior
- Intransitive preferences over outcomes (e.g., Allais Paradox, Ellsberg Paradox)
- Limited information-processing capabilities
- Availability heuristic
- Status-quo bias (e.g., endowment effect, regret avoidance, cognitive dissonance)
- ...

There is a fast growing literature on "behavioral game theory" (1)

UNDERSTANDING RATIONALITY

Consider the following normal-form game (for which we just provide the payoff matrix):

Player 2 has a strictly dominant strategy; his dominated strategy can thus be eliminated. This leads to a unique prediction of the outcome (U,L) in this game. Note though that player 1 has to be absolutely sure of the rationality of player 2 !

PURE-STRATEGY NASH EQUILIBRIUM

Definition: For any normal-form game $\Gamma_{N}=\left\{N,\left\{\Delta\left(A_{i}\right)\right\},\left\{u_{i}(\cdot)\right\}\right\}$ a pure-strategy Nash equilibrium is a strategy profile $a^{*}=\left(a_{i}^{*}, a_{-i}^{*}\right)$, such that for every $i \in N$:

$$
a_{i}^{*} \in \arg \max _{a_{i} \in A_{i}} u_{i}\left(a_{i}, a_{-i}^{*}\right)
$$

In other words,

$$
u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(a_{i}, a_{-i}^{*}\right) \quad \forall a_{i} \in A_{i}, i \in N
$$

or equivalently

$$
a_{i}^{*} \in B_{i}\left(a_{-i}^{*}\right) \quad \forall i \in N
$$

Examples: The Prisoner's Dilemma game has a unique pure-strategy Nash equilibrium (NE), in the Matching Penny game such an equilibrium does not exist

MIXED-STRATEGY NASH EQUILIBRIUM

To increase the predictive power in games such as Matching Pennies, we extend the definition of Nash Equilibrium to include mixed strategy profiles of the form $\sigma \in \Delta\left(A_{1}\right) \times \cdots \times \Delta\left(A_{n}\right)$.

Definition: For any normal-form game $\Gamma_{N}=\left\{N,\left\{\Delta\left(A_{i}\right)\right\},\left\{u_{i}(\cdot)\right\}\right\}$ a mixed-strategy Nash equilibrium is a strategy profile $\sigma^{*}=\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$, such that for every $i \in N$:

$$
\sigma_{i}^{*} \in \arg \max _{\sigma_{i} \in \Delta\left(A_{i}\right)} u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right)
$$

where

$$
u_{i}(\sigma)=u_{i}\left(\sigma_{i}, \sigma_{-i}\right)=\sum_{a \in A}\left[\sigma_{1}\left(a_{1}\right) \cdot \ldots \cdot \sigma_{n}\left(a_{n}\right)\right] u_{i}(a)
$$

MATCHING PENNIES

In the Prisoner's Dilemma game the assumptions of common knowledge and rationality were enough to generate a unique prediction about the outcome, the reason being that each player found it strictly dominant to confess.

As we see below, rationality and common knowledge, are generally not enough to generate a prediction for the outcome of a normal-form game.

Example: Matching Pennies

In a game of Matching Pennies, Ann and Bert, show each other a penny with either heads (H) or tails (T) up. If they choose the same side of the penny, Ann gets both pennies, otherwise Bert gets them.
(Note that this is a zero-sum game, as are most games people play for leisure.)

MATCHING PENNIES (Cont'd)

Normal-Form Representation
$N=\{$ Ann, Bert $\}$
$A_{i}=\{H, T\}, i \in N$
$u_{i}(\cdot)$ defined by the following payoff matrix

Question: What is the outcome of this game?

MATCHING PENNIES (Cont'd)

Consider each player's best-response correspondence

$$
\begin{array}{ll}
B_{i}\left(a_{-i}\right)=\arg \max _{a_{i} \in A_{i}} u\left(a_{i}, a_{-i}\right)=\left\{a_{i} \in A_{i}: u_{i}\left(a_{i}, a_{-i}\right) \geq u_{i}\left(\hat{a}_{i}, a_{-i}\right), \forall \hat{a}_{i} \in A_{i}\right\} \\
B_{\text {Ann }}(H)=H & B_{\text {Bert }}(H)=T \\
B_{\text {Ann }}(T)=T & \underline{\text { Bert }}
\end{array}
$$

	\mathbf{H}	\mathbf{T}
Ann		
\mathbf{H}	$(1,-1)$	$(-1,1)$
\mathbf{T}	$(-1,1)$	$(1,-1)$

Result: The players' best-response correspondences do not "intersect."

