MGT 621 - MICROECONOMICS

Thomas A. Weber

3. Choice Under Uncertainty

Autumn 2023

École Polytechnique Fédérale de Lausanne College of Management of Technology

AGENDA

Elements of Probability

Choice Under Uncertainty

Expected Utility Theory

Risk Aversion and Decision Biases

Key Concepts to Remember

CHOICE UNDER UNCERTAINTY

So far in this course we have assumed that a consumer (decision maker) knows perfectly the consequences of choice.

However, in most practical economic decision situations there is uncertainty.

UNCERTAINTY IN CHOICE Some Examples

- How much will my education help me in the job market?
- Will I be given valuable assignments if I accept this job offer?
- Is the used car I am buying a lemon? Or will it be dependable?
- If I put effort into developing a proposal, will it be accepted?
- Will an R\&D program be successful?
- How capable is the person I am considering hiring?
- Will my competitors introduce superior new products?
- Will potential customers purchase the product I offer?
- Will I enjoy the movie?
- What will the weather be like in the city I plan to visit?
- Will my home catch on fire in the next year and be destroyed?
- Will the price of the stock I purchase go up or down?
- Will prices for a commodity go up or down? Sign fixed-price contract?
- If I take a litigation to trial rather than settling, will I win?

RISK VS. UNCERTAINTY

Distinction between risk and uncertainty due to Frank Knight (1921):
> "The practical difference between the two categories, risk and uncertainty, is that in the former the distribution of the outcome in a group of instances is known (...), while in the case of uncertainty this is not true, the reason being in general that it is impossible to form a group of instances, because the situation dealt with is in a high degree unique" (p.233)

"We can also employ the terms "objective" and "subjective" probability to designate the risk and uncertainty respectively, as these expressions are already in general use with a signification akin to that proposed" (ibid.)

- Uncertainty: unknowable (e.g., the success probability of your new startup company, or the likelihood of an unforeseen contingency in your project)
- Risk: knowable (e.g., the outcome of a die roll)

In this course, no explicit distinction between risk and uncertainty, since in order to formally analyze optimal choice, need to introduce a probability space in either case.

SUBJECTIVE PROBABILITY Some Examples

- All would not necessarily agree on the likelihood of events
- Probability relevant for your decision is determined by all your knowledge
- Most economic situations can best be described by subjective probabilities
- Will the used car be a lemon? Or will it be dependable?
- Seller knows, i.e., for seller probability of being lemon is 0 or 1
- Buyer does not know, i.e., buyer must assign a probability (= "belief")
- What will the weather be like in the city I plan to visit?
- Probability assessment may change after you read weather forecast
- How capable is the person I am considering for a job?
- Potential employee has more information about work habits

SUBJECTIVE PROBABILITY (Cont'd)

New information (e.g., observing other agents' actions) can change beliefs

- What does this imply? (value of information, ... disinformation)

Can different people have very different probability assessments given the same choice, the same events, and the same information?

- Agreeing to disagree ...

Most of the time we assume that probabilities are subjective

DISCRETE RANDOM VARIABLES

Definition: A discrete random variable (or lottery) $X=\left[p_{1}, x_{1} ; p_{2}, x_{2} ; \ldots ; p_{n}, x_{n}\right]$ is a variable x that can take on one of the values

- $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$
with the respective probabilities
- $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$
where each $p_{i} \geq 0$ and

$$
\sum_{i=1}^{n} p_{i}=1 \quad \text { (normalization) }
$$

Using the probability mass function $p($. we can write the probabilities p_{i} as a function of $x_{i}: p_{i}=p\left(x_{i}\right)$.

EXAMPLE: ROLL OF A DIE

EXPECTATION

The expectation of a (discrete) random variable X is defined as:

$$
\bar{X}=E[X]=\sum_{i=1}^{n} p_{i} x_{i}
$$

Key Property:

Linearity
If X and Y are random variables, and a and b are constants. $E[a X+b Y]=a E[X]+b E[Y]$

Other Properties:

Sign Preservation
If X can take on only positive values, then $E[X]>0$.

