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So far in this course we have assumed that a consumer (decision maker) knows 
perfectly the consequences of choice. 

However, in most practical economic decision situations there is uncertainty.

CHOICE UNDER UNCERTAINTY
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• How much will my education help me in the job market?

• Will I be given valuable assignments if I accept this job offer?

• Is the used car I am buying a lemon?  Or will it be dependable?

• If I put effort into developing a proposal, will it be accepted?

• Will an R&D program be successful?

• How capable is the person I am considering hiring?

• Will my competitors introduce superior new products?

• Will potential customers purchase the product I offer?

• Will I enjoy the movie?

• What will the weather be like in the city I plan to visit?

• Will my home catch on fire in the next year and be destroyed?

• Will the price of the stock I purchase go up or down?

• Will prices for a commodity go up or down? Sign fixed-price contract?   

• If I take a litigation to trial rather than settling, will I win?

• …

UNCERTAINTY IN CHOICE
Some Examples
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RISK VS. UNCERTAINTY

Distinction between risk and uncertainty due to Frank Knight (1921):

• Uncertainty: unknowable (e.g., the success probability of your new 
startup company, or the likelihood of an unforeseen contingency in your 
project)

• Risk: knowable (e.g., the outcome of a die roll)

“The practical difference between the two categories, risk and uncertainty, is 
that in the former the distribution of the outcome in a group of instances is 
known (...), while in the case of uncertainty this is not true, the reason being 
in general that it is impossible to form a group of instances, because the 
situation dealt with is in a high degree unique” (p. 233)

“We can also employ the terms “objective” and “subjective” probability to 
designate the risk and uncertainty respectively, as these expressions are 
already in general use with a signification akin to that proposed” (ibid.)

In this course, no explicit distinction between risk and uncertainty, since in order to 
formally analyze optimal choice, need to introduce a probability space in either case.
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• All would not necessarily agree on the likelihood of events

- Probability relevant for your decision is determined by all your 
knowledge

- Most economic situations can best be described by subjective 
probabilities

• Will the used car be a lemon?  Or will it be dependable?

- Seller knows, i.e., for seller probability of being lemon is 0 or 1

- Buyer does not know, i.e., buyer must assign a probability (= “belief”)

• What will the weather be like in the city I plan to visit?

- Probability assessment may change after you read weather forecast

• How capable is the person I am considering for a job?

- Potential employee has more information about work habits

SUBJECTIVE PROBABILITY
Some Examples
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New information (e.g., observing other agents’ actions) can change beliefs

• What does this imply? (value of information, … disinformation)

Can different people have very different probability assessments given the same 
choice, the same events, and the same information?

• Agreeing to disagree … 

Most of the time we assume that probabilities are subjective

SUBJECTIVE PROBABILITY (Cont’d)
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DISCRETE RANDOM VARIABLES

Definition: A discrete random variable (or lottery) X = [p1, x1; p2, x2; …; pn, xn] is a 
variable x that can take on one of the values

• x1, x2, x3, ..., xn

with the respective probabilities

• p1, p2, p3, ..., pn

where each            and 0ip





n
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ip

1

1

x1 x2 x3 x4 x5

p1

p2

p3

p4

p5

Using the probability mass function p(.)
we can write the probabilities pi as a 
function of xi : pi = p(xi).

(normalization)
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EXAMPLE: ROLL OF A DIE

x =

1
2
3
4
5
6

1/6
1/6
1/6
1/6
1/6
1/6

w/ probability

x

1/6 1/6 1/6 1/6 1/6 1/6

1 2 3 4 5 6

xi pi
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EXPECTATION

The expectation of a (discrete) random variable X is defined as:

  



n

i
ii xpXEX

1

Sign Preservation If X can take on only positive values, then E[X]>0.

Certain Value If X is perfectly known (and equal to x), then E[X]=x.

