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INFRASTRUCTURE

My Coordinates 

• Room ODY 3.01 (OES: Operations, Economics and Strategy) / Zoom

• Phone: +41 21 693 0141

• Email: thomas.weber@epfl.ch

Grading Assistance

• Jun Han
• Room: ODY 4.16 / Zoom
• Phone: +41 21 693 9054
• Email: jun.han@epfl.ch

Administrative Assistance

• Ms. Ilona Ball
• Room ODY 3.16 / Zoom
• Phone: +41 21 693 0039
• Email: ilona.ball@epfl.ch
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INFRASTRUCTURE (Cont’d)

Course Material & Information

• Course website: http://econspace.net/MGT-621.html
Access to content requires login 
Student ID: 621student  

• Required Text:

- [PR] Pindyck, R.S., Rubinfeld, D.L. (2012). Microeconomics (8th Edition), 

Pearson/Prentice Hall, Upper Saddle River, NJ

- All notes & additional readings will be posted

• Solid knowledge in calculus required 

• Access to spreadsheet & math software (e.g., MS Excel, Matlab, Maple) may be 

useful for some homework and the course project

• Links to general information on course website

Honor Code(!)
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ADMINISTRIVIA

Did we forget anything?
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ASSESSMENT

• PROBLEM SETS   (20%)

- Reproductive & productive questions

- Cooperation ok!! 

- Assignments need to be written up & turned in individually

• FINAL EXAM   (40%)

- Held on Monday, October 2, 2023; Room TBA; there is no makeup

- Any arrangements by September 25

- 3 hours (open book)

- Covers everything discussed in the course

• COURSE PROJECT   (40%)

- Report due on October 30 (before 5 pm; by email to the instructor)
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MGT 621 MICROECONOMICS – OVERVIEW
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TOPICS IN THIS COURSE
Tentative List

1. I. Theory of Choice

• Individual Decision Making

• Preferences and Utility Representation

• Consumer Choice (+ under uncertainty)

• Aggregate Demand

2. II. Theory of the Firm

• Production Sets

• Profit Maximization and Cost Minimization

• Aggregation

3. III. Market Equilibrium

4. IV. Market Failure

5.
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TOPICS IN THIS COURSE (cont’d)
Tentative List

1. I. Theory of Choice

2. II. Theory of the Firm

3. III. Market Equilibrium

• Competitive Markets

• Profit Maximization and Cost Minimization

• Aggregation

4. IV. Market Failure

• Monopoly

• Externalities

• Public Goods

• Regulation & Taxation

5.
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AN “ECONOMIC CHOICE PROBLEM”: BUYING A CAR

What are your goals? … alternatives? … selection criteria?
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PREFERENCES

Homo Economicus : “Joe”

(You? Me? Everybody else?)

Choice Set X = {x,y,z}

Contains all potentially feasible
(mutually exclusive) alternatives.

x

y

z
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PREFERENCES (Cont’d)

To decide which alternative to choose Joe needs to be able to rank them, i.e., he 
needs to have a preference ordering of all elements of his choice set X.

Definition. A preference relation on X is a binary relation  “   “   that for any two 
elements x,y in X compares them so that

(i) :  y is (weakly) preferred to x,

or

(ii) :  x is (weakly) preferred to y.

If both (i) and (ii) hold, then we say that there is indifference between x and y, 
denoted by           or, equivalently,          .  If (i) but not (ii), then         , and we say
that y is strictly preferred to x.

yx



xy

xy ~yx~

Only if Joe has a preference relation on X, is he able to establish a
preference ordering of all elements of his choice set X

yx
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PREFERENCES (Cont’d)

Potential problem: 

If Joe has a preference relation on X = {x,y,z}, he might have the following 
preference ordering between pairs of elements:

1. 

2. 

3.

yx
zy
xz

Problem?

Example:
• x: apple
• y: banana
• z: orange 

Lack of transitivity!

(i.e.,                                        does not hold)zxzyyx  ,
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PREFERENCES (Cont’d)

Lack of transitivity can be generated through aggregation of preferences of 
individuals with transitive preference relations on X: Arrow’s Impossibility Theorem

Example: Consider three alternatives and three agents (                    ). 
Let the agents’ preferences be as follows:

• Agent 1:  

• Agent 2: 

• Agent 3: 

If we use pairwise majority voting to aggregate the agents’ preferences, then we obtain 
that socially                                 ; in other words, social preferences would be intransitive

Arrow’s Impossibility Theorem generalizes this result, and shows that dictatorship (or 
outside imposition) is required for a consistent aggregation of (at least 3 agents’) 
preferences over (at least 3) independent alternatives. 

Xzyx ,, }3,2,1{N

zyyx 11 , 
yxxz 22 , 
xzzy 33 , 

xzyxzy  ,,
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MORE GENERALLY: QUASI-ORDER ON SETS

Consider a set       of alternatives (outcomes), which has at least two elements.

Definition: A quasi-order on      is a binary relation that is complete, reflexive,
and transitive, i.e., 

• For all                :                 or               (Completeness)  

• For all                : (Reflexivity)

• For all                   :                                   (Transitivity)

If        , we say that     is “weakly preferred” to    .

Definition: A strict partial order is a binary relation that is irreflexive and 
transitive. For any                 and quasi-order      on      , we define           as 

. If        , we say that     is “(strictly) preferred” to     .(1)

R

X

X

Xyx , xRy yRx

xRy x y

Xzyx ,, xRzyRzxRy ,

P
xPyXyx , R X

(not )yRx

(1) In the same spirit we define       as                           and say, if       , that     is “indifferent” to    .
Remark: For more on ordering alternatives and the representation of preferences, see Fishburn, P.C. (1970) Utility Theory for Decision Making,” Wiley, New York, NY.
Another useful reference is Kreps, D.M. (1988) Notes on the Theory of Choice, Westview Press, Boulder, CO.

xIy )and( yRxxRy xIy x y

xPy x y

Xx xRx
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RATIONAL PREFERENCE ORDER

Definition. A preference relation on X is rational if it is a quasi-order on X, i.e., if it 
is complete, reflexive, and transitive.

x

y

z

Joe can now make ‘rational’ choices …

… could they depend on the whole set X?
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RATIONAL PREFERENCES – WHERE DO THEY COME FROM?

Mainstream economic theory does not try to explain preferences, but typically 
takes preferences as data, that is, as fixed for the economic agent.  

Preferences in fact result from many forces, e.g.,

• National culture

• Advertising

• Social institutions and norms

• Parental influence

• Education

• Religion

• Personal tastes

Preferences can be rational – that is, complete & transitive – and still be the result 
of the various forces.  And they can be rational and change over time (e.g., under 
the influence of advertising)
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A CLASS EXPERIMENT

1. You have been given $200 and have a choice between the following two options

A:     Win    $150 with certainty

B:     Win    $300 with probability  .5

Win    $0     with probability  .5

• Do you prefer A or B?

2. You  have been given $500 and have a choice between the following two options

C:     Lose $150  with  certainty

D:     Lose $300  with probability  .5

Lose $0      with probability  .5

• Do you prefer C or D? 
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RESULT: FRAMING GENERALLY DOES MATTER

Gamble C Gamble D

Gamble A 35 28

Gamble B 7 8

Since, A = C and B = D, a rational agent’s choice should be such that if A is 
preferred to B then C is preferred to D and vice versa.

However, the “modal choices” are (i.e., “most people prefer”) A and D to avoid 
losses.

Rational choices

Risk
Averse

Loss
Averse

Remark: The reflection effect refers to the observation that preferences tend to reverse when the lottery is “reflected” from the domain of gains (with respect to the status
quo) to the domain of losses. For details, see Kahneman, D., Tversky, A. (1979) “Prospect Theory: An Analysis of Decision Under Risk,” Econometrica, Vol. 47, 
No. 2, pp. 263—291. 
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ANOTHER EXAMPLE: ELLSBERG PARADOX

An urn is known to contain 90 balls of which 30 are red and the other 60 black or 
yellow in unknown proportions. (Neither you nor the person with the urn knows the 
actual proportions.) One ball is to be drawn at random from the urn and your “reward” 
depends on the color of the ball drawn. You must choose between the following two 
bets, which have consequences as indicated.

Red Black Yellow

a.   Bet on red $100 $0 $0

b.   Bet on black $ 0 $100 $0

Now under the same general conditions which bet would you choose in this second 
situation? 

Red Black Yellow

c.   Bet on red and yellow $100 $0 $100

d.   Bet on black and yellow $0 $100 $100
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ELLSBERG PARADOX: CLASS RESULTS

Gamble c Gamble d

Gamble a 7 58

Gamble b 1 12

If you prefer a to b then you should prefer c to d because yellow ball is 
irrelevant for each pair of decisions.

The “modal choices” are (i.e., “most people prefer”) a and d 
to avoid ambiguity ( ambiguity aversion) … we will deal with choice under
uncertainty later.

‘consistent’ choices
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UTILITY REPRESENTATION OF PREFERENCES

Idea: Joe’s rational preference relation on a nonempty choice set X could be 
represented by dots on the real line if there is a “utility function” u that maps every 
element x of X to a real number u(x), such that preferred elements get always 
mapped to larger real numbers.

Then instead of making a pairwise comparison between elements of X, Joe could 
‘simply’ maximize his utility function u on X.

Definition. A function                      is a utility function that represents the preference
relation on X if for any x,y in X: 

)()( yuxuyx 
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UTILITY REPRESENTATION (Cont’d)

For a utility representation of a preference relation to exist, the preference relation 
must necessarily be rational!

Proposition. If the function                      represents the preference relation      
on X, then     is rational.



Proof  (in 2 Steps)

Consider any x,y in X. Then, either                      or
Since u represents    , it is therefore either            or           , so that     is complete.
It is also reflexive (trivial).  


)()( xuyu )()( yuxu 

yx

zy


1.

Consider any x,y,z in X, such that            and           . Thus,                              ,
which implies that          . Hence, the preference relation     is also transitive.

)()()( zuyuxu 2. yx
zx 

xy

QED
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UTILITY REPRESENTATION MAY NOT EXIST!

Example: Preferences for a used car.

Joe would like to buy a Ford Mustang. He cares about two attributes: horsepower
and color. Of two given models, he would always prefer the more powerful one.
If they have the same power, then he would take the one that has a color closest to red.

Lexicographic Preferences
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PREFERENCES FOR USED CAR (Cont’d)

Horsepower0 1
(=max)

1
(=max)

Proximity to Red

X = [0,1] x [0,1]

x

y

z

Question. What is Joe’s preference ordering? Right,                      !zyx 



- 27 -MGT-621-Spring-2023-TAW

AGENDA

Administrivia & Course Overview

Preferences and Utility Representation

Some Properties

Utility Representation (Cont’d)

Demand Theory: Basics

A Little Refresher on Constrained Optimization

Key Concepts to Remember

- 28 -MGT-621-Spring-2023-TAW

Choice Set  X

B: Feasible Set or
“Budget Set”
(e.g., determined
by a budget)

XB 

ONLY A SUBSET OF THE CHOICE SET MAY BE FEASIBLE
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a
b

c

d

g

e

f

j

h

i

COMPLETE PREFERENCE RELATION …

X
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a
b

c

d

g

e

f

j

h

i

… ALLOWS TO DEFINE “EQUIVALENCE CLASSES” OR 
“INDIFFERENCE CURVES” WHEN THERE IS A UTILITY FUNCTION

Remark: It is not really necessary to be able to connect all the points of a choice set that an agent is indifferent about by “continuous”
indifference curves. These “curves” might not look like curves at all, and do not really have to. What is important, is that 
different indifference curves do not intersect!

X
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a
b

c

d

g

e

f

j

h

i

Budget Set B

RATIONAL CHOICE: MOST PREFERRED ALTERNATIVE
(HERE AT POINT f)

Choice: C(B) = {f}

Remark: A choice (set) is generally be set valued. For example, C(X\{a}) = {b,c,d}.

X
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Independence of irrelevant alternatives

• If we reduce the budget set, eliminating points that are not chosen, then the 
optimal point – the choice point – will not change

Intensity of preferences is irrelevant to choice

• Saying that ‘C is MUCH preferred to F’ or that ‘C is slightly preferred to F’ has no 
relevance to what point will be chosen

Choice is invariant with respect to changes that leave feasible set unchanged

• Expansion or contraction of choice set (X) has no impact on choice if expansion 
or contraction does not impact feasible set

• Rescaling of problem parameters that leave the feasible set unchanged will not 
impact choice

SOME PROPERTIES OF CHOICE
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a
b

c

d

g

e

f

j

h

i

utility constant along 
indifference curve, 
e.g., u(x) = 9

utility constant along 
indifference curve, 
e.g., u(x) = 15

utility constant along 
indifference curve, 
e.g., u(x) = 2

REPRESENTATION OF PREFERENCE RELATION BY
UTILITY FUNCTION

X
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x1

x2

u = 7

u = 19

u = 55

u = 295
u = 302

EXAMPLE: CONSUMPTION SET WITH INDIFFERENCE CURVES
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x1

x2

u = 7

u = 19

u = 55

u = 295

u = 302

x

y

z

CONVEXITY OF PREFERENCES

x = (x1,x2) : consumption bundle
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All consumer preferences assumed to be rational

• Complete

• Reflexive

• Transitive

Preferences also assumed to be continuous

• Preference order does not jump around discontinuously

{x: x y} and  {x:  y x}  are both closed sets

• Exclude situation: consumer prefers x(n) to y for sequence of x(n) converging 
to limit x(), but strictly prefers y to x() (1)

Theorem. If preferences are rational and continuous, then there exists a 
continuous utility function u(x) that describes preferences.

THEORY OF THE CONSUMER: PREFERENCES

(1) Example: Take lexicographic preferences on the square X = [0,1] x [0,1] (as in the first lecture) and let x(n) = (1/n,1/n), y=(0,1).
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x1

x2

u = 7

u = 19

u = 55

u = 295
u = 302

TYPICAL CONSUMPTION SET WITH INDIFFERENCE CURVES
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x1

x2

u = 7

u = 19

u = 55

u = 295

u = 302

x

y

z

CONVEXITY OF PREFERENCES

Ux = {y:  y x}

“Upper Contour Set (relative to x)”
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CONVEXITY

Definition. A rational preference relation     on X is convex if the upper contour set

is convex for any x in X, i.e.,  }:{ yxyUx 


)1,0()1(,   xx UzyUzy

Proposition. A utility representation of a convex preference relation is 
quasi-concave (i.e., single-peaked).
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ORDINAL VS. CARDINAL PROPERTIES

A utility representation u(x) for a given rational preference relation  on X is 
generally not unique.

The preference relation  fixes only ordering of elements of the choice X, and is 
therefore called ordinal.

Given the utility representation u(x) of  on X, the function v(x) = (u(x)) is also a 
utility representation of  on X, as long as the (real-valued) transformation  is 
increasing. 

Each specific utility representation of  on X is called cardinal. 

Thus, while the ordinal properties of utility functions are invariant with respect to 
increasing transformations, their cardinal properties are not!
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Theory of Consumers

• Need assumptions about preferences to ensure utility function 
exists.  

• Normally only ordinal properties (which express ordering of options) 
of utility functions are important.  

• For theories of consumer choice under uncertainty, cardinal 
properties are important.  (Cardinal properties express how much 
better one option is than another.)