MATCHING PENNIES (Cont'd)

Let us try to find a mixed-strategy Nash equilibrium in the Matching Pennies game.
For simplicity set Ann = Player 1 and Bert $=$ Player 2, so that $N=\{1,2\}$

The player's mixed-strategy spaces are

$$
\Delta\left(A_{i}\right)=\left\{\left(\sigma_{i}(H), \sigma_{i}(T)\right): \sigma_{i}(H), \sigma_{i}(T) \geq 0 \text { and } \sigma_{i}(H)+\sigma_{i}(T)=1\right\}
$$

Without loss of generality, let $\sigma_{1}(H)=p$ and $\sigma_{2}(H)=q$.

Then

$$
\begin{aligned}
u_{1}(\sigma) & =p\left(q u_{1}(H, H)+(1-q) u_{1}(H, T)\right)+(1-p)\left(q u_{1}(T, H)+(1-q) u_{1}(T, T)\right) \\
& =p(q-(1-q))+(1-p)(-q+(1-q)) \\
& =p(2 q-1)+(1-p)(1-2 q) \\
& =(1-2 p)(2 q-1) \\
& =-u_{2}(\sigma)
\end{aligned}
$$

MATCHING PENNIES (Cont'd)

This is a linear optimization problem for each player. Note that player 1 has only control over p and player 2 has only control over q.

Player 1 can make player 2 indifferent about any of his strategies by choosing $p=.5$ i.e., $\hat{\sigma}_{1}=(p, 1-p)=(0.5,0.5)$ and thus

$$
\Delta\left(A_{2}\right)=\arg \max _{\sigma_{2} \in \Delta\left(A_{2}\right)} u_{2}\left(\sigma_{2}, \hat{\sigma}_{1}\right)
$$

If player 1 chooses a different strategy, player 2 is not indifferent and strictly prefers to play either $q=0$ (for $p>.5$) or $q=1$ (for $p<.5$).

On the other hand, if player 2 chooses anything other than $q=.5$, player 1 is not indifferent about her actions and will strictly prefer to play a pure strategy.

As a result, $\sigma^{*}=\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)$ with $\sigma_{i}^{*}=(.5, .5)$ is the unique mixed-strategy Nash equilibrium of the Matching Pennies game.

ROLE OF INDIFFERENCE

We emphasize the role that the players' indifference played in determining the NE in the Matching Pennies game. The following assumption is maintained for the rest of the course.

Assumption: provided indifference between two or more actions in a player's (mixed-strategy) best-response correspondence, this player will select an action that is part of a (mixed-strategy) Nash equilibrium. ${ }^{(1)}$

MATCHING PENNIES (Cont'd)

It is possible to graph the players' best-response correspondences. The unique intersection is at $\left(p^{*}, q^{*}\right)=(.5, .5)$.

AGENDA

What is Game Theory?

Building Blocks and Key Assumptions

Market Structure \& Strategy Analysis

- Cournot Quantity Competition
- Bertrand Price Competition

Key Concepts to Remember

PORTER'S FIVE FORCES ... and what influences them

Note: For the original presentation of the Five-Forces Model, see Porter, M.E. (1980) Competitive Strategy, Free Press, New York, NY.

BRANDENBURGER AND NALEBUFF'S VALUE NET The Firm and Its Network of Transaction Relationships

Flow of Goods \& Services

Note that the firm and its competitors/complementors can have relationships in different markets at the same time ("multimarket contact")

INDUSTRY ANALYSIS
 Example

CHOOSING QUANTITIES: COURNOT DUOPOLY

Consider two firms, 1 and 2, choosing their production outputs q_{1} and q_{2} simultaneously. Each firm has a unit production cost of \mathbf{c} (with $\mathbf{0}<\mathbf{c}<1$).

- The market (inverse) demand is given by $p\left(q_{1}, q_{2}\right)=1-q_{1}-q_{2}$

Question. Determine a Nash equilibrium of this game.