Certain Value If X is perfectly known (and equal to x), then $E[X]=x$.

EXAMPLE (Cont'd)

$X=\left\{\begin{array}{lll}1 & & 1 / 6 \\ 2 & & 1 / 6 \\ 3 & & 1 / 6 \\ 4 & \text { w/ probability } & 1 / 6 \\ 5 & & 1 / 6 \\ 6 & & 1 / 6\end{array}\right.$

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{6} p_{i} x_{i} \\
& =\frac{1}{6} \cdot 1+\frac{1}{6} \cdot 2+\ldots+\frac{1}{6} \cdot 6 \\
& =\sum_{i=1}^{6} \frac{1}{6} \cdot i=3.5
\end{aligned}
$$

The expectation is where this picture would balance on your finger

VARIANCE AND STANDARD DEVIATION

The variance is a measure of the spread of a random variable around its mean.

$$
\begin{aligned}
V[X] & =E\left[(X-\bar{X})^{2}\right]=E\left[\left(X^{2}-2 X \bar{X}+\bar{X}^{2}\right)\right] \\
& =E\left[X^{2}\right]-2 \bar{X} E[X]+\bar{X}^{2}=E\left[X^{2}\right]-\bar{X}^{2}
\end{aligned}
$$

The standard deviation is the square root of the variance.

$$
\sigma_{X}=\sqrt{V[X]}
$$

It has the same units as X.

EXAMPLE (Cont'd)

$$
\begin{aligned}
V[X]= & E\left[(X-\bar{X})^{2}\right] \\
= & \frac{1}{6}(1-3.5)^{2}+\frac{1}{6}(2-3.5)^{2}+\ldots \\
& +\frac{1}{6}(6-3.5)^{2} \\
= & 2.92
\end{aligned}
$$

CONDITIONAL PROBABILITY

Definition: The conditional probability $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ of event A conditional on event B having realized is defined as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Question. Given a six-sided die what is the probability of rolling a 3 conditional on rolling a 1, 2 or 3 ?

$$
\begin{aligned}
P(\{3\} \mid\{1,2,3\})=\frac{P(\{3\} \cap\{1,2,3\})}{P(\{1,2,3\})} & =\frac{P(\{3\})}{P(\{1,2,3\})} \\
& =\frac{1 / 6}{1 / 2}=1 / 3
\end{aligned}
$$

INDEPENDENCE

Definition: A and B are independent events, if

- $P(A \mid B)=P(A)$
- $P(B \mid A)=P(B)$

$$
P(A \cap B)=P(A \mid B) P(B)
$$

THE LAW OF TOTAL PROBABILITY

$$
P(A)=\sum_{n=1}^{N} P\left(A \cap B_{n}\right)=\sum_{n=1}^{N} P\left(A \mid B_{n}\right) P\left(B_{n}\right)
$$

AGENDA

Elements of Probability

Choice Under Uncertainty

Expected Utility Theory

Risk Aversion and Decision Biases

Key Concepts to Remember

LOTTERIES ARE (DISCRETE) RANDOM VARIABLES

Let X be a random variable with possible outcomes in the set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ (the "outcome space"). Each outcome x_{i} occurs with probability p_{i}.

The random variable X is sometimes also called a lottery and denoted

$$
X=\left[p_{1}, x_{1} ; p_{2}, x_{2} ; \ldots ; p_{n}, x_{n}\right]
$$

If all outcomes x_{i} are real and measured in dollars (or any other currency), then X is commonly referred to as a "money lottery."

The set of all lotteries with outcomes in X is the "lottery space" $L(X)$.

Example: A coin-flip lottery \mathbf{X} (with an unbiased coin) pays $\$ 1$ if heads and zero if tails. Then $X=[0.5, \$ 1 ; 0.5, \$ 0]$.

THEORY OF CHOICE UNDER UNCERTAINTY

The choice set contains all simple lotteries over the various outcomes.