Theory of Firms

• Preferences assumed for firms – profit – can always be written as a 
function, a profit function.

• Profit function plays the same role as utility function.

• For theory of firm behavior under uncertainty, we can use utility 
function with cardinal properties.

UTILITY FUNCTIONS RELEVANT FOR CONSUMERS AND FIRMS
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Consumer modeled as choosing among bundles of commodities  (“market baskets”)  

Example: x1 shirts, x2 lbs of beef, x3 gallons of gasoline

x = (x1, x2, x3) is vector of these quantities  (L-dimensional vector if there are L commodities)

Choice set X (= “Consumption Set”) contains all feasible (not necessarily affordable!) 
bundles  X..

Standard Assumptions

• We typically include x = 0

- Sometimes x=0 may include necessary commodities for survival

- Sometimes choice set may be discrete, e.g., when only integer amounts of 
consumption are possible

• We often assume that preferences are (locally) nonsatiated. This means that a 
bigger bundle (if available to the consumer) is always strictly preferred.

THEORY OF THE CONSUMER
Choice Set = Consumption Set
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PROBLEM IN REALITY?

Indivisibilities … !
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Minis

Aggregate of Other 
Commodities

Choice set consists of points 
on the red lines

Feasible budget set is 
intersection of two sets, 
the choice set (red lines) 
and the budget set (shaded 
area).

1 2 3 4 5 6 7 8 9 10 11 12

BUDGET SET FOR DISCRETE COMMODITIES
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Minis1 2 3 4 5 6 7 8 9 10 11 12

Aggregate of Other 
Commodities

Feasible set (budget set) is 
set of orange lines

Feasible budget set is not 
convex if choice set is not 
convex.  Math becomes 
more difficult.  We often 
pretend that one can 
purchase fractions of 
Minis.

BUDGET SET FOR DISCRETE COMMODITIES (Cont’d)
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PROBLEM IN REALITY?
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A consumer’s choices are constrained to consumption bundles s/he can afford.

• Commodities traded at prices p1, p2, … , pL

• Prices represented by an L-dimensional price vector p = (p1, p2, … , pL)

• Assume that consumer cannot influence prices

Consumption bundle is affordable if total cost does not exceed the consumer’s 
nonnegative wealth (income), represented by w.

p .  x    w

p1 x1  +  p2 x2  +  p3 x3  + . . . +  pL xL  w

Set of bundles x in X that satisfy this constraint are known as the budget set B(p,w).

THEORY OF THE CONSUMER
Budget Set
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x1

x2

p1 x1 +  p2 x2 = w

x2 = w/p2

x1 = w/p1

Budget Line (Budget Hyperplane)

Slope = - p1/p2

Budget Set

(Feasible Set)

[Convex Set]

BUDGET SET
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x1

x2

Budget Set

p1 x1 +  p2 x2 = w

Decreased p2

Increased w

BUDGET SET DEPENDS ON PRICES AND WEALTH
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Consumer chooses by maximizing utility over all alternatives in budget set, i.e., s/he solves

Maximize u(x)  
such that  p .

x(p,w) denotes the optimal choice, and is referred to as the demand function

x1

x2

x(p,w)

u = 55

u = 295

u = 302

RATIONAL CHOICE = UTILITY MAXIMIZATION PROBLEM

u(x(p,w)) = 55

Example
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x1

x2

x(p,w) denotes the optimal choice, or (“Walrasian”) demand function. 

• No feasible point (x) has u(x) > 55
• No feasible point strictly preferred to x(p,w).
• Set of preferred points (= upper contour set) and 

feasible set have no common interior points.

x(p,w)

u = 55

u = 295

u = 302

UTILITY MAXIMIZATION PROBLEM (Cont’d)

Example
(Cont’d)
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Equivalently, x(p,w) solves a second problem:

Minimize    p . x 
such that  u(x)  ≥  55

That is, minimize expenditure, under constraint that u(x)  ≥  55

x1

x2

x(p,w)

u = 55

u = 295

u = 302

Example
(Cont’d)

EQUIVALENT EXPENDITURE MINIMIZATION PROBLEM (Cont’d)
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Homogeneity of degree zero in p,w:
x(p, w)   =  x(p,w)        for any  > 0

Walras’ Law: 
p . x(p,w)  =  w 
(holds if preference are locally nonsatiated)

Convexity:
If preferences are convex, then x(p,w) is a
convex set

Uniqueness:
If preferences are strictly convex, then x(p,w) is a single point

PROPERTIES OF THE CONSUMER DEMAND FUNCTION
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Let                       be a real-valued function, where X is a nonempty, compact subset of        ,(1)

where n is a positive integer. 

We would like to maximize f(x) on X, i.e., solve the problem

CONSTRAINED OPTIMIZATION

Xf : n

)(max xf
Xx

(Constrained Optimization Problem)

Remark: 

The utility maximization problem is of this form, with f(x) = u(x) and
for some price vector                               , wealth w>0, and number of commodities L>0.

}:{ wxpRxX L  
0),...,( 1  Lppp

(1) A subset of a finite-dimensional Euclidean space is compact if it is closed and bounded. A set is closed if the limit of any (sub-)sequence constructed from
elements of the set also lies in the set. A solution to a constrained optimization problem on a compact set exists, provided the objective function f is continuous.  

Objective Function (Maximand)

Constraint Set
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OPTIMALITY CONDITIONS WHEN CONSTRAINT NOT BINDING
One-Dimensional Case

Example:

 ],[ 50 xxX

Fermat’s Rule (= First-Order Necessary Optimality Condition [“FOC”])

0)('extremumlocal  xfx

f differentiable

Note that the FOC is satisfied for local maxima and local minima in the interior of X.
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OPTIMALITY CONDITIONS (Cont’d)
One-Dimensional Case

In order to guarantee that one has arrived at an interior maximizer (= optimal x that
maximizes the objective function and does not lie on the boundary of X), one can
use additional optimality conditions: second-order optimality conditions

0)(minimizerlocal

0)(maximizerlocal




xfx

xfx Second-Order Necessary
Optimality Condition

minimizerlocal)('0)(

maximizerlocal)('0)(

xxfxf

xxfxf


 Second-Order Sufficient

Optimality Condition [“SOC”]

Examples (Gap Between Necessary and Sufficient Second-Order Optimality Conditions):

(a)

(b) 

The function                       has a maximum at x = 0 which does not satisfy SOC.41)( xxf 

The function                       has no extremum even though it satisfies                             .31)( xxf  )0('0)0( ff 
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OPTIMALITY CONDITIONS WHEN CONSTRAINT NOT BINDING
Multidimensional Case

Fermat’s Rule generalizes to the case of multiple dimensions (n>1)

0)/)(,...,/)(()(extremumlocal 1  nxxfxxfxDfx

Again, the FOC is satisfied for local maxima and local minima in the interior of X.

Example:
22],[  X

)cos()sin(1)( 21 xxxf 
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CONSTRAINED OPTIMIZATION

Let                       be a real-valued objective function,                                       be a
nonempty compact constraint set, where                    is a vector-valued function. 

The standard constrained optimization problem is then often written in the form

Xf : }0)(:{  xgxX n

kXg :

0)(s.t.),(max 


xgxf
nx

Idea:

Relax this problem by introducing k additional variables (“Lagrange Multipliers”), 
one for each constraint component.

Then find critical points (= points that satisfy FOC) of “Lagrangian” L (= relaxed 
objective function), where

)()();( xgxfxL  
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Interpret Dg(x) as a vector perpendicular to frontier (determined g(x) = 0), 
pointing in direction of increasing g(x).

Choose x that is tangent to frontier. For tiny movements along x or along 
-x, the function g(x) does not change in value. Thus, 

x1 g/x1 +   . . . +  xn g/xn =  0        or        x . Dg(x)  =  0

Any two vectors whose inner product is zero must be perpendicular to each 
other.  Thus, x and Dg(x) are perpendicular to each other.

Now take x = Dg(x) (assumed
nonzero). Then,
g = x . Dg(x)  >  0,
because all components of g
are (g/xi)2 > 0. 

Hence, g(x) is increasing in
direction of Dg(x).

x1

x2 Dg(x)

x

-x

g (x)  < 0

CONSTRAINED OPTIMIZATION: INTUITION
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Interpret Df(x) as a vector perpendicular to the level set  {y : f(x) = f(y) }  

This vector is pointed in the direction of increasing value of f(x).

Choose x that is tangent to the level set, f(x) = constant.  For tiny movements along 
x or along -x, f(x) does not change in value. Thus x1 f/ x1 +   . . . +  xn f/ xn =  0     
or x . Df(x)  = 0.

Thus, x and Df(x) are perpendicular to each other.

x1

x2
f(x) = constant

x

-x
Df(x)

CONSTRAINED OPTIMIZATION: INTUITION (Cont’d)
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First-Order Necessary Optimality Condition for Constrained Optimization:  

If the constraint g(x)=0 is binding, then a level set of f must be tangent to the constraint set at an 
extremal point. This implies that the gradient of f and the gradient of the constraint function g 
need to be parallel.

x1

x2

g(x)  < 0

f(x) = constant

Df(x) is perpendicular to 
{x : f(x) = constant}

Dg(x) is 
perpendicular to 
frontier: g(x)
constant

Dg(x)
Dg(x) and Df(x) must be parallel: the 
two surfaces must be tangent

INTUITION OF FIRST-ORDER CONDITION

Df(x)   =  Dg(x)     for   some  > 0  ( is a scalar)

If constraint is binding (i.e., if g(x)  = 0), then  > 0
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If Dg(x) and Df(x) are not parallel, there are feasible points with greater f(x).  They can be found 
by moving tiny distance in direction x or -x.

x1

x2

g(x)  < 0

f(x) = constant

x

-x
Dg(x)

Df(x)

INTUITION OF FIRST-ORDER CONDITION
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FIRST-ORDER NECESSARY OPTIMALITY CONDITION
FOR CONSTRAINED OPTIMIZATION PROBLEM

Formal Statement

},...,1{,0)(

,0);(
0in   ofextremumlocalis

kixg

xLD
}{x:g(x)f(x)x

ii

x









Let                                                          be the Lagrangian associated with the constrained
optimization problem

)()();( xgxfxL  

0)(s.t.),(max 


xgxf
nx

Necessary Optimality Conditions (Kuhn-Tucker Conditions):(1)

(1) The validity of these conditions depends on whether the constraint function g satisfies a “constraint qualification” in a neighborhood of the extremum, which means
that in this neighborhood the constrains are nonredundant, so that Dg(x) is of full rank (i.e., of rank k) there.

},...,1{,0)( kixgii The k relations                                               are also referred to as complementary slackness
conditions. The variables         are called Lagrange multipliers or dual variables.i
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x1

x2

f(x) constant along blue curves.
f(x) increases toward peak at the middle.

At optimal point, Df(x)   =   0
This is an unconstrained optimum.

RELATION BETWEEN FIRST-ORDER CONDITIONS FOR 
CONSTRAINED AND UNCONSTRAINED OPTIMIZATION PROBLEMS

0)(s.t.),(max 


xgxf
nx

Consider the constrained optimization problem

If, at an extremum x, the constraint is not binding, i.e., if g(x)<0, then complementary
slackness implies that all Lagrange multipliers vanish. 

Example
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Consider the following problem:

maxx f(x), s.t. g1(x) < 0  and  g2(x) < 0

First Order Necessary condition:  

Df(x)   =  1 Dg1(x)  + 2 Dg2(x)        [  Df(x) lies between Dg1(x)  and Dg2(x)  ]

g1(x) < 0     1 > 0 

g2(x) < 0 2 > 0 

1 g1(x)  =  0

2 g2(x)  =  0

Red area is feasible 

set with two constraints

CONSTRAINED OPTIMIZATION WITH MULTIPLE CONSTRAINTS
Intuition

x1

x2

Dg1(x)

Dg2(x)

Df(x)

g1(x)  < 0

g2(x)  < 0
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 corresponds to an increase in the optimized objective function f per unit relaxation 
of the constraint g(x) < 0. (Relaxation means g(x) < b,  for very small vector b >> 0)

Show:     f =  . b

f = f/ x1 x1 + … + f/ xnxn

g  = g/ x1 x1 + … + g/xnxn =   b   

Calculate  u, remembering first-order necessary optimality condition, f/ xi =  g/xi

f =  g/x1x1 +  g/x2 x2 + ….  =  g 

INTERPRETATION OF THE DUAL VARIABLES

The dual variables (Lagrange multipliers) are equal to the value of being able 
to relax the constraints. They are often called the shadow prices of the problem. 
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Choice is the maximum utility alternative from feasible set, in this case, the budget set

Maximize u(x)  
such that:       p . x   < w

x > 0
x(p,w) denotes the optimal choice, or Walrasian demand function, given p and w.

x1

x2

x(p,w)

CONSUMER SOLVES UTILITY MAXIMIZATION PROBLEM
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Maximize u(x)  
such that:    p . x < w

x > 0

Constraints can be written in standard form:
p .  x  - w < 0       becomes    g0(x)   =   p .  x  - w  < 0
-x < 0                     becomes    gi(x)   =   -xi < 0   for each i in {1,…,L}

First-order necessary optimality conditions:

CHARACTERIZING OPTIMAL CHOICE



















L

L

i
ii pxDgxDu






1

0
0

)()(

and

},...,1{,0

0)(0

Lix

wxp

ii 





- 72 -MGT-621-Spring-2023-TAW

Du(x)  = 0 p - (1,…, L)
(p . x  - w) 0 =  0    

with local nonsatiation,   p . x  =   w  and  0 >   0

( 1,…, L) . x  =  0          
if  xi > 0, then i = 0 

Thus:
u/xi =  0 pi if     xi >   0
u/xi <  0 pi if     xi =   0

The marginal utility of each good that is purchased is equal to its price multiplied by 
the shadow price on wealth.  If a good is not purchased, its marginal utility is smaller 
than its price multiplied by the shadow price on wealth. 

INTERPRETATION OF LAGRANGE MULITPLIERS
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u/xi = 0 pi if     xi >   0
u/xi <  0 pi if     xi =   0

For two goods that are both purchased (that is xi >   0) :

u/xi =  pi =      pi

u/xj  pj pj

Interpret: 
u/xi = - xj /xi |u constant

u/xj

Marginal Rate of Substitution of good i for good j and is denoted  MRSi j.   MRSi j is the amount 
of good j the consumer would need to receive in order to exactly be compensated for a unit 
loss of good i.

INTERPRETATION (Cont’d)
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For two goods that are both purchased (that is xi >   0) :

u/xi =  pi =    pi

u/xj  pj pj

Thus
MRSi j =    pi / pj

The price ratio is equal to the MRS.  Amount of good j the consumer would need to receive to 
exactly be compensated for a unit loss of good i is equal to the price ratio.

Dollar value of good i lost is pi. Dollar value of good j gained to exactly compensate is pj MRSi j

INTERPRETATION (Cont’d)
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 u/  xi =  pi if     xi >   0
 u/  xi <  pi if     xi =   0

Assume good j is not purchased, but good i is.  Then 
take ratio of two sides of equation:

u/xi >  pi =        pi

u/xj  pj pj

Thus              MRSi j >    pi /  pj

If good j is not purchased, but good i is purchased
to be exactly compensated for a unit loss of good i, the person would need to get more than 
pi/pj units of good j. 