Solution.

Firm i's profit is

$$
\Pi_{i}\left(q_{1}, q_{2}\right)=\left(p\left(q_{1}, q_{2}\right)-c\right) q_{i}=\left(1-c-q_{1}-q_{2}\right) q_{i}
$$

- Its optimality condition is

$$
\frac{\partial \Pi_{i}\left(q_{1}, q_{2}\right)}{\partial q_{i}}=1-c-2 q_{i}-q_{j} \stackrel{!}{=} 0
$$

- Its best-response to $\mathbf{q}_{\mathbf{j}}$ is therefore $\quad q_{i}^{*}\left(q_{j}\right)=\frac{1-c-q_{j}}{2}$
- Symmetry implies that at the Nash equilibrium $\quad q_{i}^{*}=\frac{1-c-q_{i}^{*}}{2}$

COURNOT DUOPOLY (Cont'd)

Unique Nash Equilibrium:

$$
q_{1}^{*}=q_{2}^{*}=\frac{1-c}{3}
$$

COURNOT OLIGOPOLY Generalization of Previous Example

Consider the symmetric linear model and perfect substitutability, where

$$
p_{i}(q)=p(Q)=a-b Q
$$

with $Q=q_{1}+\ldots+q_{n}, a, b>0$, and

$$
C_{i}\left(q_{i}\right)=c q_{i}
$$

where $c \in(0, a)$.

- We find that at the unique NE each firm produces $q_{i}^{*}=\frac{a-c}{(n+1) b}$
- The total supply is in a Cournot NE is thus $Q^{*}=n q_{i}^{*}=\frac{a-c}{(1+1 / n) b}$
- The Cournot NE price is $p^{*}=a-b Q^{*}=\frac{a / n+c}{1+1 / n}$
- The industry Cournot profits are $\Pi_{T}^{*}=\left(p^{*}-c\right) Q^{*}=\frac{n}{b}\left(\frac{a-c}{n+1}\right)^{2}$

COURNOT OLIGOPOLY (Cont'd)

Comparison with Perfect Competition

The market power of each firm can be measured using the Lerner index $L_{i},{ }^{(1)}$ which corresponds to the inverse of the own demand elasticity ε_{i} in equilibrium

$$
\varepsilon_{i}(n)=-\left.\frac{\partial \log q_{i}}{\partial \log p_{i}}\right|^{*}=-\left.\frac{p_{i}}{q_{i}} \frac{d q_{i}}{d p_{i}}\right|^{*}=-\frac{p^{*}}{q_{i}^{*}}\left(-\frac{1}{b}\right)=\frac{a+n c}{a-c}
$$

Let p^{c} and Q^{c} denote the price and total output in a symmetric equilibrium under perfect competition. Under perfect competition we have that necessarily $p^{c}=c$ and Q^{c} therefore solves $c=a-b Q^{c}$

We have that

$$
\lim _{n \rightarrow \infty} Q^{*}(n)=\lim _{n \rightarrow \infty} \frac{a-c}{(1+1 / n) b}=\frac{a-c}{b}=Q^{c}
$$

Note also:

$$
\lim _{n \rightarrow \infty} L_{i}(n)=\lim _{n \rightarrow \infty} \frac{a-c}{a+n c}=0
$$

STACKELBERG QUANTITY LEADERSHIP GAME

Consider firms in industries producing goods that are perfect or at least close substitutes

- Duopoly
- Oligopoly with one dominant firm
- Dominant firm and 'competitive fringe'

Examples

- OPEC or Saudi Arabia
- Certain airlines or particular hubs

STACKELBERG GAME: COURNOT WITH LEADER

Suppose there are two symmetric firms. Firm 1 is the leader and gets to choose its quantity at $\mathrm{t}=0$. Firm $\mathbf{2}$ is the follower and chooses its quantity at $\mathrm{t}=1$.