PREFERENCES OVER LOTTERIES

For a decision maker (DM), choosing between actions corresponds generally to choosing between lotteries (given a decision d in the set of possible decisions D, the outcome x_{i} in X occurs with probability $P\left(x_{i} \mid d\right)$).

Example: wearing a helmet on a motorcycle changes the probability of injury. In a decision tree, each decision node represents a lottery.

Hence, the DM needs to be able to order lotteries according to his preference implying a complete preference (pre-)ordering ${ }^{(1)}$ over elements in the lottery space $L(X)$.
More specifically, if A and B are elements of $L(X)$, then

- $A>B$ means DM prefers A to B
- $A \geq B$ means DM does not prefer B to A or DM "weakly" prefers A to B
- A~B means DM is indifferent between A and B, i.e., DM will take either one and would play a 50-50 lottery to choose between them.

PREFERENCES OVER LOTTERIES: EXAMPLE

Question. Jane likes to play ping pong and she wonders about how to respond to an opponent's serve.

- If she hits a top spin (decision d_{1}), the ball is going to be on the table with probability 0.6 and given that it is, she is going to score with probability 0.8 .
- If she does not play a top spin (decision d_{0}), the ball is going to land on the table with probability 0.9 , but she is only going to score with probability 0.6 .
What decision should she take?

Solution:

Jane needs to choose between the following two lotteries:

- $\mathrm{L}_{1}=\left[\mathrm{P}\left(\right.\right.$ score $\left.^{2} \mathrm{~d}_{1}\right), 1$ point; $\mathrm{P}\left(\right.$ don't score $\left.\mid \mathrm{d}_{1}\right), 0$ points $]$
- $\mathrm{L}_{0}=\left[\mathrm{P}\left(\right.\right.$ score $\left.^{2} \mathrm{~d}_{0}\right), 1$ point; $\mathrm{P}\left(\right.$ don't score $\left.\mid \mathrm{d}_{0}\right), 0$ points $]$

Thus, she should prefer L_{0} (i.e., $L_{0} \geq L_{1}$) which implies "don't play top spin" as her decision.

PREFERENCES OVER OUTCOMES Utility Representation (Reminder)

Preferences over lotteries imply preferences over particular (certain) outcomes in X. Indeed, for any x and y in X one could just consider the lotteries X and Y that produce the outcomes x and y with probability one respectively.

Thus, $x \geq y$ if the outcome x is (weakly) preferred to the outcome y.

Definition: A real-valued function u with domain X represents the DM's preferences over outcomes in X, if for any x, y in X :

$$
x \geq y \text { if and only if } u(x) \geq u(y)
$$

The function u is called the DM's utility function.

For some preferences no utility function representation exists (e.g., lexicographic preferences). We typically take a utility function as an input for a decision model. ${ }^{(1)}$ A utility function always exists for finite sets of outcomes.

A utility representation of a DM's preferences is generally not unique: given any utility function u and a strictly increasing function ϕ (from real numbers to real numbers), the function $v=\phi(u)$ is an equivalent utility representation.

UTILITY REPRESENTATION

Mark has the utility function $u(x)=x^{1 / 2}$ for any nonnegative amount of money \mathbf{x} (in dollars).

Thus, he prefers $\$ 100$ to $\$ 36$, since $u(100)=10>u(36)=6$.

Similarly, for $\phi(y)=y^{2}$, we have that $\phi(u(100))=100>\phi(u(36))=36$, and Mark would have the same preferences for outcomes (amounts of money) for any other ϕ, as long as ϕ is strictly increasing.

- $\quad x \geq y$ if and only if $u(x) \geq u(y)$ if and only if $\quad \phi(u(x)) \geq \phi(u(y))$

Thus, in the absence of uncertainty Mark can just maximize \mathbf{x} instead of $u(x)$.