Other Properties:

If X and Y are random variables, and a and b are constants.
E[aX+bY] = a E[X] + b E[Y]

Linearity

Key Property:
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EXAMPLE (Cont’d)

X =

1
2
3
4
5
6

1/6
1/6
1/6
1/6
1/6
1/6

w/ probability

X

1/6 1/6 1/6 1/6 1/6 1/6

1 2 3 4 5 6





6

1

][
i

ii xpXE

5.3
6

16

1




i
i

6
6

1
...2

6

1
1

6

1


The expectation is where this picture would balance on your finger
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VARIANCE AND STANDARD DEVIATION

The variance is a measure of the spread of a random variable around its mean. 

])[(][ 2XXEXV  )]2[( 22 XXXXE 

22 ][2][ XXEXXE  22 ][ XXE 

The standard deviation is the square root of the variance. 

][XVX 

It has the same units as X.
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EXAMPLE (Cont’d)

92.2

])[(][ 2XXEXV 

2

22

)5.36(
6

1
   

...)5.32(
6

1
)5.31(

6

1





X =

1
2
3
4
5
6

1/6
1/6
1/6
1/6
1/6
1/6

w/ probability

X

1/6 1/6 1/6 1/6 1/6 1/6

1 2 3 4 5 6
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CONDITIONAL PROBABILITY

)(

)(
)|(

BP

BAP
BAP




Question. Given a six-sided die what is the probability of rolling a 3 conditional on 
rolling a 1, 2 or 3?

})3,2,1({

})3,2,1{}3({
})3,2,1{|}3({

P

P
P




})3,2,1({

})3({

P

P


3/1
2/1

6/1


Definition: The conditional probability P(A|B) of event A conditional on event B having 
realized is defined as
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INDEPENDENCE

Definition: A and B are independent events, if

• P(A|B) = P(A)

• P(B|A) = P(B)

)()|()( BPBAPBAP 
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THE LAW OF TOTAL PROBABILITY

)()|()()(
11

n
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n
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n BPBAPBAPAP 
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LOTTERIES ARE (DISCRETE) RANDOM VARIABLES

Let X be a random variable with possible outcomes in the set X = {x1, x2, … , xn} (the 
“outcome space”). Each outcome xi occurs with probability pi.

The random variable X is sometimes also called a lottery and denoted

X = [p1, x1; p2, x2; ...; pn, xn]

If all outcomes xi are real and measured in dollars (or any other currency), then X is 
commonly referred to as a “money lottery.” 

The set of all lotteries with outcomes in X is the “lottery space” L(X). 

Example: A coin-flip lottery X (with an unbiased coin) pays $1 if heads and zero if tails. Then 
X = [0.5,$1; 0.5, $0].
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LA

LB

LC

LELH

The choice set contains all simple lotteries over the various outcomes.

THEORY OF CHOICE UNDER UNCERTAINTY
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PREFERENCES OVER LOTTERIES

For a decision maker (DM), choosing between actions corresponds generally to 
choosing between lotteries (given a decision d in the set of possible decisions D, the 
outcome xi in X occurs with probability P(xi|d)).

Example: wearing a helmet on a motorcycle changes the probability of injury. In a
decision tree, each decision node represents a lottery.

Hence, the DM needs to be able to order lotteries according to his preference implying 
a complete preference (pre-)ordering(1) over elements in the lottery space L(X).

More specifically, if A and B are elements of L(X), then

• A > B   means DM prefers A to B

• A > B   means DM does not prefer B to A or DM “weakly” prefers A to B

• A  B   means  DM is indifferent between A and B, i.e., DM will take either one 
and would play a 50-50 lottery to choose between them.

(1) Formally, a pre-ordering R is a binary relation (i.e., it takes two inputs) that is reflexive (i.e., xRx) and transitive (i.e., xRy and yRz implies xRz). The pre-ordering
is complete if for any elements x and y in X it is either xRy or yRx (or both). 
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PREFERENCES OVER LOTTERIES: EXAMPLE

Question. Jane likes to play ping pong and she wonders about how to respond to an 
opponent’s serve. 

• If she hits a top spin (decision d1), the ball is going to be on the table with 
probability 0.6 and given that it is, she is going to score with probability 0.8. 