Any SPNE (the "Stackelberg Equilibrium") can be found using backward induction, i.e., we start at $\mathrm{t}=1$. Firm 2 solves

$$
q_{2}^{*}\left(q_{1}\right)=\arg \max _{\hat{q}_{2} \geq 0}\left\{\left(a-c-b\left(q_{1}+\hat{q}_{2}\right)\right) \hat{q}_{2}\right\}
$$

so that the best-response for firm $\mathbf{2}$ given the leader's output choice q_{1} becomes

$$
q_{2}^{*}\left(q_{1}\right)=\frac{a-c}{2 b}-\frac{q_{1}}{2}
$$

STACKELBERG GAME (Cont'd)

Let us now examine the leader's optimal policy at $\mathrm{t}=0$. Firm 1's residual demand is given by

$$
\hat{p}\left(q_{1}\right)=a-b\left(q_{1}+q_{2}^{*}\left(q_{1}\right)\right)=\frac{a+c-b q_{1}}{2}
$$

The elasticity of firm 1's residual demand curve is

$$
\hat{\varepsilon}_{1}=-\frac{\hat{p}_{1}\left(q_{1}\right)}{q_{1}} \frac{d q_{1}}{d \hat{p}_{1}}=-\frac{a+c-b q_{1}}{2 q_{1}} \frac{1}{\frac{d \hat{p}_{1}\left(q_{1}\right)}{d q_{1}}}=\frac{a+c}{b q_{1}}-1>\frac{a}{b q_{1}}-1
$$

Firm 1 maximizes its profits with respect to residual demand,

$$
q_{1}^{*}=\arg \max _{\hat{q}_{1} \geq 0}\left\{\left(a-c-b \hat{q}_{1}\right) \hat{q}_{1} / n\right\}=\arg \max _{\hat{q}_{1} \geq 0}\left\{\left(a-c-b \hat{q}_{1}\right) \hat{q}_{1}\right\}=\frac{a-c}{2 b}=q^{m}
$$

Hence, the follower produces

$$
q_{2}^{*}=\frac{a-c}{2 b}-\frac{q^{m}}{2}=\frac{a-c}{4 b}
$$

STACKELBERG GAME (Cont'd)

Total Stackelberg equilibrium output of all firms is therefore

$$
Q^{*}=q_{1}^{*}+q_{2}^{*}\left(q_{1}^{*}\right)=\left(1-\frac{1}{4}\right) \frac{a-c}{b}
$$

and equilibrium market price is

$$
p^{*}=a-b Q^{*}=c+\frac{a-c}{4}
$$

The leader's equilibrium profit is

$$
\Pi_{1}^{*}=\frac{(a-c)^{2}}{8 b}
$$

while the follower obtains in equilibrium

$$
\Pi_{2}^{*}=\frac{(a-c)^{2}}{16 b}
$$

BERTRAND DUOPOLY

Consider two firms selling a homogeneous product at a unit cost $c_{i} \in[0,1], i \in N=\{1,2\}$

- The firms simultaneously set their prices $p_{i} \in[0, \infty)=A_{i}$
- Let the total number of consumers be normalized to one. All consumers buy from the cheaper firm and randomize evenly between the two firms if their prices are equal
- The value of the consumers' (common) outside option is zero; their (net) value from the product if they buy from firm \mathbf{i} is Y. (Assume that $Y>c_{i}$)

Question: Determine the NE of this simultaneous-move game.

Answer: 1. Determine the firms' payoff functions, $u_{i}(\cdot)$:

$$
u_{i}\left(p_{i}, p_{-i}\right)= \begin{cases}p_{i}-c_{i}, & p_{i}<p_{-i}, p_{i} \leq Y \\ \left(p_{i}-c_{i}\right) / 2, & p_{i}=p_{-i}, p_{i} \leq Y \\ 0, & \text { otherwise }\end{cases}
$$

BERTRAND DUOPOLY (Cont'd)