AGENDA

Elements of Probability

Choice Under Uncertainty

Expected Utility Theory

Risk Aversion

Key Concepts to Remember

EXPECTED UTILITY MAXIMIZATION

Given a utility representation u of the DM's preferences over outcomes, we would like to infer his preferences over lotteries of outcomes (random variables), which corresponds to his preferences over actual decisions (e.g., at which speed to drive a car).

Under certain axioms (= assumptions on the DM's preferences over lotteries, typically one uses the Von Neumann-Morgenstern axioms), the DM's expected utility of a particular decision d in D which induces a lottery $X(d)$ with probability distribution $\mathrm{P}(. \mid \mathrm{d})$ is

$$
E U(X(d))=\sum_{x \in X} P(x \mid d) u(x)
$$

Thus, under uncertainty the DM maximizes expected utility, i.e., he solves

$$
d^{*} \in \arg \max _{d \in D} E U(X(d))
$$

EXPECTED UTILITY MAXIMIZATION: EXAMPLE

Question. Joe needs to decide how fast to drive on highway E25 from Lausanne to Geneva. Any minute saved he values at $\$ 1$. At $120 \mathrm{~km} / \mathrm{h}$ it takes about 40 min , and at $140 \mathrm{~km} / \mathrm{h}$ about 32 min . However, if he drives $140 \mathrm{~km} / \mathrm{h}$ there is a chance p that he gets pulled over and has to pay a ticket worth $\$ 280$ plus a delay of 20 min (over the $120 \mathrm{~km} / \mathrm{h}$ time).
Let d_{0} : drive $120 \mathrm{~km} / \mathrm{h}, \mathrm{d}_{1}$: drive $140 \mathrm{~km} / \mathrm{h}$. He thus needs to choose between the lotteries $X\left(d_{0}\right)=[1, \$ 0]$ and $X\left(d_{1}\right)=[p,-\$ 300 ; 1-p, \$ 8]$.

If Joe's utility function for money is $u(x)=-\exp (-x / 1000)$, at what detection probability p would he be indifferent between d_{0} and d_{1} ?

Answer: $E U\left(X\left(d_{0}\right)\right)=u(\$ 0)=E U\left(X\left(d_{1}\right)\right)=p u(-\$ 300)+(1-p) u(\$ 8)$

$$
\Rightarrow p=\frac{u(\$ 8)-u(\$ 0)}{u(\$ 8)-u(-\$ 300)}=2.2 \% \quad \text { (i.e., for } \mathrm{p}>2.2 \%, \text { Joe drives } 65 \mathrm{mph} \text {) }
$$

VON NEUMANN-MORGENSTERN AXIOMS IMPLY EXPECTED UTILITY REPRESENTATION Fundamental Justification for Expected Utility Maximization

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of outcomes and $L(X)$ the corresponding lottery space. Consider arbitrary elements A, B, C of $L(X)$ and x, y, z in X. ${ }^{(1)}$

1. Completeness: $A \geq B$ or $B \geq A$
(can compare any two lotteries)
2. Reflexivity: $\quad A \geq A$
3. Transitivity: $\quad A \geq B$ and $B \geq C$ implies $A \geq C \quad$ (o/w construct a "money pump")
4. Continuity: If $x>y>z$, then there exists p in $(0,1)$ such that one can achieve indifference between the lottery $A=[1, y]$ and the lottery $B(p)=[p, x ; 1-p, z]$, i.e., there is a p such that $A \sim B(p)$

- Example: What happens if \mathbf{z} is "death"?

5. Independence (of Irrelevant Alternatives): If $\mathbf{x}>y$, then for any z :

$$
[p, x ;(1-p), z]>[p, y ;(1-p), z]
$$

(1) Note that if x is an outcome in X, then $[1, x]$ is a lottery in $L(X)$. Thus, any outcome can be viewed as a (degenerate) lottery.