INTERPRETATION (Cont’d)
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Different consumers have different preferences. Thus, different consumers generally 
choose different consumption bundles.

But at the optimal consumption bundle, each consumer has the same MRSi j as any other 
consumer

• Relative value of two goods (subjective sense) is identical among all people who 
buy positive quantities of both

• Everyone who buys i and j have same rate at which they are willing to substitute 
one product for another product

AN INTERESTING OBSERVATION
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EXAMPLE: CONSUMER WITH COBB-DOUGLAS UTILITY FUNCTION

Consider a consumer with Cobb-Douglas utility function

where                  is a given constant.

Given a price vector                     , the consumer’s utility maximization problem 
yields (using the Lagrangian methods described earlier) the Walrasian demand 
vector x(p,w) as a function of price and wealth:

  1
2121 )()(),( xxxxu

)1,0(








 



21

21
),(),(

)1(
,}log)1(log{maxarg),(

21 p

w

p

w
xxwpx

wpBxx



),( 21 ppp 

“Walrasian Demand”
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KEY CONCEPTS TO REMEMBER

• Choice Set & Quasi-Order on Sets

• Preference Relation & Rational Preferences 

• Utility Function

• Framing

• Ellsberg Paradox

• Properties of Choice

• Continuity & Convexity of Preferences

• Cardinal vs. Ordinal Properties

• Choice Set vs. Budget Set

• Utility Maximization Problem

• Walrasian Demand / Walras’ Law

• Constrained Optimization / Necessary Optimality Conditions

• Lagrange Multipliers (Dual Variables, Shadow Prices)

• Cobb-Douglas Utility Function
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LEXICOGRAPHIC PREFERENCES CANNOT BE REPRESENTED
BY A UTILITY FUNCTION (1/3)

Argument:

.
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LEXICOGRAPHIC PREFERENCES CANNOT BE REPRESENTED
BY A UTILITY FUNCTION (2/3)

.
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LEXICOGRAPHIC PREFERENCES CANNOT BE REPRESENTED
BY A UTILITY FUNCTION (3/3)

Hence,
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SOME SPECIAL UTILITY FUNCTIONS

1. Cobb-Douglas:                                         

2. Constant-Elasticity-of-Substitution (CES)

3. Fixed-Coefficient (Leontief)









 



L

i
i
ixkxu

1

)( 



















 






/1

1

)(
L

i
ii xkxu

0,  i :k

}){min()(
},...,1{

ii
Li

xkxu 




Let                  and                  be an increasing function.

Preferences are continuous, monotonic
(not strongly), convex (but not strictly)

CES preferences are strongly monotonic
and strictly convex on       . Cobb-Douglas 
is a  special case for            . (1)1 

Preferences are strongly monotonic and
strictly convex on L



L


(1) The “elasticity of substitution” (introduced by John Hicks) between good 1 and 2 is E12 = - d ln(x1/x2) / d ln(ux1/ux2)  ( = E21). 
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COMPARATIVE STATICS: WEALTH EFFECT

Definition. Let x(p,w) be a consumer’s Walrasian demand function. 

For any fixed price p, the function f(w) = x(p,w) is called a wealth expansion 
function; its graph is a wealth expansion path (also known as Engel curve).

The derivative of x(p,w) with respect to wealth,                                                      ,
is called the wealth (or income) effect (on demand).

x(p,w’’)

x(p,w’)

x(p,w)

w’’ > w’ > w

L

i

i
w w

wpx
wpxDwf

1

),(
),()('













Good i is called normal if                      ,

otherwise it is called inferior (at (p,w)).

Demand is called normal if all goods are
normal at any (p,w).

0
),(





w

wpxi

x1

x2

Wealth w increases along Engel curve
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Income elasticity of demand for good i:

• differentiate Walrasian demand xi with respect to w, then multiply by (w/xi):

ei = (w/xi) xi/w

INCOME ELASTICITY
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 { pi xi } =   w

Differentiate with respect to w

 { pi xi/w } =   1

Multiply each term by (xi w / xi w) and regroup 

 [ (pi xi)/w ] [ (xi/w ) (w/xi ) ] =   1

Fraction of   Income elasticity
income spent    of demand for
on good i good i

AVERAGE INCOME ELASTICITY

Weighted average of income elasticities equals 1.  Weights are fractions of 
income spent on various goods
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(Own-)Price elasticity of demand for good i

• differentiate Walrasian demand for good i with respect to pi, then multiply by (pi/xi):

ii = (pi/xi) (xi /pi )

Cross-Price elasticity of demand for good i with respect to changes in the price of good j

• differentiate Walrasian demand for good i with respect to pj, then multiply by (pj/xi):

ij = (pj/xi) (xi /pj )

PRICE ELASTICITY
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PRICE / INCOME ELASTICITIES FOR DIFFERENT COMMODITIES

Commodity Price Elasticity Income Elasticity

Electricity - 1.2 + 0.2

Beef (Meat) - 0.9 + 0.4

Women’s hats - 3.0

Sugar - 0.3

Corn - 0.5

Potatoes - 0.3

Movies - 3.7

Flour - 0.4

Restaurant Meals + 1.5

Margarine - 0.2

Butter + 0.4

Furniture + 1.5

Milk + 0.1
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ELASTICITIES FOR DIFFERENT COMMODITIES (Cont’d)
Cross-Price Elasticities

Commodity With Respect to Price of Cross-Price Elasticity

Electricity Natural Gas + 0.2

Natural Gas Fuel Oil + 0.4

Beef Pork + 0.3

Pork Beef + 0.1

Margarine Butter + 0.8

Butter Margarine +0.7

Gasoline Automobiles Negative

Solar Panels Electricity Positive

Software Computers Negative

Hotel Rooms Airline travel Negative
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COMPARATIVE STATICS: PRICE EFFECT

Definition. Let x(p,w) be a consumer’s Walrasian demand function. 

For any fixed wealth w, the graph of the function g(p) = x(p,w) is called the 
consumer’s offer curve.

The derivative of x(p,w) with respect to price,                                                        , 
is called the price effect on demand.

x(p’’,w)

x(p’,w)

x(p,w)

L

jij

i
p p

wpx
wpxDpDg

1,

),(
),()(


















p = (p1,p2)
x1

x2

Price p2 decreases along offer curve

Good i is called a Giffen good (at (p,w)) if
, otherwise it is called a 

non-Giffen good 
(= standard case).

Demand exhibits own-price effects (of
price of good i on demand of good i), and
cross-price effects (of price of good i on 
demand of good j).

0
),(





i

i

p

wpx
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x1

x2

p1 x1 +  p2 x2 = w

Increased p2

In principle, xi(p,w) could increase or decrease 
with pi

But xi(p,w) increasing in pi is very rare

“Law” of demand:  demand decreases for good if 
its price increases

COMPARATIVE STATICS WITH RESPECT TO PRICES
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x1

x2

Increased p2

Wealth-Compensated  
Budget Line

x0

xFC

p0

pF

xF

For analysis, break into two effects:
• Wealth Compensated Demand Change

xFC - x0

• Wealth Effect of Price Change:
xF - xFC

xF - x0 =  [xF - xFC]  + [xFC - x0]

RESPONSE TO A PRICE INCREASE
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x1

x2

Increased p2

Wealth Compensated  
Budget Lines

x0

xFC

p0

pF

pF

xF

xF - x0 =  [xF - xFC]  + [xFC - x0]

RESPONSE TO A PRICE INCREASE (Cont’d)
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Sum of two effects:
• Wealth Compensated Demand Change 

xFC – x0

(Own-price effect is negative)

• Wealth Effect of Price Change
xF - xFC = - { [ pF - p0 ] . x0} x/w

(Effect is negative unless
commodity is an inferior good)

x1

x2

x0

xFC

p0

pF

pF

xF

RESPONSE TO A PRICE INCREASE (Cont’d)
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INDIRECT UTILITY AND EXPENDITURE FUNCTION

Definition. A consumer’s indirect utility function v(p,w) corresponds to her 
maximized utility over her Walrasian budget set B(p,w),

)(max),(
),(
xuwpv

wpBx


Hence, if x(p,w) is the consumer’s Walrasian demand function, then                                .
Note that v(p,w) is strictly increasing in w, as long as the preferences are locally 
nonsatiated; hence, v(p,w) for a fixed p, has an inverse with respect to w.

)),((),( wpxuwpv 

Now, given any utility level U, we can define the expenditure function e(p,U) in terms of
the consumer’s indirect utility implicitly, by setting,

i.e., the expenditure function defines the minimum expenditure necessary to 
achieve a given utility level U. In other words,

UUpepv )),(,(

ˆ ˆ{ : ( ) }
( , ) min

Lx x u x U
e p U p x

  
 
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HICKSIAN DEMAND FUNCTION

Definition. The Hicksian demand function h(p,U) for a given price p and utility level U 
is given by the Walrasian demand function evaluated at the price p and the minimum 
wealth necessary to achieve U, i.e., 

ˆ ˆ{ : ( ) }
( , ) ( , ( , )) arg min

Lx x u x U
h p U x p e p U p x

  
  

From (*) we can conclude that

i

j

i

j

i

j

p

Upe

w

Upepx

p

Upepx

p

Uph
















 ),()),(,()),(,(),(

),( Uphi

Roy’s Identity

(follows directly
from application
of envelope
theorem)

whence

),(
)),(,(),()),(,(

Uph
w

Upepx

p

Uph

p

Upepx
i

j

i

j

i

j













 Slutsky Equation

Wealth Effect
Wealth-Compensated
Demand Change

Price Effect

(*)
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WALRASIAN VS. COMPENSATED (HICKSIAN) DEMAND FUNCTION

x2

Compensated (Hicksian) Demand 
Function (utility stays constant)

Ordinary, Observable (Walrasian) Demand 
Function (utility varies)

When commodity is a normal good (wealth effect > 0), then 
each compensated demand function is less responsive to 
price than is the ordinary demand function.

They cross at actual 
price.

p2
^

p2 < p2 
^

p2 > p2 
^

Consider a change from p2 to       (for a normal good)p2
^

p2
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PROOF OF ROY’S IDENTITY

Differentiate expenditure function with respect to one price component,

 
ˆ ˆ{ : ( ) }

( , ( , ))

( , )
min ( ( )) ( , ( , )) ( , )
L i i

x x u x U
i i i x x p e p U

e p U
p x p x U u x x p e p U h p U

p p p


  


              

Envelope Theorem

This is Roy’s identity.

We conclude that
jii

j

pp

Upe

p

Uph







 ),(),( 2

QED

The matrix

L

jiji

L

jii

j

pp

Upe

p

Uph
UpS

1,

2

1,

),(),(
),(

 

























 is called Slutsky matrix.
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PROPERTIES OF THE SLUTSKY MATRIX

Proposition. The Slutsky matrix S(p,U) is symmetric, negative semidefinite, and 
satisfies S(p,U) p = 0.

Proof. 

(i) S is symmetric as long as expenditure function is twice continuously 
differentiable (theorem by Cauchy [sometimes attributed to H.A. Schwarz]).

(ii) The negative semi-definiteness of S (i.e., the fact that                      ) follows from 
the “law of compensated demand”, which states that

Relation (#) holds, because                                     and                                     . 

(iii) Note that Hicksian demand h(p,U) is homogeneous of degree zero in p (prove 
this as an exercise!), so that

0),(),(
),(

1








pUpSpUphD
Uph

p




0)),(),'()('(  UphUphpp

0),( UphDp

(#)

),('),'(' UphpUphp  ),'(),( UphpUphp 

QED
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x1

x2

Increased p2

Wealth-Compensated  
Budget Line

x0

xFC

p0

pF

pF

xF

For analysis, break into two effects:
• Wealth-compensated demand change

xFC - x0

• Wealth effect of price change:
xF - xFC

xF - x0 =  [xF - xFC] + [xFC - x0]

RESPONSE TO A PRICE INCREASE

),(
)),(,(),()),(,(

Uph
w

Upepx

p

Uph

p

Upepx
i

j

i

j

i

j














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Decompose change of demand: xF - x0 =   [ xFC – x0 ]    +   [xF - xFC ]

For very small price changes p, obtain:

[xFC - x0 ]     =         S(p,w) . p
[xF - xFC ]    =     - x/w  {x0  . p}

x =         S(p,w) . p - x/w  {x . p}

This is the Slutsky Equation. Most often it is written in terms of partial derivatives of xi with 
respect to pj (for small change x = x0):

xi/pj =    Sij - xi/w  xj

Sij is (i,j)-th element of Slutsky substitution matrix, derivative of wealth compensated 
demand xFC

i with respect to pj.  Referred to as “substitution effect” of a price change.

- xi/w xj is referred to as the “income effect” of a price change.

INTERPRETATION OF THE SLUTSKY EQUATION
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),(
),(

),(),( wpx
w

wpx
wpSwpxDp 




INTERPRETATION OF THE SLUTSKY EQUATION (Cont’d)

“Substitution 
Effect”

“Income 
Effect”

),(),(

),(

Uphwpx

Upew




Note that (compared to earlier slides)
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x1

x2

Increased p2

Wealth Compensated  
Budget Lines

x0

xFC

p0

pF

pF

xF

xF - x0 =  [xF - xFC]  + [xFC - x0]

RESPONSE TO A PRICE INCREASE (Cont’d)
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Sum of two effects:
• Wealth Compensated Demand Change 

xFC – x0

(Own-price effect is negative)

• Wealth Effect of Price Change
xF - xFC = - { [ pF - p0 ] . x0} x/w

(Effect is negative unless
commodity is an inferior good)

x1

x2

x0

xFC

p0

pF

pF

xF

RESPONSE TO A PRICE INCREASE (Cont’d)
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AGENDA

Some Special Utility Functions

Wealth Effects

Price Effects

Demand Aggregation

Standard Welfare Measures

Welfare Changes

Key Concepts to Remember
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Demand Aggregated Over Many Individuals:  Market Demand Function

If following properties hold for each individual demand function:

• Continuity

• Homogeneity of Degree Zero

• Walras’ Law

Then they hold for the market demand function

MARKET DEMAND FUNCTIONS



- 29 -MGT-621-Spring-2023-TAW

Is it possible to find aggregate demand function D(p,w) (for n individuals), such that

In general, if everyone faces the same price vector p, then aggregate demand can be 
written as a function of p, but NOT necessarily also as a function of aggregate income w, 
unless

1

( , ) ( , )
n

k k

k

D p w x p w


 ?

/k kx w 

MARKET DEMAND FUNCTIONS (Cont’d)

1

0
kn

k
k

k

x
dw

w





1

0
n

k

k

dw



for any small wealth change dw
that leaves aggregate wealth
the same, i.e., for which

1( ,..., )ndw dw dw

In other words, all the                           have to be the same across all consumers.