• If she does not play a top spin (decision d0), the ball is going to land on the 
table with probability 0.9, but she is only going to score with probability 0.6.

What decision should she take?

Solution: 

Jane needs to choose between the following two lotteries:

• L1 = [P(score|d1), 1 point; P(don’t score|d1), 0 points]

• L0 = [P(score|d0), 1 point; P(don’t score|d0), 0 points]

Thus, she should prefer L0 (i.e., L0 > L1) which implies “don’t play top spin” as her 
decision.

L1

0.48

0.52

1 point

0 points

L0

0.54

0.46

1 point

0 points
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PREFERENCES OVER OUTCOMES
Utility Representation (Reminder)

Preferences over lotteries imply preferences over particular (certain) outcomes in X. 
Indeed, for any x and y in X one could just consider the lotteries X and Y that 
produce the outcomes x and y with probability one respectively. 

Thus, x > y if the outcome x is (weakly) preferred to the outcome y.

Definition: A real-valued function u with domain X represents the DM’s preferences
over outcomes in X, if for any x,y in X:

x > y if and only if u(x) > u(y).

The function u is called the DM’s utility function.

For some preferences no utility function representation exists (e.g., lexicographic
preferences). We typically take a utility function as an input for a decision model.(1)

A utility function always exists for finite sets of outcomes.

(1) For more details on utility theory see Kreps, D.M. (1988) Notes on the Theory of Choice, Westview Press, Boulder, CO, or Fishburn, P.C. (1970)
Utility Theory for Decision Making, Wiley, New York, NY.

A utility representation of a DM’s preferences is generally not unique: given any 
utility function u and a strictly increasing function  (from real numbers to real
numbers), the function v = (u) is an equivalent utility representation.
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UTILITY REPRESENTATION

Mark has the utility function u(x) = x½ for any nonnegative amount of money x (in 
dollars).

Thus, he prefers $100 to $36, since u(100) = 10 > u(36) = 6.

Similarly, for (y) = y2, we have that (u(100)) = 100 > (u(36)) = 36, and Mark would 
have the same preferences for outcomes (amounts of money) for any other , as 
long as  is strictly increasing.

• x > y   if and only if   u(x) > u(y)    if and only if    (u(x)) > (u(y))

Thus, in the absence of uncertainty Mark can just maximize x instead of u(x). 
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EXPECTED UTILITY MAXIMIZATION

Given a utility representation u of the DM’s preferences over outcomes, we would 
like to infer his preferences over lotteries of outcomes (random variables), which 
corresponds to his preferences over actual decisions (e.g., at which speed to drive 
a car).

Under certain axioms (= assumptions on the DM’s preferences over lotteries, 
typically one uses the Von Neumann-Morgenstern axioms), the DM’s expected 
utility of a particular decision d in D which induces a lottery X(d) with probability 
distribution P(.|d) is 





Xx

xudxPdXEU )()|())((

Thus, under uncertainty the DM maximizes expected utility, i.e., he solves

))((maxarg dXEUd
Dd

 
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EXPECTED UTILITY MAXIMIZATION: EXAMPLE

Question. Joe needs to decide how fast to drive on highway E25 from Lausanne to 
Geneva. Any minute saved he values at $1. At 120 km/h it takes about 40 min, and 
at 140 km/h about 32 min. However, if he drives 140 km/h there is a chance p that 
he gets pulled over and has to pay a ticket worth $280 plus a delay of 20 min (over 
the 120 km/h time). 

Let d0 : drive 120 km/h, d1 : drive 140 km/h. He thus needs to choose between the 
lotteries X(d0) = [1,$0] and X(d1)= [p, -$300; 1-p, $8].

X(d0)

1 $0

X(d1)

1-p

p

$8

-$300 

If Joe’s utility function for money is u(x)=-exp(-x/1000), at what detection probability p
would he be indifferent between d0 and d1?