KEY IMPLICATION OF THE VNM AXIOMS

Theorem (Von Neumann-Morgenstern, 1944): If a DM's preferences " \geq " on $L(X)$ satisfy the Von Neumann-Morgenstern axioms, then there exists an expected utility function EU(.) for that DM which represents his preferences in the sense that for any two lotteries A, B in $L(X)$:

$$
A \geq B \text { if and only if } E U(A) \geq E U(B)
$$

Proof: See notes on "Risk and Uncertainty" posted on the course website.

In more detail, suppose:
$A=\left[p_{1}, x_{1} ; p_{2}, x_{2} ; \ldots ; p_{n}, x_{n}\right]$, where $p_{1}+\ldots+p_{n}=1$
$B=\left[q_{1}, x_{1} ; q_{2}, x_{2} ; \ldots ; q_{n}, x_{n}\right]$ where $q_{1}+\ldots+q_{n}=1$

If DM's preferences satisfy the VNM Axioms, then the DM prefers A to $B(A \geq B)$ if and only if

$$
E U(A)=\sum_{i=1}^{n} p_{i} u\left(x_{i}\right) \geq \sum_{i=1}^{n} q_{i} u\left(x_{i}\right)=E U(B)
$$

Note: Two expected utility functions $\operatorname{EU}(x)$ and $\operatorname{EV}(x)$ represent the same preferences over lotteries if and only if $\mathrm{EU}(\mathrm{x})=\alpha \mathrm{EV}(\mathrm{x})+\beta$, where $\alpha>0$ and β is any real number. In the same vein, a "positive affine transformation" of the DM's utility function u (to $\mathbf{v}=\alpha \mathbf{u}+\beta$, for $\alpha>0$) does not change the DM's preferences over lotteries.

KEY IMPLICATION OF THE VNM AXIOMS (Cont'd)

Example: Consider the utility functions $u(x)=1-2 e^{-\rho x}$ and $v(x)=3-5 e^{-p x}$, where $\rho>0$ is some constant.

Since $u(x)=.4 v(x)-.2=\alpha v(x)+\beta$ (with $\alpha>0)$, one can check that for any two lotteries A and B in $L(X)$:

$$
E U(A) \geq E U(B) \quad \text { if and only if } \quad E V(A) \geq E V(B)
$$

More generally, invariance with respect to positive affine transformations implies that we can fix any two values of a DM's utility function without disturbing his preference ordering over lotteries.

ALLAIS PARADOX

Imagine the following two decision situations-each involving a pair of gambles.

SITUATION I

Lottery A	$\underline{P(\text { Winning })}$	AMOUNT TO WIN
Lottery B	100%	$\$ 1,000,000$
	10%	$\$ 5,000,000$
	89%	$\$ 1,000,000$
	1%	$-0-$

SITUATION II

	P(Winning $)$	AMOUNT TO WIN
Lottery C	11%	$\$ 1,000,000$
	89%	$-0-$
Lottery D	10%	$\$ 5,000,000$
	90%	$-0-$

ALLAIS PARADOX

Implies Critique of 'Independence of Irrelevant Alternatives'

AGENDA

Elements of Probability

Choice Under Uncertainty

Expected Utility Theory

Risk Aversion and Decision Biases

Key Concepts to Remember

UTILITY FUNCTIONS: SOME COMMON SHAPES

RISK AVERSION: EXAMPLES

People will buy insurance, even though the expected value of the payment from insurance is smaller than its price. That is the result of risk aversion.

People purchase a portfolio of stocks and bonds, rather than only one. Such diversification reduces risk and is consistent with risk aversion.

People will incur costs to purchase hedges, assets that reduce the risk of the overall portfolio.

Typically the larger the monetary lottery, the greater the degree of risk aversion people exhibit.

A SIMPLE DECISION: RISK-AVERSE DM

Decision Criterion: Maximize Expected Utility
$E U=(0.2)(3)+(0.5)(2)+(0.3)(-10)=-1.4<0 \quad \rightarrow$ Don't Invest!