1

n
k

k

w w


 for

Wealth effects must compensate each other in the aggregate, no matter
how the wealth is re-distributed among the individuals!
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MARKET DEMAND FUNCTIONS (Cont’d)

Proposition. A (necessary and) sufficient condition for demand aggregation to be 
possible is when preferences are such that each consumer k’s indirect utility vk is
quasilinear (“of the Gorman form”), i.e., 

( , ) ( ) ( )k k k kv p w a p b p w 

Proof: (sufficiency only)

By the definition of indirect utility it is

Thus, 

( , ( , ))k kv p e p u u

( )( ) '( )

( , ) ( , ) ( , ( ( , ))) ( , ) ( , ) ( , ( ( , )))

( , ) ( , ) ( , )

0 ( / )

k k

k

k k
p

k k k k k k k k k k k k k k k
p p pw w

k k k k k k
p w

b pa p b p w

v p w v p w e p u x p w v p w v p w h p u x p w

v p w v p w x p w

u p



  

 

   

 

( , ) '( )

( )

k k

k

x p w b p

w b p


 


And therefore is the same for any consumer k, no matter what

his or her wealth level wk.
QED
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MARKET DEMAND FUNCTIONS (Cont’d)

A market demand function is useful for making statements about the consumer
responses to changes in price and/or aggregate income.

Example.

Sometimes the market demand function is also useful to explain other aggregate 
effects, such as the “bandwaggon effect,” under which the demand for a good 
depends on the  expectation about how many consumers will adopt the product.
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NETWORK EXTERNALITIES

Externalities exist when the action of one agent directly affects the environment 
of another agent; network externalities are externalities between participants of a 
common network

“How much would you pay for the first fax machine?”

Complementarity

• Direct (e.g., in 2-way networks, “exchange transactions”)

• Indirect (e.g., Microsoft Word)

• Necessary Conditions: 

- Compatibility

- Interoperability

Aggregate Demand depends on the Expected Demand
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GENERATING FULFILLED EXPECTATIONS DEMAND CURVE
Demand in the Presence of Network Externalities

P(Q,S)

Q

S1 > 0 S2 >S1

Q1 = S1 Q2 = S2

P(Q,Q)
S0 = 0

Bandwaggon Effect
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P(Q,S) = P(Q,0) + f (S)

P Willingness to pay

f(S) Externality function, f(0) = 0, f ”< 0 < f ’

Q Output

S Expected demand / Installed base

DEMAND CURVE SHIFTS DUE TO NETWORK EXTERNALITIES
Fulfilled-Expectations Demand

P(Q,S)

Q

S1 S2 >S1

Q1 =S1 Q2 =S2

Quantitative Approach

Source: N. Economides
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NETWORK EXPANSION PATH CAN HAVE SEVERAL FULFILLED 
EXPECTATIONS EQUILIBRIA

‘Chicken and Egg’ Paradox

If the installed base is too small, customers may 
not be willing to purchase the product.

For certain products, small networks are not 
observed (Discontinuous Network Expansion 
Path)

There are conditions under which a critical 
mass point exists for a network good

Neither existence nor the size of the minimum 
feasible network depends on the market 
structure

Network sizes resulting from perfect 
competition, oligopoly or monopoly are different 
(Economides & Himmelberg, 1994)

Network Expansion Path

S

Q(S)

Critical Mass
Sc = Q(Sc)

Pareto-dominant
Equilibrium
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BUSINESS IMPLICATIONS FOR SELLERS OF NETWORK GOODS

• Penetration pricing (initially possibly < 0) to reduce adoption costs for the 
consumer. Pulling one consumer over is likely to induce further consumers 
(“herding”) to adopt, also due to the effect of network externalities

• Growth is a strategic imperative

– Production-side economies can help: e.g., lower marginal costs lowers 
optimal (monopoly) price, which in turn lowers critical mass

– Demand-side economies are most important for achieving market 
dominance

• Strategic pre-announcements to reduce uncertainty. Market uncertainty can 
prevent the consumers from exploiting beneficial network externalities 
since consumers fear being stranded with a new technology(1)

• Tradeoff current and future benefits through lock-in. Difficult tradeoff and 
frequent cause of business failure: 

– Myopia (too high prices) vs. overestimating future benefits (too low 
prices)

(1) Cf. Farrel, J., and Saloner, G., Installed Base and Compatibility: Innovation, Product Preannouncements, and Predation, AER 76(5):940—955, 1986.
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AGENDA

Some Special Utility Functions

Wealth Effects

Price Effects

Demand Aggregation

Standard Welfare Measures

Welfare Changes

Key Concepts to Remember
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MEASURING WELFARE CHANGES

Consider a simple example of valuing a nonmarket good (e.g., a national park). 

• Assume that there are N standard market goods and one nonmarket good. 

• A consumer has preferences represented by a smooth increasing utility 
function u(x,q), where x denotes the consumption in the market goods 
and q the consumption of the nonmarket good

• The consumer’s income (wealth) is y > 0

),(max),,(
}ˆ:ˆ{

qxuyqpv
yxpxx N  



Given any q, the consumer’s indirect utility function is

where p is the price vector for the market goods.

Question. How much is an exogenous change of q from q0 to q1 > q0 worth 
to the consumer?
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MEASURING WELFARE CHANGES (Cont’d)

One can interpret q0 and q1 as two “states” of the economy, and the consumer has 
some value for the change of the state (assume that q1 > q0, without loss of generality).

Let

),,()( yqpvyv i
i 

denote the consumer’s indirect utility as a function of his income y for i in {0,1}.(1)

(1) We suppress the dependence on the constant price vector for simplicity. More generally, vi(y) can denote the consumer’s (indirect) utility function in
state i of the economy as a function of his or her wealth. Thus, the analysis here can also be applied when the state of the economy is defined by different
commodity price vectors (corresponding to the treatment in standard economics textbooks such as MWG).

v1(y)

v0(y)

y

From standard demand theory we know that vi(y) is strictly increasing in y.
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MEASURING WELFARE CHANGES (Cont’d)

v1

v0

y

Question I. How much would a consumer of income y be willing to pay for 
the transition from q0 to q1?

C(y)

Answer I. A income change of –C(y) would “compensate” the consumer for
having q1 instead of q0. [The word compensate means here to bring 
the consumer back to the original utility level before the change.]

)())(( 01 yvyCyv 

C(y) is the Compensating Variation
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MEASURING WELFARE CHANGES (Cont’d)

v1

v0

y

Question II. How much would a consumer of income y be willing to accept
for the transition from q1 to q0?

E(y)

Answer II. A income change of +E(y) would make the consumer feel “equivalent”
between having q0 (at income y+E(y)) and having q1 (at income y).

))(()( 01 yEyvyv 

E(y) is the Equivalent Variation
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COMPENSATING AND EQUIVALENT VARIATIONS

Definition. Let vi(y) be a consumer’s increasing (indirect) utility function for an 
economy in state              as a function of income y. 

(i) The compensating variation C(y) is defined as the consumer’s maximum 
willingness to pay to transition from state 0 to state 1, i.e.,

(ii) The equivalent variation E(y) is defined as the consumer’s minimum willingness 
to accept to transition from state 1 to state 0, i.e.,

}1,0{i

)}()(:sup{)( 10 cyvyvcyC 

)}()(:inf{)( 01 eyvyveyE 

Remark. If C(y) and E(y) are bounded, we have that

corresponding to the standard definition of these two welfare measures.

))(()( 10 yCyvyv  and ),())(( 10 yvyEyv 
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COMPENSATING AND EQUIVALENT VARIATIONS
They can be very different!
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WHAT IS THE RELATION BETWEEN C(y) AND E(y)? 

The answer is simple. Since both v0 and v1 are invertible functions, we obtain from 
the definition of C and E that

and))(()( 0
1

1 yvvyyC  yyvvyE   ))(()( 1
1

0

This immediately implies that C and E are independent of the particular utility 
representation of the consumer’s preferences (why?).

As a result, we could choose the utility representation such that                      , so
that                                   (from the definition of E(y)). Thus, from the definition of C(y)
we know that we simply need to form the inverse of v1 to find C(y), so that 

where the compensated income                is such that                                                 .

Similarly, one can show that

where the compensated income                 is such that

yyv )(0
yyEyv  )()(1

)),(()()( 0101 ywEywyyC 

)(01 yw

)),(()()( 1010 ywCyywyE 

))(()( 1010 ywCywy 

))(()( 0101 ywEywy 

)(10 yw
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EXAMPLE: COMPUTATION OF C(y) AND E(y) 

Consider a consumer with indirect utility functions v0(y) = y and v1(y) = y, where
 = ½ and  = ¼, and the income y lies in [0,1].(1)

yyyyyvvyyC )1()())(()( 4
0

1
1  

  yyyyyyvvyE   24/1
1

1
0 ))(()(

(1) These indirect utility functions can be obtained after solving the utility maximization problem for appropriate Cobb-Douglas utilities.

v1(y)

v0(y)

C(y)

E(y)
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EXAMPLE (Cont’d)

)()(

)ˆ(ˆ)ˆ()ˆ(

))ˆ(()ˆ(

))(()(

01

1
0110

10

01

yCyyw

yEyywyw

ywCyE

ywEyC








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EXAMPLE: TRANSFER OF A NONMARKET GOOD 

Assume that there are two consumers, the first has welfare measures                    , while 
the second has the welfare measures                   . For simplicity, we assume that both start
with the same income level y. The first consumer holds one unit of a nonmarket good, 
while the second consumer possesses none.

Questions. (i) At what transfers t will there be a transaction of the nonmarket good?

(ii) Is it possible that after the first transfer takes place, another such
transfer occurs moving the good back to the first consumer?

)(),( yEyC
)(ˆ),(ˆ yEyC

(i) A necessary and sufficient condition for a transfer is that )()(ˆ yEyC 

(ii) A necessary and sufficient condition for a second transfer (after the good
had been exchanged under (i) at price t) is that                               . This can never
happen if the first transaction realized gains from trade!

)(ˆ)( tyEtyC 

Answers.
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TRANSFER OF A NONMARKET GOOD (Cont’d)

The first transfer leads to a Pareto improvement! A second transfer cannot
generate another (strict) Pareto improvement.
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HOW TO COMPUTE E(y) AND C(y) FOR PRICE CHANGES?

ˆ( ) ( , ( , )) ( , ( , ))

ˆ( , ( , ))

C y e p v p y e p v p y

y e p v p y

 
 

Compensating Variation

Expenditure at initial price minus 
expenditure at final price,
evaluated at initial utility level

ˆ ˆ ˆ( ) ( , ( , )) ( , ( , ))

ˆ( , ( , ))

E y e p v p y e p v p y

e p v p y y

 
 

Price change from       to p p̂

Equivalent Variation

Expenditure at initial price minus 
expenditure at final price,
evaluated at final utility level
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x1

p1 Compensated (Hicksian) Demand 
Function

Ordinary, Observable (Walrasian) Demand 
Function

When commodity is a normal good (wealth elasticity > 0), 
then the compensated (Hicksian) demand is less 
responsive to price than the Walrasian demand (because it 
just accounts for substitution effect).

They cross at actual 
price.

WALRASIAN DEMAND VS. COMPENSATED (HICKSIAN) DEMAND

),(
)),(,(),()),(,(

Uph
w

Upepx

p

Uph

p

Upepx
i

j

i

j

i

j














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Slope of the actual demand function, or Walrasian demand function is xi/pi 

Can use Slutsky equation to construct the “compensated demand function”, also called the 
“Hicksian demand function”

Construct compensated demand function around some specific combination of pi and the 
resulting xi but with the slope Sii

Sii = xi/pi + xi/w  xi

This is the slope of the artificial demand function, constructed as if at the same time the price is 
increasing, consumer is given exactly enough additional wealth to keep utility constant.

COMPENSATED DEMAND FUNCTION
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COMPENSATED (HICKSIAN) DEMAND FUNCTIONS FROM TWO 
DIFFERENT INITIAL PRICES

x1

p1 Compensated (Hicksian) Demand 
Function

Ordinary, Observable (Walrasian) Demand 
Function

Hicksian demand function is not unique.  It must be 
defined relative to the price defined as the initial price.
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SIGNIFICANCE

Hicksian demand curve is used to create two conceptually correct measurements 
of welfare impacts of a price change (called “compensating variation” and 
“equivalent variation”)

- Compensating Variation:  Negative of dollar amount to compensate 
consumer for facing price change, so that utility remains unchanged.  

- Equivalent Variation:  Dollar amount consumer would accept in place 
of a price change, so utility change would be the same as it would be 
with the price change.  

Compensating Variation and Equivalent variation are both positive for price 
decrease and negative for a price increase.

- A less conceptually correct measure, the change in consumer’s 
surplus, will be approximately equal to compensating variation and to 
equivalent variation.  Consumer’s surplus is somewhat easier to 
calculate



- 57 -MGT-621-Spring-2023-TAW

If price of good i increases, what wealth increase would just compensate for the price increase 
if consumption of all goods adjusts optimally? What combination of price increase and wealth 
increase would leave the person’s utility unchanged?  Shown previously:

dw =    xi(p)  dpi

Discrete price changes:  Integrate equation.

w = 𝐴dw =    xi(p) dpi

Limits on integrals:  original price to final price.

But xi(pi) is also a function of w.  What w should we use?  Actual w?  Compensated w?  
Compensated from where?  From original price?  From final price?  Should w change along 
with pi ?  What if several prices are changing together?

WELFARE IMPACTS OF PRICE CHANGES
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CALCULATION OF WELFARE MEASURES FOR PRICE CHANGE

Compensating Variation: Negative of dollar amount to compensate consumer for facing 
price change, so that utility remains unchanged.   

• Integrate along Hicksian demand curve, crossing through the original price and 
quantity.

Equivalent Variation:  Dollar amount consumer would accept in place of a price change, 
so utility change would be the same as it would be with the price change.  

• Integrate along Hicksian demand curve, crossing through the final price and 
quantity.

Consumer Surplus: Integrate along ordinary (Walrasian) demand curve.
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WELFARE IMPACTS OF PRICE REDUCTION

x1

p1
Compensated 
Demand Function

Walrasian Demand Function

p1
0

p1
F

Utility remains at original level

Utility remains at final level

Utility changes.  No wealth 
compensation.

Nature of Compensation:

Each are entire area from vertical axis to demand 
curve.
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WELFARE IMPACTS OF PRICE REDUCTION (Cont’d)

x1

p1
Compensated 
Demand Function

Walrasian Demand Function

p1
0

p1
F

Compensating Variation

Equivalent Variation

Consumer surplus

Measure of Welfare Change:

Each is entire area from vertical axis to demand 
curve.
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WELFARE IMPACTS OF PRICE REDUCTION (Cont’d)

x1

p1

Walrasian Demand Function

p1
0

p1
F

Compensating Variation:  Negative of dollar amount to compensate 
consumer for facing price change.  Positive for a price decrease.  
Consumer would end up at original utility.

Equivalent Variation:  Dollar amount consumer would accept in 
place of price change: amount equivalent to price change.  
Positive for price decrease. Consumer ends up at final utility.

Consumer surplus.  Commonly used 
measurement of benefit.  Positive for price 
decrease.
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WELFARE IMPACTS OF PRICE REDUCTION (Cont’d)

x1

p1

Walrasian Demand Function

p1
0

p1
F

For Normal Goods:  

Compensating Variation  <  Consumer Surplus  <  Equivalent Variation

<                          <

Reverse is true for inferior goods
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HOW DIFFERENT ARE THE THREE MEASURES?

x1

p1

p1
0

p1
F

Slutsky Equation:
x1/p1 =    S11 - x1/w  x1

Difference in derivatives:    - x1/w  x1

Difference in measures is roughly equal to area of triangle.  
Triangle height:  price change.
Triangle width:  

(wealth derivative) x (quantity) x (price change).  