Answer: )8($)1()300$())(()0($))(( 10 uppudXEUudXEU 

%2.2
)300$()8($

)0($)8($






uu

uu
p (i.e., for p>2.2%, Joe drives 65 mph!)
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Let X = {x1, x2, … , xn} be a set of outcomes and L(X) the corresponding lottery space. 
Consider arbitrary elements A,B,C of L(X) and x,y,z in X.(1)

1. Completeness: A > B or B > A                              (can compare any two lotteries)

2. Reflexivity: A > A

3. Transitivity:  A > B and B > C implies A > C    (o/w construct a “money pump”)

4. Continuity: If x > y > z, then there exists p in (0,1) such that one can achieve 
indifference between the lottery A = [1, y] and the lottery B(p) = [p, x; 1-p, z], i.e., there 
is a p such that A  B(p)

• Example: What happens if z is “death”? 

5. Independence (of Irrelevant Alternatives): If x > y, then for any z: 
[p, x; (1-p), z] > [p, y; (1-p), z]

• Example (Compound Lottery): DM should feel the same about a 1:12 chance of 
winning $100 or playing the following two-stage lottery.

- Stage 1: flip a coin; if heads, then go to stage 2, otherwise you lose.

- Stage 2: toss a die; if 6 comes up you win $100, otherwise you lose.

VON NEUMANN-MORGENSTERN AXIOMS IMPLY
EXPECTED UTILITY REPRESENTATION

Fundamental Justification for Expected Utility Maximization

(1) Note that if x is an outcome in X, then [1, x] is a lottery in L(X). Thus, any outcome can be viewed as a (degenerate) lottery. 
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KEY IMPLICATION OF THE VNM AXIOMS

Theorem (Von Neumann-Morgenstern, 1944): If a DM’s preferences “>” on L(X) satisfy 
the Von Neumann-Morgenstern axioms, then there exists an expected utility function 
EU(.) for that DM which represents his preferences in the sense that for any two 
lotteries A, B in L(X):

A > B if and only if  EU(A) > EU(B)

In more detail, suppose:

A = [p1,x1; p2,x2; .... ; pn,xn], where p1 + ... + pn = 1

B = [q1,x1; q2,x2; .... ; qn,xn], where q1 + ... + qn = 1

If DM’s preferences satisfy the VNM Axioms, then the DM prefers A to B (A > B) if and 
only if

Note: Two expected utility functions EU(x) and EV(x) represent the same preferences 
over lotteries if and only if EU(x) = EV(x) + , where  > 0 and  is any real number. In 
the same vein, a “positive affine transformation” of the DM’s utility function u 
(to v =  u + for  > 0) does not change the DM’s preferences over lotteries.
The original reference for the Von Neumann-Morgenstern result is their immensely readable text Von Neumann, J., Morgenstern, O. (1944) Theory
of Games and Economic Behavior, Princeton University Press, Princeton, NJ.

)()()()(
11

BEUxuqxupAEU
n

i
ii

n

i
ii  



Proof: See notes on “Risk and Uncertainty” posted on the course website.
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Example: Consider the utility functions u(x) = 1 - 2e-x and v(x) = 3 - 5e-x, where >0 
is some constant.

Since u(x) = .4v(x) - .2 = v(x) + (with  > 0), one can check that for any two 
lotteries A and B in L(X):

EU(A) > EU(B) if and only if EV(A) > EV(B)

More generally, invariance with respect to positive affine transformations implies 
that we can fix any two values of a DM’s utility function without disturbing his 
preference ordering over lotteries.

KEY IMPLICATION OF THE VNM AXIOMS (Cont’d)
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ALLAIS PARADOX

Imagine the following two decision situations—each involving a pair of gambles.