A SIMPLE DECISION TREE: RISK-SEEKING DM

Decision Criterion: Maximize Expected Utility
$\mathrm{EU}=(0.2)(10)+(0.5)(4)+(0.3)(-1)=3.7$. Invest!

ABSOLUTE AND RELATIVE RISK AVERSION DESCRIBE A DM'S RISK ATTITUTE

The level of risk aversion may be measured by the (Arrow-Pratt) absolute-riskaversion coefficient,

$$
R(x)=-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}
$$

or the relative-risk-aversion coefficient,

$$
r(x)=x R(x)
$$

If $R(x)>0$, the DM is risk-averse. Similarly, if $R(x)<0$, the DM is risk-seeking, while $R(x)=0$ for a risk-neutral DM.

Both absolute and relative risk aversion are local properties: they can vary for different outcomes.

RISK NEUTRALITY: LINEAR UTILITY

$$
u(x)=\alpha x \quad u^{\prime}(x)=\alpha \quad u^{\prime \prime}(x)=0
$$

$$
\begin{aligned}
& (\alpha>0) \\
& R(x)=-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}=0
\end{aligned}
$$

CONSTANT ABSOLUTE RISK AVERSION

Exponential utility: $\quad u(x)=\alpha-\beta e^{-\rho x}$

$$
u^{\prime}(x)=\rho \beta e^{-\rho x}
$$

$u^{\prime \prime}(x)=-\rho^{2} \beta e^{-\rho x}$

$$
R(x)=-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}=\rho
$$

Exponential utility functions exhibit constant absolute risk aversion (CARA). ${ }^{(1)}$

CERTAINTY EQUIVALENT

The certainty equivalent of a lottery is a single certain outcome for which the DM is indifferent between receiving the outcome for sure and participating in the lottery. It represents the "selling price" of the lottery.

Denote the certainty equivalent of a lottery x by $C E(X)$

Then: $\quad u(C E(X))=E U(X) \quad$ (DM is indifferent)

$$
\Longleftrightarrow C E(X)=u^{-1}(E U(X))
$$

CERTAINTY EQUIVALENT: EXAMPLE

Certainty Equivalent of Lottery

Why does this correspond to risk aversion?

A lottery $X=[0.5, \$ 5 ; 0.5, \$ 15]$ has expected utility $\mathrm{EU}(\mathrm{X})$.

Therefore, you prefer $\$ 10$ guaranteed, even though the lottery has expectation $\$ 10$.

CERTAINTY EQUIVALENT: ANOTHER EXAMPLE

Consider the lottery $X=[.25, \$ 100 ; .5, \$ 49 ; .25, \$ 0]$ and the utility function $u(x)=\sqrt{x}$

0.25	Payoff (x) 0.50	Utility $u(x)$ 0.25
$\$ 100$	7	

Expected utility: $\mathrm{EU}(\mathrm{X})=(0.25)(10)+(0.5)(7)+(0.25)(0)=6$

$$
E U(X)=u(C E)=\sqrt{C E} \quad \not \quad \sqrt{C E}=6 \not C E=36
$$

EXAMPLE: CONSTRUCTING A UTILITY FUNCTION FOR MONEY

Arbitrarily assign utilities to two real-valued outcomes, x_{1} and x_{2} (say, measured in dollars). For example, $x_{1}=-\$ 128$ and $x_{2}=\$ 128$, and

$$
u(-\$ 128)=-100 \text { and } u(\$ 128)=100
$$

Use continuity axiom to specify other utilities.

Certainty Equivalence Method: Fix p and two outcomes x_{1} and x_{2}. Then find an outcome y which makes you indifferent between having y for certain or taking the lottery $\left[p, x_{1} ; 1-p, x_{2}\right]$. ${ }^{(1)}$

The value y is commonly referred to as the certainty equivalent (CE) of the lottery $\left[p, x_{1} ; 1-p, x_{2}\right]: y=C E$,

$$
u(C E)=p u\left(x_{1}\right)+(1-p) u\left(x_{2}\right) .
$$

(1) In a set of discrete outcomes such an element y might not be available. Then one needs to adjust the probability paccordingly, which by the continuity axiom can always achieve indifference.