Thus entire area is quadratic in price change and is small 
if fraction of wealth spent on good is small.
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EXAMPLE: CONSTANT ELASTICITY OF DEMAND
Compute Hicksian Compensated Demand Function

1

2

( / )
( , )

(1 )( / )

w p
x p w

w p




 
   

Hicksian Compensated 
Demand Function

Walrasian Demand Function
corresponding to a Cobb-Douglas 
utility function
in a two-good economy, 
where                         .

1
1 2( )u x Kx x 

1
2

1 1
1

( , ) ( , ( , ))
(1 )

p U
h p U x p e p U

p K






           

1
2 2

2

(1 )
( , ) ( , ( , ))

p U
h p U x p e p U

p K





        

  

(0,1), 0K  

11
1 1 2

1 2 1 1
1 2

(1 )
( ( , )) ( ( , )) ( , )

(1 )

p p U
U K x p w x p w Kw e p U

Kp p

  
 

   
 

 




 


   

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EXAMPLE: CONSTANT-ELASTICITY DEMAND

Ordinary and Compensated Demand

$1.00

$1.50

$2.00

$2.50

$3.00

$3.50

$4.00

0 2,000 4,000 6,000 8,000 10,000

Demand Quantity

P
ri

ce

Observable Demand
Compensated Demand (from $4.00)
Compensated Demand (from $1.00)

Demand Function:

 x1  =   .1 w p1
-1

w   =   $100,000
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EXAMPLE: CONSTANT-ELASTICITY DEMAND

$1.00

$1.50

$2.00

$2.50

$3.00

$3.50

$4.00

$0 $2,500 $5,000 $7,500 $10,000 $12,500 $15,000 $17,500

Welfare Change

P
ri

ce

Compensating Variation (from $4.00)
Change in Consumer Surplus
Equivalent Variation (from $4.00)

Demand Function:

 x1  =   .1 w p1
-1

w   =   $100,000
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INTEGRABILITY

• To calculate welfare effects we integrate x(p)dp.

• Integration is along some path of p from p0 to pF

• For measure to be unique the integral must not depend on the path of p from p0

to pF.

• Integrability tells us whether the measure is unique: whether the calculation 
depends on the path of p.

• For one price changing, all continuous functions are integrable.

• For multiple prices changing, function is integrable if and only if all cross 
derivatives are symmetric:

  for all i,jji

j i

xx

p p




 
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w  =dw   =    xi(p) dpi

p1

p2

p0

pF

x2(p)x2(p)
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WALRASIAN DEMAND VS. COMPENSATED (HICKSIAN) DEMAND

x1

p1

Compensated (Hicksian) Demand 
Function

Ordinary, Observable (Walrasian) Demand 
Function

Hicksian Demand Function is integrable. Cross derivatives are 
symmetric.
Walrasian Demand Function is not integrable for several prices 
changing together.  Income effect implies cross derivatives 
usually not symmetric

They cross at actual 
price.
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SUMMARY OF WELFARE MEASURES

Equivalent Variation and Compensating Variation 

• are conceptually precise measurements

• are based on integrable demand functions

Consumer’s Surplus

• is not based on conceptually precise concept (e.g., not based on integrable demand
functions)

• is very easy to measure

• is the measure most often seen in calculations

All three measures are numerically almost the same UNLESS income effect is large.   

Measures are routinely used in benefit-cost calculations
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AGENDA

Some Special Utility Functions

Wealth Effects

Price Effects

Demand Aggregation

Standard Welfare Measures

Welfare Changes

Key Concepts to Remember
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KEY CONCEPTS TO REMEMBER

• Special Utility Functions (Cobb-Douglas, CES, Leontief)

• Envelope Theorem 

• Monotone Comparative Statics

• Expenditure Minimization Problem

• Hicksian Demand

• Law of Compensated Demand

• Slutsky Compensation (Wealth Compensation)

• Indirect Utility (and Gorman Form)

• Roy’s Identity

• Slutsky Equation

• Income Effect & Substitution Effect of a Price Change

• Aggregate Demand

• Bandwaggon Effect & Network Externalities & Fulfilled-Expectations 
Demand & Critical Mass

• Compensating Variation / Equivalent Variation / Consumer Surplus
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AGENDA

Elements of Probability

Choice Under Uncertainty

Expected Utility Theory

Risk Aversion and Decision Biases

Key Concepts to Remember
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So far in this course we have assumed that a consumer (decision maker) knows 
perfectly the consequences of choice. 

However, in most practical economic decision situations there is uncertainty.

CHOICE UNDER UNCERTAINTY
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• How much will my education help me in the job market?

• Will I be given valuable assignments if I accept this job offer?

• Is the used car I am buying a lemon?  Or will it be dependable?

• If I put effort into developing a proposal, will it be accepted?

• Will an R&D program be successful?

• How capable is the person I am considering hiring?

• Will my competitors introduce superior new products?

• Will potential customers purchase the product I offer?

• Will I enjoy the movie?

• What will the weather be like in the city I plan to visit?

• Will my home catch on fire in the next year and be destroyed?

• Will the price of the stock I purchase go up or down?

• Will prices for a commodity go up or down? Sign fixed-price contract?   

• If I take a litigation to trial rather than settling, will I win?

• …

UNCERTAINTY IN CHOICE
Some Examples



- 5 -MGT-621-Spring-2023-TAW

RISK VS. UNCERTAINTY

Distinction between risk and uncertainty due to Frank Knight (1921):

• Uncertainty: unknowable (e.g., the success probability of your new 
startup company, or the likelihood of an unforeseen contingency in your 
project)

• Risk: knowable (e.g., the outcome of a die roll)

“The practical difference between the two categories, risk and uncertainty, is 
that in the former the distribution of the outcome in a group of instances is 
known (...), while in the case of uncertainty this is not true, the reason being 
in general that it is impossible to form a group of instances, because the 
situation dealt with is in a high degree unique” (p. 233)

“We can also employ the terms “objective” and “subjective” probability to 
designate the risk and uncertainty respectively, as these expressions are 
already in general use with a signification akin to that proposed” (ibid.)

In this course, no explicit distinction between risk and uncertainty, since in order to 
formally analyze optimal choice, need to introduce a probability space in either case.
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• All would not necessarily agree on the likelihood of events

- Probability relevant for your decision is determined by all your 
knowledge

- Most economic situations can best be described by subjective 
probabilities

• Will the used car be a lemon?  Or will it be dependable?

- Seller knows, i.e., for seller probability of being lemon is 0 or 1

- Buyer does not know, i.e., buyer must assign a probability (= “belief”)

• What will the weather be like in the city I plan to visit?

- Probability assessment may change after you read weather forecast

• How capable is the person I am considering for a job?

- Potential employee has more information about work habits

SUBJECTIVE PROBABILITY
Some Examples
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New information (e.g., observing other agents’ actions) can change beliefs

• What does this imply? (value of information, … disinformation)

Can different people have very different probability assessments given the same 
choice, the same events, and the same information?

• Agreeing to disagree … 

Most of the time we assume that probabilities are subjective

SUBJECTIVE PROBABILITY (Cont’d)
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DISCRETE RANDOM VARIABLES

Definition: A discrete random variable (or lottery) X = [p1, x1; p2, x2; …; pn, xn] is a 
variable x that can take on one of the values

• x1, x2, x3, ..., xn

with the respective probabilities

• p1, p2, p3, ..., pn

where each            and 0ip





n

i
ip

1

1

x1 x2 x3 x4 x5

p1

p2

p3

p4

p5

Using the probability mass function p(.)
we can write the probabilities pi as a 
function of xi : pi = p(xi).

(normalization)
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EXAMPLE: ROLL OF A DIE

x =

1
2
3
4
5
6

1/6
1/6
1/6
1/6
1/6
1/6

w/ probability

x

1/6 1/6 1/6 1/6 1/6 1/6

1 2 3 4 5 6

xi pi
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EXPECTATION

The expectation of a (discrete) random variable X is defined as:

  



n

i
ii xpXEX

1

Sign Preservation If X can take on only positive values, then E[X]>0.

Certain Value If X is perfectly known (and equal to x), then E[X]=x.

Other Properties:

If X and Y are random variables, and a and b are constants.
E[aX+bY] = a E[X] + b E[Y]

Linearity

Key Property:
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EXAMPLE (Cont’d)

X =

1
2
3
4
5
6

1/6
1/6
1/6
1/6
1/6
1/6

w/ probability

X

1/6 1/6 1/6 1/6 1/6 1/6

1 2 3 4 5 6





6

1

][
i

ii xpXE

5.3
6

16

1




i
i

6
6

1
...2

6

1
1

6

1


The expectation is where this picture would balance on your finger

- 12 -MGT-621-Spring-2023-TAW

VARIANCE AND STANDARD DEVIATION

The variance is a measure of the spread of a random variable around its mean. 

])[(][ 2XXEXV  )]2[( 22 XXXXE 

22 ][2][ XXEXXE  22 ][ XXE 

The standard deviation is the square root of the variance. 

][XVX 

It has the same units as X.
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EXAMPLE (Cont’d)

92.2

])[(][ 2XXEXV 

2

22

)5.36(
6

1
   

...)5.32(
6

1
)5.31(

6

1





X =

1
2
3
4
5
6

1/6
1/6
1/6
1/6
1/6
1/6

w/ probability

X

1/6 1/6 1/6 1/6 1/6 1/6

1 2 3 4 5 6
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CONDITIONAL PROBABILITY

)(

)(
)|(

BP

BAP
BAP




Question. Given a six-sided die what is the probability of rolling a 3 conditional on 
rolling a 1, 2 or 3?

})3,2,1({

})3,2,1{}3({
})3,2,1{|}3({

P

P
P




})3,2,1({

})3({

P

P


3/1
2/1

6/1


Definition: The conditional probability P(A|B) of event A conditional on event B having 
realized is defined as
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INDEPENDENCE

Definition: A and B are independent events, if

• P(A|B) = P(A)

• P(B|A) = P(B)

)()|()( BPBAPBAP 
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THE LAW OF TOTAL PROBABILITY

)()|()()(
11

n

N

n
n

N

n
n BPBAPBAPAP 





A

B1

B2
B3

B4
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AGENDA

Elements of Probability

Choice Under Uncertainty

Expected Utility Theory

Risk Aversion and Decision Biases

Key Concepts to Remember

- 18 -MGT-621-Spring-2023-TAW

LOTTERIES ARE (DISCRETE) RANDOM VARIABLES

Let X be a random variable with possible outcomes in the set X = {x1, x2, … , xn} (the 
“outcome space”). Each outcome xi occurs with probability pi.

The random variable X is sometimes also called a lottery and denoted

X = [p1, x1; p2, x2; ...; pn, xn]

If all outcomes xi are real and measured in dollars (or any other currency), then X is 
commonly referred to as a “money lottery.” 

The set of all lotteries with outcomes in X is the “lottery space” L(X). 

Example: A coin-flip lottery X (with an unbiased coin) pays $1 if heads and zero if tails. Then 
X = [0.5,$1; 0.5, $0].
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LA

LB

LC

LELH

The choice set contains all simple lotteries over the various outcomes.

THEORY OF CHOICE UNDER UNCERTAINTY
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PREFERENCES OVER LOTTERIES

For a decision maker (DM), choosing between actions corresponds generally to 
choosing between lotteries (given a decision d in the set of possible decisions D, the 
outcome xi in X occurs with probability P(xi|d)).

Example: wearing a helmet on a motorcycle changes the probability of injury. In a
decision tree, each decision node represents a lottery.

Hence, the DM needs to be able to order lotteries according to his preference implying 
a complete preference (pre-)ordering(1) over elements in the lottery space L(X).

More specifically, if A and B are elements of L(X), then

• A > B   means DM prefers A to B

• A > B   means DM does not prefer B to A or DM “weakly” prefers A to B

• A  B   means  DM is indifferent between A and B, i.e., DM will take either one 
and would play a 50-50 lottery to choose between them.

(1) Formally, a pre-ordering R is a binary relation (i.e., it takes two inputs) that is reflexive (i.e., xRx) and transitive (i.e., xRy and yRz implies xRz). The pre-ordering
is complete if for any elements x and y in X it is either xRy or yRx (or both). 
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PREFERENCES OVER LOTTERIES: EXAMPLE

Question. Jane likes to play ping pong and she wonders about how to respond to an 
opponent’s serve. 

• If she hits a top spin (decision d1), the ball is going to be on the table with 
probability 0.6 and given that it is, she is going to score with probability 0.8. 

• If she does not play a top spin (decision d0), the ball is going to land on the 
table with probability 0.9, but she is only going to score with probability 0.6.

What decision should she take?

Solution: 

Jane needs to choose between the following two lotteries:

• L1 = [P(score|d1), 1 point; P(don’t score|d1), 0 points]

• L0 = [P(score|d0), 1 point; P(don’t score|d0), 0 points]

Thus, she should prefer L0 (i.e., L0 > L1) which implies “don’t play top spin” as her 
decision.

L1

0.48

0.52

1 point

0 points

L0

0.54

0.46

1 point

0 points
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PREFERENCES OVER OUTCOMES
Utility Representation (Reminder)

Preferences over lotteries imply preferences over particular (certain) outcomes in X. 
Indeed, for any x and y in X one could just consider the lotteries X and Y that 
produce the outcomes x and y with probability one respectively. 

Thus, x > y if the outcome x is (weakly) preferred to the outcome y.

Definition: A real-valued function u with domain X represents the DM’s preferences
over outcomes in X, if for any x,y in X:

x > y if and only if u(x) > u(y).

The function u is called the DM’s utility function.

For some preferences no utility function representation exists (e.g., lexicographic
preferences). We typically take a utility function as an input for a decision model.(1)

A utility function always exists for finite sets of outcomes.

(1) For more details on utility theory see Kreps, D.M. (1988) Notes on the Theory of Choice, Westview Press, Boulder, CO, or Fishburn, P.C. (1970)
Utility Theory for Decision Making, Wiley, New York, NY.

A utility representation of a DM’s preferences is generally not unique: given any 
utility function u and a strictly increasing function  (from real numbers to real
numbers), the function v = (u) is an equivalent utility representation.
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UTILITY REPRESENTATION

Mark has the utility function u(x) = x½ for any nonnegative amount of money x (in 
dollars).

Thus, he prefers $100 to $36, since u(100) = 10 > u(36) = 6.

Similarly, for (y) = y2, we have that (u(100)) = 100 > (u(36)) = 36, and Mark would 
have the same preferences for outcomes (amounts of money) for any other , as 
long as  is strictly increasing.

• x > y   if and only if   u(x) > u(y)    if and only if    (u(x)) > (u(y))

Thus, in the absence of uncertainty Mark can just maximize x instead of u(x). 
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AGENDA

Elements of Probability

Choice Under Uncertainty

Expected Utility Theory

Risk Aversion

Key Concepts to Remember
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EXPECTED UTILITY MAXIMIZATION

Given a utility representation u of the DM’s preferences over outcomes, we would 
like to infer his preferences over lotteries of outcomes (random variables), which 
corresponds to his preferences over actual decisions (e.g., at which speed to drive 
a car).