SITUATION I

P(Winning) AMOUNT TO WIN

Lottery A 100% $1,000,000

Lottery B 10% $5,000,000

89% $1,000,000

1% -0-

SITUATION II

P(Winning) AMOUNT TO WIN

Lottery C 11% $1,000,000

89% -0-

Lottery  D 10% $5,000,000

90% -0-
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ALLAIS PARADOX
Implies Critique of ‘Independence of Irrelevant Alternatives’

Ticket Numbers

Lottery 1 2-11 12-100

A $1 million $1 million $1 million

B         $0 million $5 million $1 million

C $1 million $1 million $0 million

D $0 million $5 million $0 million

NOTE:  Ticket numbers 12-100 are the same for A and B so they are 
irrelevant for choices between them; the same for C and D

If you eliminate these ticket numbers then 

A and C are identical and so are B and D
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UTILITY FUNCTIONS: SOME COMMON SHAPES

Utility

$

Risk-Neutral

Risk-Seeking

Risk-Averse
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RISK AVERSION: EXAMPLES

People will buy insurance, even though the expected value of the 
payment from insurance is smaller than its price.  That is the result of 
risk aversion.

People purchase a portfolio of stocks and bonds, rather than only one.  
Such diversification reduces risk and is consistent with risk aversion.

People will incur costs to purchase hedges, assets that reduce the risk 
of the overall portfolio.

Typically the larger the monetary lottery, the greater the degree of risk 
aversion people exhibit.
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A SIMPLE DECISION: RISK-AVERSE DM

Decision 
Node

Invest

Don’t Invest

x1

x2

x3

0.2

0.3

0.5

$0

Payoff

$400K

$200K

-$500K

Utility

+3

+2

-10 

0

Decision Criterion: Maximize Expected Utility

EU = (0.2)(3)+(0.5)(2)+(0.3)(-10) = -1.4 < 0             Don’t Invest!

-1.4

(Expected Payoff: $30K)
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A SIMPLE DECISION TREE: RISK-SEEKING DM

Decision 
Node

Invest

Don’t Invest

x1

x2

x3

0.2

0.3

0.5

$0

Payoff

$400K

$200K

-$500K

Utility

+10

+4

-1  

0

Decision Criterion: Maximize Expected Utility

EU = (0.2)(10)+(0.5)(4)+(0.3)(-1) = 3.7.                   Invest!

3.7

(Expected Payoff: $30K)
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ABSOLUTE AND RELATIVE RISK AVERSION
DESCRIBE A DM’S RISK ATTITUTE

The level of risk aversion may be measured by the (Arrow-Pratt) absolute-risk-
aversion coefficient,

or the relative-risk-aversion coefficient,

)(

)(
)(

xu

xu
xR






If R(x) > 0, the DM is risk-averse.  Similarly, if R(x) < 0, the DM is risk-seeking, 
while R(x)=0 for a risk-neutral DM.

)()( xxRxr 

Both absolute and relative risk aversion are local properties: 
they can vary for different outcomes.
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RISK NEUTRALITY: LINEAR UTILITY

xxu )(  )(xu 0)(  xu

0
)(

)(
)( 





xu

xu
xR

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

X

U
(X

)=
X

)0( 
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CONSTANT ABSOLUTE RISK AVERSION

Exponential utility: 
xexu  )( xexu   )(

xexu   2)(






)(

)(
)(

xu

xu
xR

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

X

U
(X

)=
5-

5e
- 

 X

xexu  55)(

x

Exponential utility functions exhibit constant absolute risk aversion (CARA).(1)

(1) CARA utility functions are often used in financial modeling, since it allows obtaining conclusions free from wealth effects (adding a constant w to an individual’s
wealth just amounts to a positive linear transformation and thus leads to the same decisions, since the expected utility representation of the individual’s preferences
does not change).
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CERTAINTY EQUIVALENT

Denote the certainty equivalent of a lottery X by )(XCE

)())(( XEUXCEu Then: (DM is indifferent)

))(()( 1 XEUuXCE 

The certainty equivalent of a lottery is a single certain outcome for which the DM is 
indifferent between receiving the outcome for sure and participating in the lottery.  

It represents the “selling price” of the lottery.
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CERTAINTY EQUIVALENT: EXAMPLE

Utility

$

Risk-Averse Why does this correspond 
to risk aversion?

10

x
$10 Guaranteed

A lottery X = [0.5, $5; 0.5, $15] has 
expected utility EU(X).

155

(0.5) (0.5)

x

x

Certainty Equivalent
of Lottery

Therefore, you prefer $10 guaranteed, even 
though the lottery has expectation $10. 