A MARKET FOR COIN FLIPS

Consider the following game. You flip a fair coin.

- If the first flip is heads (H) you win $\$ 2$ and you flip the coin again. If it is tails (T), the you win $\$ 0$ and the game is over.
- If the second flip is H you win $\$ 4$ and you flip the coin again. If it is T, then you keep the $\$ 2$ you won on the first flip and the game is over.
- If the n -th flip is H you win $\$ 2^{\mathrm{n}}$ and you flip the coin again. If it is T , then you keep the $\$ 2^{n-1}$ you won on the ($\mathrm{n}-1$) st flip and the game is over.
The following table summarizes the outcome (we restrict the length to $\mathbf{n} \leq 7$ to avoid bankruptcy of players).

Number of Heads in a Row (n)	Total Winnings
1	$\$ 2$
2	$\$ 4$
3	$\$ 8$
4	$\$ 16$
5	$\$ 32$
6	$\$ 64$
7	$\$ 128$

A MARKET FOR COIN FLIPS (Cont'd)

Please answer the following question (depending on your role):

- Bankers: if you are a banker (i.e., act as a bank in this game), how much would you need to be paid for sure to run the game? The person with the lowest amount will serve as the banker and play the game for real.
- Players: if you are a player (i.e., you get to potentially win in this game), how much would you be willing to pay to participate in the game? The person with the highest amount will play the game for real.

MARKET FOR COIN FLIPS: ACTUARIAL VALUE

Let us compute the actuarial value of the coin-flip game X :

The certainty equivalent $C E(X)$ of the coin-flip lottery X for a player, ${ }^{(1)}$ given a utility function u, satisfies therefore:
$u(C E(X))=(1 / 2) u(\$ 0)+(1 / 4) u(\$ 2)+(1 / 8) u(\$ 4)+\ldots+\left(1 / 2^{n}\right) u\left(\$ 2^{n-1}\right)+\left(1 / 2^{n}\right) u\left(\$ 2^{n}\right)=E U(X)$,
so that

$$
C E=u^{-1}(E U(X))
$$

You can read the utilities off your utility function constructed a couple of slides ago (for $\mathrm{n}=7$)

MARKET FOR COIN FLIPS: CLASS RESULTS

The plotted values correspond to the certainty equivalents of bankers and players respectively. Why are they not the same?

INDIVIDUALS ARE RISK-AVERSE IN GAINS AND RISKSEEKING IN LOSSES (SENSITIVITY TO REFERENCE POINT) We already did this experiment!

1. You have been given $\$ 200$ and have a choice between the following two options

A: Win $\$ 150$ with certainty
B: Win $\$ 300$ with probability .5
Win \$0 with probability . 5

- Do you prefer A or B ?

2. You have been given $\$ 500$ and have a choice between the following two options

C: Lose $\$ 150$ with certainty
D: Lose $\$ 300$ with probability .5
Lose \$0 with probability . 5

- Do you prefer C or D?

SENSITIVITY TO REFERENCE POINT: CLASS RESULTS

Rational choices (satisfying VNM axioms)
According to utility theory $A=C$ and $B=D$; so if A is preferred to B then C should be preferred to D and vice versa.
The "modal choices" are (i.e., "most people prefer") A and D to avoid losses.

"REAL" UTILITY FUNCTIONS OFTEN LOOK LIKE THIS

COMPARISON OF RISK AVERSION

Theorem (Pratt, 1964). Assume that agents U and V have the same initial wealth w and suppose that their utility functions u and v are twice differentiable. Then the following statements are equivalent:
(i) Agent U is more risk averse than agent V.
(ii) There is a strictly increasing concave function φ such that $u=\varphi \circ v$.
(iii) Agent U's absolute risk aversion is larger than agent V's absolute risk aversion, i.e., $\rho_{A}(u ; w) \geq \rho_{A}(v ; w)$ for all w.
(iv) The risk premium that agent U is willing to pay exceeds the risk premium that agent V is willing to pay, i.e., $\pi(u ; w) \geq \pi(v ; w)$ for all w.