Under certain axioms (= assumptions on the DM’s preferences over lotteries, 
typically one uses the Von Neumann-Morgenstern axioms), the DM’s expected 
utility of a particular decision d in D which induces a lottery X(d) with probability 
distribution P(.|d) is 





Xx

xudxPdXEU )()|())((

Thus, under uncertainty the DM maximizes expected utility, i.e., he solves

))((maxarg dXEUd
Dd

 
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EXPECTED UTILITY MAXIMIZATION: EXAMPLE

Question. Joe needs to decide how fast to drive on highway E25 from Lausanne to 
Geneva. Any minute saved he values at $1. At 120 km/h it takes about 40 min, and 
at 140 km/h about 32 min. However, if he drives 140 km/h there is a chance p that 
he gets pulled over and has to pay a ticket worth $280 plus a delay of 20 min (over 
the 120 km/h time). 

Let d0 : drive 120 km/h, d1 : drive 140 km/h. He thus needs to choose between the 
lotteries X(d0) = [1,$0] and X(d1)= [p, -$300; 1-p, $8].

X(d0)

1 $0

X(d1)

1-p

p

$8

-$300 

If Joe’s utility function for money is u(x)=-exp(-x/1000), at what detection probability p
would he be indifferent between d0 and d1?

Answer: )8($)1()300$())(()0($))(( 10 uppudXEUudXEU 

%2.2
)300$()8($

)0($)8($






uu

uu
p (i.e., for p>2.2%, Joe drives 65 mph!)
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Let X = {x1, x2, … , xn} be a set of outcomes and L(X) the corresponding lottery space. 
Consider arbitrary elements A,B,C of L(X) and x,y,z in X.(1)

1. Completeness: A > B or B > A                              (can compare any two lotteries)

2. Reflexivity: A > A

3. Transitivity:  A > B and B > C implies A > C    (o/w construct a “money pump”)

4. Continuity: If x > y > z, then there exists p in (0,1) such that one can achieve 
indifference between the lottery A = [1, y] and the lottery B(p) = [p, x; 1-p, z], i.e., there 
is a p such that A  B(p)

• Example: What happens if z is “death”? 

5. Independence (of Irrelevant Alternatives): If x > y, then for any z: 
[p, x; (1-p), z] > [p, y; (1-p), z]

• Example (Compound Lottery): DM should feel the same about a 1:12 chance of 
winning $100 or playing the following two-stage lottery.

- Stage 1: flip a coin; if heads, then go to stage 2, otherwise you lose.

- Stage 2: toss a die; if 6 comes up you win $100, otherwise you lose.

VON NEUMANN-MORGENSTERN AXIOMS IMPLY
EXPECTED UTILITY REPRESENTATION

Fundamental Justification for Expected Utility Maximization

(1) Note that if x is an outcome in X, then [1, x] is a lottery in L(X). Thus, any outcome can be viewed as a (degenerate) lottery. 
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KEY IMPLICATION OF THE VNM AXIOMS

Theorem (Von Neumann-Morgenstern, 1944): If a DM’s preferences “>” on L(X) satisfy 
the Von Neumann-Morgenstern axioms, then there exists an expected utility function 
EU(.) for that DM which represents his preferences in the sense that for any two 
lotteries A, B in L(X):

A > B if and only if  EU(A) > EU(B)

In more detail, suppose:

A = [p1,x1; p2,x2; .... ; pn,xn], where p1 + ... + pn = 1

B = [q1,x1; q2,x2; .... ; qn,xn], where q1 + ... + qn = 1

If DM’s preferences satisfy the VNM Axioms, then the DM prefers A to B (A > B) if and 
only if

Note: Two expected utility functions EU(x) and EV(x) represent the same preferences 
over lotteries if and only if EU(x) = EV(x) + , where  > 0 and  is any real number. In 
the same vein, a “positive affine transformation” of the DM’s utility function u 
(to v =  u + for  > 0) does not change the DM’s preferences over lotteries.
The original reference for the Von Neumann-Morgenstern result is their immensely readable text Von Neumann, J., Morgenstern, O. (1944) Theory
of Games and Economic Behavior, Princeton University Press, Princeton, NJ.

)()()()(
11

BEUxuqxupAEU
n
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n

i
ii  



Proof: See notes on “Risk and Uncertainty” posted on the course website.



- 29 -MGT-621-Spring-2023-TAW

Example: Consider the utility functions u(x) = 1 - 2e-x and v(x) = 3 - 5e-x, where >0 
is some constant.

Since u(x) = .4v(x) - .2 = v(x) + (with  > 0), one can check that for any two 
lotteries A and B in L(X):

EU(A) > EU(B) if and only if EV(A) > EV(B)

More generally, invariance with respect to positive affine transformations implies 
that we can fix any two values of a DM’s utility function without disturbing his 
preference ordering over lotteries.

KEY IMPLICATION OF THE VNM AXIOMS (Cont’d)
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ALLAIS PARADOX

Imagine the following two decision situations—each involving a pair of gambles.

SITUATION I

P(Winning) AMOUNT TO WIN

Lottery A 100% $1,000,000

Lottery B 10% $5,000,000

89% $1,000,000

1% -0-

SITUATION II

P(Winning) AMOUNT TO WIN

Lottery C 11% $1,000,000

89% -0-

Lottery  D 10% $5,000,000

90% -0-
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ALLAIS PARADOX
Implies Critique of ‘Independence of Irrelevant Alternatives’

Ticket Numbers

Lottery 1 2-11 12-100

A $1 million $1 million $1 million

B         $0 million $5 million $1 million

C $1 million $1 million $0 million

D $0 million $5 million $0 million

NOTE:  Ticket numbers 12-100 are the same for A and B so they are 
irrelevant for choices between them; the same for C and D

If you eliminate these ticket numbers then 

A and C are identical and so are B and D
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AGENDA

Elements of Probability

Choice Under Uncertainty

Expected Utility Theory

Risk Aversion and Decision Biases

Key Concepts to Remember
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UTILITY FUNCTIONS: SOME COMMON SHAPES

Utility

$

Risk-Neutral

Risk-Seeking

Risk-Averse
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RISK AVERSION: EXAMPLES

People will buy insurance, even though the expected value of the 
payment from insurance is smaller than its price.  That is the result of 
risk aversion.

People purchase a portfolio of stocks and bonds, rather than only one.  
Such diversification reduces risk and is consistent with risk aversion.

People will incur costs to purchase hedges, assets that reduce the risk 
of the overall portfolio.

Typically the larger the monetary lottery, the greater the degree of risk 
aversion people exhibit.
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A SIMPLE DECISION: RISK-AVERSE DM

Decision 
Node

Invest

Don’t Invest

x1

x2

x3

0.2

0.3

0.5

$0

Payoff

$400K

$200K

-$500K

Utility

+3

+2

-10 

0

Decision Criterion: Maximize Expected Utility

EU = (0.2)(3)+(0.5)(2)+(0.3)(-10) = -1.4 < 0             Don’t Invest!

-1.4

(Expected Payoff: $30K)
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A SIMPLE DECISION TREE: RISK-SEEKING DM

Decision 
Node

Invest

Don’t Invest

x1

x2

x3

0.2

0.3

0.5

$0

Payoff

$400K

$200K

-$500K

Utility

+10

+4

-1  

0

Decision Criterion: Maximize Expected Utility

EU = (0.2)(10)+(0.5)(4)+(0.3)(-1) = 3.7.                   Invest!

3.7

(Expected Payoff: $30K)
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ABSOLUTE AND RELATIVE RISK AVERSION
DESCRIBE A DM’S RISK ATTITUTE

The level of risk aversion may be measured by the (Arrow-Pratt) absolute-risk-
aversion coefficient,

or the relative-risk-aversion coefficient,

)(

)(
)(

xu

xu
xR






If R(x) > 0, the DM is risk-averse.  Similarly, if R(x) < 0, the DM is risk-seeking, 
while R(x)=0 for a risk-neutral DM.

)()( xxRxr 

Both absolute and relative risk aversion are local properties: 
they can vary for different outcomes.
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RISK NEUTRALITY: LINEAR UTILITY

xxu )(  )(xu 0)(  xu
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CONSTANT ABSOLUTE RISK AVERSION

Exponential utility: 
xexu  )( xexu   )(

xexu   2)(






)(

)(
)(
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1
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U
(X
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5-

5e
- 

 X

xexu  55)(

x

Exponential utility functions exhibit constant absolute risk aversion (CARA).(1)

(1) CARA utility functions are often used in financial modeling, since it allows obtaining conclusions free from wealth effects (adding a constant w to an individual’s
wealth just amounts to a positive linear transformation and thus leads to the same decisions, since the expected utility representation of the individual’s preferences
does not change).
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CERTAINTY EQUIVALENT

Denote the certainty equivalent of a lottery X by )(XCE

)())(( XEUXCEu Then: (DM is indifferent)

))(()( 1 XEUuXCE 

The certainty equivalent of a lottery is a single certain outcome for which the DM is 
indifferent between receiving the outcome for sure and participating in the lottery.  

It represents the “selling price” of the lottery.
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CERTAINTY EQUIVALENT: EXAMPLE

Utility

$

Risk-Averse Why does this correspond 
to risk aversion?

10

x
$10 Guaranteed

A lottery X = [0.5, $5; 0.5, $15] has 
expected utility EU(X).

155

(0.5) (0.5)

x

x

Certainty Equivalent
of Lottery

Therefore, you prefer $10 guaranteed, even 
though the lottery has expectation $10. 

Risk
Premium

EU(X)

- 42 -MGT-621-Spring-2023-TAW

CERTAINTY EQUIVALENT: ANOTHER EXAMPLE

0.25

0.50

0.25

Payoff (x)

$100

$49

$0

Utility u(x)

10

7

0

xxu )(

Expected utility: EU(X) = (0.25)(10) + (0.5)(7) + (0.25)(0) = 6

CECEuXEU  )()( 6CE 36CE

Consider the lottery X = [.25, $100; .5, $49; .25, $0] and the utility function 
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EXAMPLE: CONSTRUCTING A UTILITY FUNCTION FOR MONEY

Arbitrarily assign utilities to two real-valued outcomes, x1 and x2 (say, measured in 
dollars).  For example, x1 = -$128 and x2 = $128, and

u(-$128) = -100  and  u($128) = 100.

Use continuity axiom to specify other utilities.

Certainty Equivalence Method:  Fix p and two outcomes x1 and x2. Then find an 
outcome y which makes you indifferent between having y for certain or taking the 
lottery [p, x1;1-p, x2].

(1)

The value y is commonly referred to as the certainty equivalent (CE) of the lottery 
[p,x1;1-p,x2]: y = CE,

u(CE) = p u(x1) + (1-p) u(x2).

(1) In a set of discrete outcomes such an element y might not be available. Then one needs to adjust the probability p accordingly, which by the continuity
axiom can always achieve indifference. 

- 44 -MGT-621-Spring-2023-TAW

A MARKET FOR COIN FLIPS

Consider the following game. You flip a fair coin.

• If the first flip is heads (H) you win $2 and you flip the coin again. If it is 
tails (T), the you win $0 and the game is over.

• If the second flip is H you win $4 and you flip the coin again. If it is T, then 
you keep the $2 you won on the first flip and the game is over.

• If the n-th flip is H you win $2n and you flip the coin again. If it is T, then 
you keep the $2n-1 you won on the (n-1)st flip and the game is over.

The following table summarizes the outcome (we restrict the length to n < 7 to 
avoid bankruptcy of players).

Number of Heads in a Row (n) Total Winnings

1 $2

2 $4

3 $8

4 $16

5 $32

6 $64

7 $128
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A MARKET FOR COIN FLIPS (Cont’d)

Please answer the following question (depending on your role):

• Bankers: if you are a banker (i.e., act as a bank in this game), how much 
would you need to be paid for sure to run the game? The person with the 
lowest amount will serve as the banker and play the game for real.

• Players: if you are a player (i.e., you get to potentially win in this game), 
how much would you be willing to pay to participate in the game? The 
person with the highest amount will play the game for real.

- 46 -MGT-621-Spring-2023-TAW

MARKET FOR COIN FLIPS: ACTUARIAL VALUE

Let us compute the actuarial value of the coin-flip game X:

E[X] = (½) $0 + (¼) $2 + (1/8) $4 + … + (1/2n) $2n-1 + (1/2n) $2n

= (n-1) ($0.5) + $1 = $4.  

n = 7

The certainty equivalent CE(X) of the coin-flip lottery X for a player,(1) given a utility
function u, satisfies therefore:

so that

u(CE(X)) = (½) u($0) + (¼) u($2) + (1/8) u($4) + … + (1/2n) u($2n-1) + (1/2n) u($2n) = EU(X),

CE = u-1(EU(X))

You can read the utilities
off your utility function
constructed a couple of slides
ago (for n = 7)

(1) For a banker one can compute the CE in a similar way, just by taking the outcomes
in terms of losses instead of gains.
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1

10

100

1000

1 3 5 7 9 11 13

MARKET FOR COIN FLIPS: CLASS RESULTS

Actuarial Value

Players (14)

Bankers (14)
Transactions

Risk-Neutral
Students

The plotted values correspond to the certainty equivalents of bankers and players
respectively. Why are they not the same?

[$]
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INDIVIDUALS ARE RISK-AVERSE IN GAINS AND RISK-
SEEKING IN LOSSES (SENSITIVITY TO REFERENCE POINT)

We already did this experiment!

1. You have been given $200 and have a choice between the following two options

A:     Win    $150 with certainty

B:     Win    $300 with probability  .5

Win    $0     with probability  .5

• Do you prefer A or  B ?

2. You  have been given $500 and have a choice between the following two options

C:     Lose $150  with  certainty

D:     Lose $300  with probability  .5

Lose $0      with probability  .5

• Do you prefer C or D? 
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SENSITIVITY TO REFERENCE POINT: CLASS RESULTS

Gamble C Gamble D

Gamble A 35 28

Gamble B 7 8

According to utility theory A = C and B = D; so if A is preferred to B then C 
should be preferred to D and vice versa.

The “modal choices” are (i.e., “most people prefer”) A and D to avoid losses.

Rational choices (satisfying VNM axioms)

Risk
Averse

Loss
Averse

Remark: This sensitivity to the framing of the lottery choice in terms of either gains or losses is sometimes also referred to as reflection effect: preferences tend 
reverse if the lottery is “reflected” from the domain of gains (with respect to the status quo) to the domain of losses. For details, see Kahneman, D., Tversky, A. 
(1979) “Prospect Theory: An Analysis of Decision Under Risk,” Econometrica, Vol. 47, No. 2, pp. 263—291. 
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“REAL” UTILITY FUNCTIONS OFTEN LOOK LIKE THIS

-$128

$128

-100

100

u(x)

Loss Averse

Risk-Averse
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COMPARISON OF RISK AVERSION

Theorem (Pratt, 1964).

Proof: See notes on “Risk and Uncertainty” posted on the course website.
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WHEN IS ONE LOTTERY PREFERRED TO ANOTHER FOR A 
CLASS OF UTILITY FUNCTIONS?

(**)

(**)

(**)

Definition.

Answer: Construct a stochastic dominance order

• First-order stochastic dominance: all agents with increasing utility

• Second-order stochastic dominance: all agents with increasing concave utility

Class of Utility Functions (= Class of Agents)
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STOCHASTIC DOMINANCE: DEFINITIONS

Let X = [p1, x1; p2, x2; …; pn, xn] and Y = [q1, y1; q2, y2; …; qm, ym] be two given 
discrete random variables, each with a finite number of realizations. 