Risk
Premium

EU(X)
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CERTAINTY EQUIVALENT: ANOTHER EXAMPLE

0.25

0.50

0.25

Payoff (x)

$100

$49

$0

Utility u(x)

10

7

0

xxu )(

Expected utility: EU(X) = (0.25)(10) + (0.5)(7) + (0.25)(0) = 6

CECEuXEU  )()( 6CE 36CE

Consider the lottery X = [.25, $100; .5, $49; .25, $0] and the utility function 
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EXAMPLE: CONSTRUCTING A UTILITY FUNCTION FOR MONEY

Arbitrarily assign utilities to two real-valued outcomes, x1 and x2 (say, measured in 
dollars).  For example, x1 = -$128 and x2 = $128, and

u(-$128) = -100  and  u($128) = 100.

Use continuity axiom to specify other utilities.

Certainty Equivalence Method:  Fix p and two outcomes x1 and x2. Then find an 
outcome y which makes you indifferent between having y for certain or taking the 
lottery [p, x1;1-p, x2].

(1)

The value y is commonly referred to as the certainty equivalent (CE) of the lottery 
[p,x1;1-p,x2]: y = CE,

u(CE) = p u(x1) + (1-p) u(x2).

(1) In a set of discrete outcomes such an element y might not be available. Then one needs to adjust the probability p accordingly, which by the continuity
axiom can always achieve indifference. 
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A MARKET FOR COIN FLIPS

Consider the following game. You flip a fair coin.

• If the first flip is heads (H) you win $2 and you flip the coin again. If it is 
tails (T), the you win $0 and the game is over.

• If the second flip is H you win $4 and you flip the coin again. If it is T, then 
you keep the $2 you won on the first flip and the game is over.

• If the n-th flip is H you win $2n and you flip the coin again. If it is T, then 
you keep the $2n-1 you won on the (n-1)st flip and the game is over.

The following table summarizes the outcome (we restrict the length to n < 7 to 
avoid bankruptcy of players).

Number of Heads in a Row (n) Total Winnings

1 $2

2 $4

3 $8

4 $16

5 $32

6 $64

7 $128
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A MARKET FOR COIN FLIPS (Cont’d)

Please answer the following question (depending on your role):

• Bankers: if you are a banker (i.e., act as a bank in this game), how much 
would you need to be paid for sure to run the game? The person with the 
lowest amount will serve as the banker and play the game for real.

• Players: if you are a player (i.e., you get to potentially win in this game), 
how much would you be willing to pay to participate in the game? The 
person with the highest amount will play the game for real.
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MARKET FOR COIN FLIPS: ACTUARIAL VALUE

Let us compute the actuarial value of the coin-flip game X:

E[X] = (½) $0 + (¼) $2 + (1/8) $4 + … + (1/2n) $2n-1 + (1/2n) $2n

= (n-1) ($0.5) + $1 = $4.  

n = 7

The certainty equivalent CE(X) of the coin-flip lottery X for a player,(1) given a utility
function u, satisfies therefore:

so that

u(CE(X)) = (½) u($0) + (¼) u($2) + (1/8) u($4) + … + (1/2n) u($2n-1) + (1/2n) u($2n) = EU(X),

CE = u-1(EU(X))

You can read the utilities
off your utility function
constructed a couple of slides
ago (for n = 7)

(1) For a banker one can compute the CE in a similar way, just by taking the outcomes
in terms of losses instead of gains.



- 47 -MGT-621-Spring-2023-TAW

1

10

100

1000

1 3 5 7 9 11 13

MARKET FOR COIN FLIPS: CLASS RESULTS

Actuarial Value

Players (14)

Bankers (14)
Transactions

Risk-Neutral
Students

The plotted values correspond to the certainty equivalents of bankers and players
respectively. Why are they not the same?

[$]
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INDIVIDUALS ARE RISK-AVERSE IN GAINS AND RISK-
SEEKING IN LOSSES (SENSITIVITY TO REFERENCE POINT)

We already did this experiment!