2. Determine the firms' best-response correspondences

- Assume that $c_{1}<c_{2}$
- Find the set of strategies that survive iterated deletion of strategies which are never a best response:
- \quad For player \mathbf{i}, the strategies $p_{i}<c_{i}$ and $p_{i}>Y$ are dominated by $p_{i}=Y$
- All strategies $p_{i} \in\left[c_{i}, Y\right]$ could be rationalizable \rightarrow not very useful
- Find best-response correspondences
- \quad Start with $p_{2} \in\left[c_{2}, Y\right]:$ then $p_{1} \in\left[p_{2}, Y\right]$ is strictly dominated by any $p_{1} \in\left(c_{1}, p_{2}\right)$
- Player 1's payoffs are strictly increasing in $p_{1} \in\left(c_{1}, p_{2}\right)$. Thus, there is no best-response for player 1 , since the payoff from any particular strategy in $\left(c_{1}, p_{2}\right)$ can be strictly improved upon
However, if increments are finite, of arbitrarily small size $\varepsilon>0$, then ${ }^{(1)}$

$$
B_{i}\left(p_{-i}\right)= \begin{cases}Y, & p_{-i}>\max \left\{c_{i}, Y+\varepsilon\right\} \\ \max \left\{c_{i}, p_{-i}-\varepsilon\right\}, & p_{-i} \in\left(c_{i}, Y+\varepsilon\right] \\ \left\{c_{i}+k \varepsilon\right\}_{k=0}^{\infty}, & p_{-i}=c_{i}, \\ \left\{p_{-i}+k \varepsilon\right\}_{k=1}^{\infty}, & p_{-i} \leq c_{i} .\end{cases}
$$

BERTRAND DUOPOLY (Cont'd)

3. Find the intersection of the best-response correspondences

Continuum of Nash
equilibria:
$p^{*}=\left(p_{1}^{*}, p_{2}^{*}\right)$
with
$p_{1}^{*} \in\left[c_{1}, c_{2}\right]$
$p_{2}^{*}=p_{1}^{*}+\varepsilon$

Note that all NE involve at least one player playing a weakly dominated strategy

BERTRAND DUOPOLY (Cont'd)

Additional Notes

- In equilibrium with $c_{1}<c_{2}$, firm 2 plays a weakly dominated strategy
- A tiebreaking rule that assigns all profits to firm 1 in case of equal prices guarantees a set of NE p^{*} for $\varepsilon \rightarrow 0+$:
"In a Bertrand equilibrium, firms charge a price between the firstthe second-most efficient firm's costs." ${ }^{(1)}$

It is possible that all firms play a weakly dominated strategy in equilibrium.

DIFFERENTIATION SOFTENS PRICE COMPETITION

 Generalization: Imperfect SubstitutesGiven: Demands for products of firm 1 and firm 2: $q_{1}\left(p_{1}, p_{2}\right)$ and $q_{2}\left(p_{1}, p_{2}\right)$ [\& the firms' cost functions: $C_{1}\left(q_{1}\right)$ and $C_{2}\left(q_{2}\right)$]

$$
\max _{p_{2}}\left\{p_{2} q_{2}\left(p_{1}, p_{2}\right)-C_{2}\left(q_{2}\left(p_{1}, p_{2}\right)\right)\right\}
$$

$$
F O C: \quad M R_{2}\left(q_{2}\right)=M C_{2}\left(q_{2}\right) \quad \Rightarrow \quad p_{2}=B_{2}\left(p_{1}\right)
$$

$$
\left.\max _{n}\left\{p_{1} q_{1}\left(p_{1}, p_{2}\right)\right)-C_{1}\left(q_{1}\left(p_{1}, p_{2}\right)\right)\right\}
$$

$$
p_{1}
$$

FOC: $\quad M R_{1}\left(q_{1}\right)=M C_{1}\left(q_{1}\right) \quad \Rightarrow \quad p_{1}=B_{1}\left(p_{2}\right)$

$$
\left[p_{1}-\frac{d C_{1}\left(q_{1}\right)}{d q_{1}}\right]=-\frac{q_{1}\left(p_{1}, p_{2}\right)}{\frac{\partial q_{1}\left(p_{1}, p_{2}\right)}{\partial p_{1}}}
$$

BERTRAND WITH IMPERFECT SUBSTITUTES (Cont’d)

AGENDA

What is Game Theory?

Building Blocks and Key Assumptions

Market Structure \& Strategy Analysis

- Cournot Quantity Competition
- Bertrand Price Competition

Key Concepts to Remember

KEY CONCEPTS TO REMEMBER

- Predictive Power
- Payoff Matrix
- Pure/Mixed Strategy
- Dominant Strategy
- Best-Response
- Nash Equilibrium
- Cournot and Bertrand Game
- Stackelberg Sequential-Move Games