Without any loss of generality we can assume that m = n and that xi = yi for all i in 
{1, … , n}, and that x1 < x2 < … < xn. This situation can always be achieved by 
extending the discrete variables X and Y to all events in the union of {x1, … , xn} 
and {y1, … , ym} assigning zero probabilities if necessary and subsequent 
relabeling. 

Definition. Let m = n and xi = yi for all i in {1, … , n}. Y first-order stochastically 
dominates X if

for all k in {1, …, n}.

Definition. Let m = n and xi = yi for all i in {1, … , n}. Y second-order stochastically 
dominates X if

for all k in {1, …, n}.


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FIRST- AND SECOND-ORDER STOCHASTIC DOMINANCE

FOSD-ShiftSOSD-Shift Original Distribution
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FIRST- AND SECOND-ORDER STOCHASTIC DOMINANCE
General Case

FOSD SOSD

Let F, G be two cumulative distribution functions (measures) for random variables X and Y,
respectively, distributed on the set [a,b]. When does Y FOSD/SOSD-dominate X ?
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KEY CONCEPTS TO REMEMBER

• Risk and Uncertainty

• Objective and Subjective Probability

• Discrete Random Variable

• Lottery

• Von Neumann-Morgenstern Axioms  Expected Utility Representation

• Allais Paradox

• Expected Utility Maximization

• Risk Aversion (Absolute & Relative)

• Sensitivity to Reference Point (Reflection Effect)

• Stochastic Dominance (First-Order & Second-Order)
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Production Side of the Economy

Including …

• Corporations (… General Motors, Microsoft, Virgin Atlantic)

• Public utilities (… Pacific Gas and Electric Co., Metropolitan Water District)

• Partnerships (… law firm, McKinsey, start-up firm)

• Small businesses (… retail store, individual consultant, restaurant, internet
radio station)

• Home production (… home improvement, prepare meals)

• Educational institutions (… UC Berkeley, Stanford U)

• Non-profit organizations (… community hospital, YMCA)

THEORY OF THE FIRM
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Possible Objectives

• Maximize (expected) profit

• Maximize (expected) utility (which takes profits as one argument)

• Minimize cost (e.g., given fixed outputs)

Feasible Actions

• Production possibilities

• Legal constraints

• Competitive necessities

Firm chooses a most preferred action from the set of all feasible actions.

THE FIRM AS AN OPTIMIZER
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Maximization of (Expected) “Utility” (Objective Function)

• Could include accounting profits as only one variable among several 
others (such as a measure of output)

- Example: a community hospital may put a high value on 
accounting profits if it is losing money (negative profit), and a 
high value on the provision of medical services otherwise

Accounting 
Profit

Amount of Medical 
Services

Insolvency Indifference 
curves

A FIRM’S POSSIBLE OBJECTIVES: EXAMPLE
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THE FIRM AS A BLACK BOX
Compare Inflows and Outflows

Inputs Outputs

Cost of Inputs

$$$

Revenues

$$$

t = 0,1,2, …
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THE FIRM AS A BLACK BOX (Cont’d)
Converts Inputs to Outputs

Inputs z Outputs q = F(z)

t = 0,1,2, …

Production Function F

Stream
z = (z0,z1,z2, …)

Stream
q = (q0,q1,q2, …)

qt = Ft(z)

Costs: Ct(q) Revenues: Rt(q)
Profit at time t: 

t(q) = Rt(q) – Ct(q)

!!!
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PRODUCTION FUNCTION

The production function at time t might depend on current and/or (anticipated) 
future inputs,

,...),,()( 210 zzzFzFq ttt 

Question: Why?

Answer: There are many real-world phenomena which may produce dependencies
such as 

• Learning-Curve Effects(1)

• Demand Effects (e.g., Saturation)

In some practical applications current output depends only on current input, i.e., 

)()( tttt zFzFq 

(1) The commander of Wright-Patterson Air Force Base in Ohio observed in 1925 that the required direct labor hours for the assembly of a plane decreased in 
the number of planes built. First academic observations include Hirschman, W.B. (1964) “Profit from the Learning Curve,” Harvard Business Review, Jan/Feb, 
and Arrow, K.J. (1962) “Economic Welfare and the Allocation of Resources to Invention,” in: Nelson, R. (ed.) The Rate and Direction of Inventive Activity:
Economic and Social Factors, Princeton University Press, Princeton, NJ.  
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A FIRM CONVERTS INPUTS TO OUTPUTS
Simplification: Static Conversion  Omit Time Index

Production function F summarizes conversion

Firm

Input vector z Output vector q

)(zFq 

Sometimes it is difficult to decide what exactly is input and what is output, so that
it is useful to consider the “general” output (or “production possibility”)

y = (-z,q)

(Net) inputs have negative components and (net) outputs are represented by 
nonnegative components of y.
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Feasible Set

• Production Set (or Production Possibility Set) Y

Objective Function

• For simplicity, first assume that profit maximization is the objective, given 
a price p(y) for outputs
(it turns out that cost minimization for inputs is a necessary condition) 

 Profit-Maximization Problem

• Choose y to maximize the product (y) = p(y) y subject to y being feasible, 
i.e., solve

max  ( )
y Y

y




GENERAL (STATIC) MODEL OF THE FIRM

Firm chooses vector z > 0 of inputs 
to produce vector q > 0 of outputs = Firm chooses production possibility

vector y = (-z,q). 
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AGENDA

Introduction

Production Sets

Profit Maximization: Some Intuition

The Firm’s Cost Function

Profit Maximization

Key Concepts to Remember
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The firm’s production set Y contains all input-output bundles y it might choose.

Possible inputs: labor, land, buildings, raw materials, capital equipment, services, 
intermediate goods (produced by other firms), etc.

Possible outputs: finished goods, services, knowledge,
intermediate goods (to be used by other firms), etc.

Shape of Y implied by

• technological possibilities

• legal constraints

PRODUCTION SET Y
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-z = y1

q = y2

(Labor)

PRODUCTION SET: EXAMPLE

z

Y

(Widgets)
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y1

y2

PRODUCTION SET: ANOTHER EXAMPLE

Y

What is different here?
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PROPERTIES OF PRODUCTION SETS

We now discuss standard assumptions on a firm’s production set                  .

A1 (Non-Emptiness). The set Y contains at least one element.

A2 (Closedness). It is not possible to construct a sequence of elements of Y with 
limit outside Y.

A3 (No Free Lunch).                                   : it is not possible to have a positive net
output y > 0 (i.e., one cannot produce at least one positive net output and not use 
any positive net inputs). 

A1 – A3 are fundamental requirements which we assume are always satisfied.

}0{ 
LY

LY 
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NO FREE LUNCH

Production in this
quadrant is not possible!

(“one cannot make
something from nothing”)

}0{ 
LY
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PROPERTIES OF PRODUCTION SETS (Cont’d)

A4 (Possibility of Inaction).               , i.e., it is possible to do nothing. 

A5 (Free Disposal).                            , i.e., it is always possible to use more net 
inputs for the same net output. 

A6 (Irreversibility).                                  : it is not possible to obtain the inputs back 
once the outputs have been created. 

A4 – A6 are basic properties of production sets that may sometimes be violated.

Y0

YY L  

YyYy 
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FREE DISPOSAL

YY L  
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IRREVERSIBILITY

YyYy 
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PROPERTIES OF PRODUCTION SETS (Cont’d)

A7 (Nonincreasing Returns to Scale).                                                          , i.e., it is 
possible to scale down any feasible production vector. Mathematically, this means 
that Y is “star-shaped” with respect to the origin.

A8 (Nondecreasing Returns to Scale).                                                       , i.e., it is 
always possible to scale up any feasible production vector. 

A9 (Constant Returns to Scale).                                                  , i.e., any feasible 
production vector is completely scalable. Mathematically, this means that Y is a 
cone. 

A7 – A9 are useful properties of production sets that may or may not be satisfied.

]1,0[  YyYy

1  YyYy

0  YyYy
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NONINCREASING RETURNS TO SCALE

]1,0[  YyYy

Remark: The set Y exhibits decreasing returns to scale if                                                     .  )1,0(int   YyYy
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NONDECREASING RETURNS TO SCALE

1  YyYy

Remark: The set Y exhibits increasing returns to scale if                                                     .  1int   YyYy
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CONSTANT RETURNS TO SCALE

0  YyYy
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PROPERTIES OF PRODUCTION SETS (Cont’d)

A10 (Additivity/Free Entry).                                               , i.e., it is possible to 
combine any feasible production vectors. For an economy this means that the 
aggregate production possibilities are obtained by summing up the firms’ 
individual production possibilities, provided each firm is free to contribute or not 
(= free entry).

A11 (Convexity).                                                                               , i.e., any convex 
combination of feasible production vectors is feasible.  

A12 (Convex Cone Property).                                                                         , i.e., any 
feasible production vectors can be combined and scaled. The convex cone 
property is equivalent to the combination A9 and A11. 

A10 – A12 are structural properties of production sets that affect the optimization
methods when looking for optimal production vectors.

YyyYyy  ˆˆ,

)1,0(ˆ)1(ˆ,   YyyYyy

0,ˆˆ,   YyyYyy
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Feasible Set

• Production Set (or Production Possibility Set) Y

Objective Function

• For simplicity, first assume that profit maximization is the objective, given 
a price p(y) for outputs
(it turns out that cost minimization for inputs is a necessary condition) 

 Profit-Maximization Problem

• Choose y to maximize the product (y) = p(y) y subject to y being feasible, 
i.e., solve

max  ( )
y Y

y




GENERAL (STATIC) MODEL OF THE FIRM

Firm chooses vector z > 0 of inputs 
to produce vector q > 0 of outputs = Firm chooses production possibility

vector y = (-z,q). 
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y1

y2

  

  

ASSUMPTION THAT p(y)=p (I.E., LINEAR PRICING) …
… YIELDS CONSTANT ISO-PROFIT CURVES


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Profit maximization requires 
tangency

y1

y2

PROFIT MAXIMIZATION OVER PRODUCTION SET
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y1

y2

[ ]yD p y p 

( )DF y

( )p DF y

const.p y   
At Optimum

PROFIT MAXIMIZATION OVER PRODUCTION SET (Cont’d)
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y1

y2

WHAT HAPPENS WHEN THERE ARE KINKS IN PRODUCTION SET?
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PROFIT-MAXIMIZING FIRM WITH CONSTANT RETURNS TO SCALE

y1

y2

Increasing Profit
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PROFIT MAXIMIZATION WITH CONSTANT RETURNS TO SCALE

y1

y2

Increasing Profit
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PROFIT MAXIMIZATION WITH CONSTANT RETURNS TO SCALE?

y1

y2

Increasing Profit
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PROFIT-MAXIMIZATION WITH INCREASING RETURNS TO SCALE?

y1

y2

Increasing Profit
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y1

y2

y

NEITHER INCREASING NOR DECREASING RETURNS TO SCALE
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)}(:),{( zFqqzY L 

PRODUCTION FUNCTION

Assume that a firm can clearly distinguish between inputs and outputs, i.e., any y 
in the production set Y can be written in the form y = (-z,q) where z > 0 is the vector 
of inputs and q > 0 is the vector of outputs.(1)

Then it is possible to represent Y in the form

where F(z) is referred to called the firm’s production function.

(1) This holds when the firm’s production is “irreversible,” i.e., Y satisfies Assumption A6.
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})({min})({min
)(:),(

zzwzzw
qzFzYqzy




COST FUNCTION

Question. Given an increasing production function F(z), determine the firm’s cost 
function C(q), i.e., the firm’s minimum cost to produce a (feasible) output vector
q > 0.

Answer: Given a feasible vector q of outputs, the firm solves the expenditure 
minimization problem (or ‘cost minimization problem’ in this context)

where w(z) is the vector of (positive) input prices. The firm’s cost function C(q) is 
its minimal expenditure, 

})(:)(min{})({min)(
)(:

qzFzzwzzwqC
qzFz



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COST FUNCTION: EXAMPLE

Problem Set. Find the cost function C(q) implied by the production set

where  and  are positive constants with  +  < 1. 
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ECONOMIES/DISECONOMIES OF SCALE

A cost function C(q) with a scalar output q > 0 exhibits economies of scale if the 
average cost decreases in q > 0, i.e., 

If average costs increase in q, then C(.) exhibits diseconomies of scale; if average 
costs stay constant, then C(.) exhibits constant economies of scale.

[Remark. Marginal cost is the cost “at the margin,” corresponding to the slope of 
C(q) at q, i.e., MC(q) = C’(q).]

Similarly, a production function F(z) with a scalar input z exhibits economies of 
scale (diseconomies of scale/constant economies of scale) if the conversion rate 
F(z)/z increases (decreases/stays constant) in z > 0. 

q

qC
qAC

)(
)(  goes down, as q goes up.
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ECONOMIES/DISECONOMIES OF SCALE

Constant Economies of Scale
(Linear Cost)

Diseconomies of Scale
(Convex Cost)

Economies of Scale
(Concave Cost)

C (q)

q0
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q

MC(q)

AC(q)

MC(q)  =  AC(q) at the minimizer of the average cost (= “minimum efficient scale”)       
You should be able to prove this relation yourself

AVERAGE COST AND MARGINAL COST
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Difference between value to firm of outputs and cost to the firm of inputs.

For firm that sells outputs:

- Profit (q) is difference between total dollar revenues R(q) received by the firm 
and total dollar costs C(q) the firm incurs, as a function of its output q

Revenues include

• Money for selling the outputs, service fees, royalties, license fees, etc.

Costs include

• Expenditures for purchased goods, wages paid for labor, taxes

• Normal rate of return on invested capital

• Value of firm-owned resources allocated to alternative uses

• Value of time of the firm owner, allocated to firm activities

( ) ( ) ( )q R q C q  

PROFIT
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First-order necessary optimality conditions for local unconstrained (or “interior”) maximum. 

2

, 1

0

n

i i i j
q q



  
 

   

( ) ( )
0

i i i

R q C q

q q q

  
   

  
( ) ( )

( ) ( )i i
i i

R q C q
MR q MC q

q q

 
  

 

Second-order necessary optimality condition for local unconstrained maximum:

2 ( )D q

( ) ( ) ( )q R q C q  

That is, the Hessian                   must be a negative semi-definite matrix at the local maximizer.

PROFIT MAXIMIZATION
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( ) ( )R q C q

q q

 


 

''( ) ''( ) 0R q C q 

Necessary optimality conditions in the one-dimensional case

q

) (  MC q

q*

  (  )MR q

PROFIT MAXIMIZATION (Cont’d)



- 47 -MGT-621-Spring-2023-TAW

( ) ( )MR q MC q ''( ) ''( ) 0R q C q 

Necessary optimality conditions for profit-maximization (one-dimensional case)

Different Perspectives

• External Analyst
- Assumes marginal revenue = marginal cost
- Uses to predict activities of firms

• Internal Analyst
- Tries to see if the marginal revenue is equal to marginal cost, and adjusts levels 

of activities to bring two into equality.