1. You have been given $200 and have a choice between the following two options

A:     Win    $150 with certainty

B:     Win    $300 with probability  .5

Win    $0     with probability  .5

• Do you prefer A or  B ?

2. You  have been given $500 and have a choice between the following two options

C:     Lose $150  with  certainty

D:     Lose $300  with probability  .5

Lose $0      with probability  .5

• Do you prefer C or D? 
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SENSITIVITY TO REFERENCE POINT: CLASS RESULTS

Gamble C Gamble D

Gamble A 35 28

Gamble B 7 8

According to utility theory A = C and B = D; so if A is preferred to B then C 
should be preferred to D and vice versa.

The “modal choices” are (i.e., “most people prefer”) A and D to avoid losses.

Rational choices (satisfying VNM axioms)

Risk
Averse

Loss
Averse

Remark: This sensitivity to the framing of the lottery choice in terms of either gains or losses is sometimes also referred to as reflection effect: preferences tend 
reverse if the lottery is “reflected” from the domain of gains (with respect to the status quo) to the domain of losses. For details, see Kahneman, D., Tversky, A. 
(1979) “Prospect Theory: An Analysis of Decision Under Risk,” Econometrica, Vol. 47, No. 2, pp. 263—291. 
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“REAL” UTILITY FUNCTIONS OFTEN LOOK LIKE THIS

-$128

$128

-100

100

u(x)

Loss Averse

Risk-Averse
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COMPARISON OF RISK AVERSION

Theorem (Pratt, 1964).

Proof: See notes on “Risk and Uncertainty” posted on the course website.
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WHEN IS ONE LOTTERY PREFERRED TO ANOTHER FOR A 
CLASS OF UTILITY FUNCTIONS?

(**)

(**)

(**)

Definition.

Answer: Construct a stochastic dominance order

• First-order stochastic dominance: all agents with increasing utility

• Second-order stochastic dominance: all agents with increasing concave utility

Class of Utility Functions (= Class of Agents)
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STOCHASTIC DOMINANCE: DEFINITIONS

Let X = [p1, x1; p2, x2; …; pn, xn] and Y = [q1, y1; q2, y2; …; qm, ym] be two given 
discrete random variables, each with a finite number of realizations. 

Without any loss of generality we can assume that m = n and that xi = yi for all i in 
{1, … , n}, and that x1 < x2 < … < xn. This situation can always be achieved by 
extending the discrete variables X and Y to all events in the union of {x1, … , xn} 
and {y1, … , ym} assigning zero probabilities if necessary and subsequent 
relabeling. 

Definition. Let m = n and xi = yi for all i in {1, … , n}. Y first-order stochastically 
dominates X if

for all k in {1, …, n}.

Definition. Let m = n and xi = yi for all i in {1, … , n}. Y second-order stochastically 
dominates X if

for all k in {1, …, n}.





k

i
i

k

i
i pq

11

  
  


k

j

j

i
i

k

j

j

i
i pq

1 11 1

- 54 -MGT-621-Spring-2023-TAW

FIRST- AND SECOND-ORDER STOCHASTIC DOMINANCE

FOSD-ShiftSOSD-Shift Original Distribution
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FIRST- AND SECOND-ORDER STOCHASTIC DOMINANCE
General Case

FOSD SOSD

Let F, G be two cumulative distribution functions (measures) for random variables X and Y,
respectively, distributed on the set [a,b]. When does Y FOSD/SOSD-dominate X ?
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AGENDA

Elements of Probability

Choice Under Uncertainty

Expected Utility Theory

Risk Aversion and Decision Biases

Key Concepts to Remember
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KEY CONCEPTS TO REMEMBER

• Risk and Uncertainty

• Objective and Subjective Probability

• Discrete Random Variable

• Lottery

• Von Neumann-Morgenstern Axioms  Expected Utility Representation

• Allais Paradox

• Expected Utility Maximization

• Risk Aversion (Absolute & Relative)

• Sensitivity to Reference Point (Reflection Effect)

• Stochastic Dominance (First-Order & Second-Order)