Proof: See notes on "Risk and Uncertainty" posted on the course website.

WHEN IS ONE LOTTERY PREFERRED TO ANOTHER FOR A CLASS OF UTILITY FUNCTIONS?

$$
\begin{equation*}
E u(\tilde{x}) \leq E u(\tilde{y}) \quad \forall u \in \mathcal{U} . \tag{*}
\end{equation*}
$$

Definition. If (**) holds, the risk \tilde{y} is said to stochastically dominate \tilde{x} with respect to \mathcal{U}, denoted by $\tilde{x} \preceq \mathcal{U} \tilde{y}$. Necessary and sufficient conditions on \tilde{x} and \tilde{y} for $\left(^{* *)}\right.$ to hold are called a stochastic dominance order (representation) relative to \mathcal{U}.

```
Class of Utility Functions (= Class of Agents)
```

Answer: Construct a stochastic dominance order

- First-order stochastic dominance: all agents with increasing utility
- Second-order stochastic dominance: all agents with increasing concave utility

STOCHASTIC DOMINANCE: DEFINITIONS

Let $X=\left[p_{1}, x_{1} ; p_{2}, x_{2} ; \ldots ; p_{n}, x_{n}\right]$ and $Y=\left[q_{1}, y_{1} ; q_{2}, y_{2} ; \ldots ; q_{m}, y_{m}\right]$ be two given discrete random variables, each with a finite number of realizations.
Without any loss of generality we can assume that $m=n$ and that $x_{i}=y_{i}$ for all i in $\{1, \ldots, n\}$, and that $x_{1}<x_{2}<\ldots<x_{n}$. This situation can always be achieved by extending the discrete variables X and Y to all events in the union of $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, \ldots, y_{m}\right\}$ assigning zero probabilities if necessary and subsequent relabeling.

Definition. Let $m=n$ and $x_{i}=y_{i}$ for all in $\{1, \ldots, n\}$. Y first-order stochastically dominates \mathbf{X} if

$$
\sum_{i=1}^{k} q_{i} \leq \sum_{i=1}^{k} p_{i}
$$

for all k in $\{1, \ldots, n\}$.

Definition. Let $\mathrm{m}=\mathrm{n}$ and $\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}}$ for all i in $\{1, \ldots, \mathrm{n}\}$. Y second-order stochastically dominates X if
for all k in $\{1, \ldots, n\}$.

FIRST- AND SECOND-ORDER STOCHASTIC DOMINANCE

FIRST- AND SECOND-ORDER STOCHASTIC DOMINANCE
 General Case

Let F, G be two cumulative distribution functions (measures) for random variables X and Y, respectively, distributed on the set [a,b]. When does Y FOSD/SOSD-dominate X ?

FOSD

$$
X \preceq_{\text {FOSD }} Y \quad \Leftrightarrow \quad G(z) \leq F(z) \quad \forall z \in[a, b]
$$

SOSD

$$
X \preceq_{\mathrm{SOSD}} Y \quad \Leftrightarrow \quad \int_{a}^{z} G(y) d y \leq \int_{a}^{z} F(x) d x \quad \forall z \in[a, b]
$$

AGENDA

Elements of Probability

Choice Under Uncertainty

Expected Utility Theory

Risk Aversion and Decision Biases

Key Concepts to Remember

KEY CONCEPTS TO REMEMBER

- Risk and Uncertainty
- Objective and Subjective Probability
- Discrete Random Variable
- Lottery
- Von Neumann-Morgenstern Axioms \rightarrow Expected Utility Representation
- Allais Paradox
- Expected Utility Maximization
- Risk Aversion (Absolute \& Relative)
- Sensitivity to Reference Point (Reflection Effect)
- Stochastic Dominance (First-Order \& Second-Order)