PROFIT MAXIMIZATION (Cont’d)
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q

R(q) = p q

q*

C(q)

TOTAL COST AND REVENUE

Consider firm in a competitive market, where price p is a given constant
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q

R(q) = p q

C(q)

Fixed Cost

Average Cost:   AC(q) = C(q)/q 

Average Revenue:   AR(q) = R(q)/q  =  p 

Slope = AC

Slope = p

AVERAGE COST & AVERAGE REVENUE

C(0)
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q

MC(q)

AC(q)

MC(q)  =  AC(q) at the minimizer of the average cost (= “minimum efficient scale”)       
You should be able to prove this relation yourself

AVERAGE COST AND MARGINAL COST
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MINIMUM EFFICIENT SCALE

Let be a firm’s increasing, smooth, and convex cost function

MC

AC

AC, MC

Output q
q

Minimum Efficient Scale (1)

)(qC

qqCqAC /)()( 

)(')( qCqMC 

 min 0: '( ) 0q q AC q  

(1): More precisely:    0
min ( )min arg
q

AC qq



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( ) '( )   MC q C q

q

p

q*

''( ) 0

''( ) 0

R q

C q









Not optimal,  
second-order 
condition does not 
hold here 

OPTIMAL CHOICE OF THE FIRM’S OUTPUT LEVEL

'( )MR q p
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q

R(q) = p.q

C(q)

OPTIMAL CHOICE OF THE FIRM’S OUTPUT LEVEL (Cont’d)

Fixed Cost

C(0)

q*

Remark. The firm’s variable cost is C(y) – C(0).
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First and second-order conditions are necessary for an interior optimum.  Need to 
examine the boundaries of the action set as well (here: q* = 0)

q

R(q)=p.q

q*=0

C(q)

OPTIMAL CHOICE OF THE FIRM’S OUTPUT LEVEL (Cont’d)
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( )
   

dC q

dq

q

p0

q0*

pF

qF*

2

2

( )
0

d C q

dq


COMPARATIVE STATICS OF COMPETITIVE FIRM’S OUTPUT
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KEY CONCEPTS TO REMEMBER

• Profit = Revenue – Cost

• (Net) Inputs vs. (Net) Outputs

• Profit Maximization Problem

• Production (Possibilities) Set

• Properties of Production Sets

• Production Function 

• Increasing/Decreasing/Constant Returns to Scale

• Cost Function 

• Cost Minimization Problem

• Average Cost, Marginal Cost

• Profit Maximization

• Marginal Revenue = Marginal Cost
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Definition. Market power is the ability of a firm to increase its output prices above the 
competitive level, and/or to reduce its input prices below the competitive level.

• Monopoly

- Single seller of a product

• Oligopoly

- Small number of sellers of a product

• Monopsony

- Single buyer of a product

• Oligopsony

- Small number of buyers of a product

MARKET POWER

Sellers’ Market

Buyers’ Market
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ANALYSIS OF MARKET POWER
Initial Focus on Single Firm

We first examine the case where one single firm has market power, in a monopoly 
or a monopsony. Other market participants’ actions are aggregated to a market 
demand (for monopoly) or a market supply (for monopsony). 

• When more than one firm holds market power, it is necessary to model 
the interactions between those firms explicitly. For this, one needs the 
tools of Game Theory

Since actions of all non-market-power-holding entities (the ‘other’ side of the 
market) are aggregated into a demand curve (or a supply curve), this is often 
referred to as partial equilibrium analysis. 

In general equilibrium analysis, the optimizing behavior of all market participants is 
explicitly taken into account (they could be price takers or not).

We first focus on partial equilibrium analysis of monopoly and monopsony.
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The quantity of commodity i a monopolist can sell, its “demand” Di(p), is a decreasing function 
of the price pi. Equivalently, the price at which the firm can sell the product, referred to as its 
“inverse demand” pi(qi,q-i; p-i),  is a decreasing function of the quantity qi.

DEMAND CURVE

Quantity of Good i

Price of
Good i

qi

pi

( , )  

 ( , ; )
i i i i

i i i i i

q D p p

p p q q p


 





Demand Curve

Inverse Demand Curve
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( ) ( ) ( )
0       

( ) ( )
   

d q dR q dC q

dq d

dR q d

q dq

C q

dq dq


   

( ) ( ) ( ) ( ) ( )q R q C q p q q C q    


0

( ) ( )
( ) ( )

dp q dC q
p q p q q

dq dq


  

OPTIMAL CHOICE OF MONOPOLY OUTPUT

Assume that a monopolist produces a quantity q of a single output and that the market
price at that output is given by the downward-sloping inverse market demand p(q). The
monopolist’s cost function C(q) is increasing and convex. 

Monopolist’s profit:

Revenue Cost

First-order necessary optimality condition:

Hence,

In other words, the market price in a monopoly exceeds marginal cost!
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OPTIMAL MONOPOLY OUTPUT (Cont’d)

q

p

q*

p(q*)

( )MR q

( )p q

( )MC q

Competitive
Output

Monopoly
Output
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( )
 ( )

( )

p dD p
p

D p dp
  

MONOPOLY PRICING
Inverse Elasticity Rule

Consider the monopolist’s choice of a profit-maximizing price p, given its (downward-
sloping) demand function D(p). 

The (own-price) demand elasticity is

Maximizing the monopolist’s profit

yields the first-order necessary optimality condition

 ( ) ( ) ( ( ))p pD p C D p  

( ) ( ( )) ( )
( )

dD p dC D p dD p
D p p

dp dq dp
  or  '( ) ( ( ))

1 ( ( )) ( )
( )

D p p MC D p
p MC D p p

D p p


  
    
 

Hence, we obtain the “inverse elasticity rule” for monopoly pricing:

( ( )) 1
1

( )

p MC D p

p p


 

Relative Markup Inverse Demand Elasticity
(Lerner Index)

- 10 -MGT-621-Spring-2023-TAW

Demand Elasticity Lerner Index:  Markup as 
Percent of Price

Markup in Percent of 
Marginal Cost

50 2% 2%

20 5% 5%

10 10% 11%

2 50% 100%

1.5 67% 200%

1.1 91% 1,000%

1.01 99% 10,000%

1 100% Infinity

RELATIVE MONOPOLY MARKUPS
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DEMAND ELASTICITY CHANGES ALONG DEMAND FUNCTION

0 

1 

( )
( )

( )

p dq p
p

q p dp
    

q

p

1 

Monopoly chooses production 
(or price) such that demand 
elasticity exceeds 1

… typically from 0 to infinity
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INEFFICIENCY CREATED BY MONOPOLY

q

p

qm

pm

( ) ( ) '( )MR q p q qp q 

( )p q

( )MC q

Competitive
Output

Monopoly
Output

“Deadweight Loss”
(DWL)

pc = MC(qc)Competitive
Price

 DWL ( ( ) ( )) ( ) ( ) ( )

c c

m m

q q
c m

q q

p q MC q dq p q dq C q C q     

qc
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WHAT CAN A REGULATOR DO?
Price Caps

When trying to reduce the deadweight loss created by a monopolist, the typical 
difficulty a regulator faces, is that the marginal cost MC(q) as a function of output 
belongs to the monopolist’s private information.

Hence, when imposing a price-cap preg the regulator has no way of knowing if the 
regulated price is corresponds to the efficient market price

Two exceptions: 

• When preg > pm, then the observed market price is below the price cap

• When preg < pc, then one may be able to observe excess demand

In general, in order to set an efficient market price (improving the performance of
the market by reducing deadweight loss) a regulator needs to find ways to elicit the 
monopolist’s private information about its cost structure.
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The quantity zi of commodity i a monopsonist can buy, its “supply” Si(wi,w-i; z-i), is an 
increasing function of the price wi. Equivalently, the price at which the firm can buy the product, 
referred to as its “inverse supply” wi(zi,z-i; w-i),  is a decreasing function of the quantity zi.

SUPPLY CURVE

( , ; )  

 ( , ; )
i i i i i

i i i i i

z S w w z

w w z z w
 

 





Supply Curve

Inverse Supply Curve

zi

wi

zi

wi
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( ) ( )
0   for 1i

i i

z q z
p w i

z z

 
   

 

1 1 1
1

( ) ( ) ( )i i
i

z pq z w z w z z


   

1 1
1 1 1

1 1 1

( )( ) ( )
( ) 0

w zz q z
p w z z

z z z

 
   

  

( )
   for 1i

i

q z
p w i

z


 


1 1

1 1 1 1 1
1 1

( )( )
( ) ( )

w zq z
p w z z w z

z z


  

 

OPTIMAL MONOPSONY INPUT

Without loss of generality, consider input 1, and assume that the firm has one output q
which is produced as a function of the input vector, i.e., q(z) is the firm’s production function.

Profit:

FOCs:
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z1

w1

z1

w1

1 1( )w z

1 1
1 1 1

1

( )
( )

w z
w z z

z





1

( )q z
p

z




MONOPSONIST’S INPUT CHOICE

Consider input 1.

Competitive
Input Price

Monopsony
Input Price
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WHAT IS PRICE DISCRIMINATION?

Definition. Price discrimination exists if different units of the same good are sold at 
different prices to one or more consumers.

One commonly distinguishes three different degrees of price discrimination.

• First-Degree Price Discrimination: the seller charges a price for each unit 
corresponding to the maximum willingness to pay over all available 
consumers of that unit. This is also referred to as perfect price 
discrimination as it maximizes the seller’s revenues.

• Second-Degree Price Discrimination: the seller charges different amounts 
for different numbers of units bought by the same consumer. This is also 
referred to as nonlinear pricing.

• Third-Degree Price Discrimination: the seller charges different prices to 
different consumer groups based on observable differences between the 
groups.
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FIRST-DEGREE PRICE DISCRIMINATION

If the maximum willingness to pay for each unit is available, then the seller can 
order these values so that the willingness to pay for additional units is 
nonincreasing. This yields a nonincreasing inverse demand curve p(q) as a 
function of the seller’s output q.

The seller can choose the optimal output by maximizing

with respect to q. The first-order necessary optimality condition is
0

ˆ ˆ( ) ( ) ( )
q

q p q dq C q  

( ) ( )p q MC q

In other words, the seller should increase output until the maximum willingness to
pay for the next unit exactly equals her marginal cost of producing that unit.

Note that with perfect price discrimination, the monopolist’s deadweight loss vanishes,
and so does the consumers’ surplus.
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SECOND-DEGREE PRICE DISCRIMINATION

• Second-degree price discrimination (or “nonlinear pricing,” or 
“screening”) is a mechanism-design problem. It is more difficult than first-
degree or third-degree price discrimination, but it is also more realistic.

• It operates under the assumption that the seller knows that consumers 
have heterogeneous preferences but is unable to directly distinguish the 
different consumers. Information about a given consumer’s preferences 
(his utility function) is assumed to be only privately available to that 
consumer.

• In order to incentivize a consumer to reveal his utility function (or his 
“type”) the seller needs to offer several options for the consumer to 
choose from. Through his choice the consumer “reveals” his preference, 
and the seller may thereby be able to charge different consumers (or 
groups of consumers) different prices.

• The solution to the problem will naturally depend on the seller’s model of 
the consumer heterogeneity. 
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EXAMPLE: SELLING A REFRIGERATOR
Screening Model

Instead of quantities (which can vary continuously) we take a very simple shot at 
this generally difficult problem and examine a special case where the seller has 
two refrigerators (of qualities q1=1 and q2 = 2) to sell to consumers who are 
heterogeneous but indistinguishable to the seller. 

Question. How much should the seller charge for the two refrigerators?

What needs to be considered?

1.Buyer’s private information: 

• The seller does not know how much the buyer is willing to pay for the 
refrigerator

• She assumes that the buyer values a refrigerator of quality q at               ,
where      is unknown to her

• She assumes that the buyer might be of two types                        :  with 
probability  it is             and with probability 1- it is 

2. The buyer’s voluntary participation in the mechanism

• The seller cannot force the buyer to pay more than his WTP u

• The seller has to leave the choice of the refrigerator up to the buyer

},{ HL  
1L

qu 


2H
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SELLING A REFRIGERATOR (Cont’d)

Designing a mechanism amounts for the seller to choosing the best possible 
prices p1 and p2 for the two products (of qualities q1 and q2 respectively).

Seller’s maximizes expected revenues and assuming that the high-type buys the 
product

Buyer’s participation (“individual rationality”):

• Type              :   participates if and only if

• Type              :   participates if and only if

• Type              :   chooses q1 over q2 if and only if

• Type              :   chooses q2 over q1 if and only if

1L 1111  pqp L
2H 4222  pqp H

Buyer’s choice (“incentive compatibility”):

1L
12121122 112 pppppqpq LL  

2H
242 12212211  pppppqpq HH 
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SELLING A REFRIGERATOR (Cont’d)

Hence, the seller solves the following revenue-maximization problem:

subject to                                 (individual rationality)

and                                         (incentive compatibility)

 21
,

)1(max
21

pp
pp

 

4,1 21  pp

21 12  pp

4

1 p1

p2

2

1

0

3 3,1 21   pp (full participation;
sell both products)

optimal for        2/1

4,2 21   pp (only       participates;
sell only product 2)

optimal for        2/1
H

2,1 21   pp

optimal for        2/1

(full participation;
sell only product 2)

(*)

Remark. Solution (*) is typically “overlooked” in the more general case, as it does not satisfy the incentive-compatibility constraint
for the low type but at the same time encourages full participation. We neglect it in the discussion that follows.
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CONCLUSIONS ABOUT THE SCREENING MODEL
Second-Degree Price Discrimination

Key Conclusions from the example: (generalizes to other nonlinear pricing models)

1. In the presence of asymmetric information, high consumer types typically 
obtain a positive surplus (“information rent”)

2. Low-type consumers exert a positive externality on high-type consumers

3. As low-type consumers become less frequent, it becomes optimal for the seller 
to exclude them from the market (“shut-down solution”)

4. When designing a good mechanism, the seller needs to take into account the 
consumers’ individual rationality and incentive compatibility constraints

5. As long as the seller can commit to her mechanism she can, without any loss in 
generality, restrict her attention to “truthful” mechanisms in which all 
participating agents report their types truthfully (“revelation principle”)
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A MORE GENERAL EXAMPLE

Question. At what qualities and what prices should a company offer a “vertically
differentiated” product, such as an espresso maker?

For simplicity, we restrict attention to a firm which offers at most two products.
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THERE ARE MANY OTHER EXAMPLES
Memory Sticks
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CONSIDER A SIMPLE SCREENING MODEL

Model Features

• Two Types (“high”       and “low”     , with                        )

• Utility increasing in instrument and in type, quasi-linear in wealth

• Outside option valued at zero

• Risk-neutral seller, maximizes expected profit

• Prior beliefs of principal (corresponding to the probability  of a 
consumer being a high type) given

• Instrument (i.e., product quality) costly to provide, C(q) > 0

What is missing? – SORTING CONDITION … 

u exhibits “increasing differences” (or is “supermodular”)

The sorting condition enables the seller to separate high types from low types.

LH 0H L  
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SELLER’S PROBLEM

The seller chooses the qualities and prices of the products such as to maximize 
her expected profits, i.e., she solves the constrained optimization problem

    
, , , 0

max (1 ) ( ) ( )
L H L H

L L H H
p p q q

p C q p C q 


   

subject to

( , ) 0

( , ) 0
L L L

H H H

u q p

u q p




 
 

(IR-L)

(IR-H)

(IC-L)

(IC-H)

Individual Rationality

Incentive Compatibility
( , ) ( , )

( , ) ( , )
L L L H L H

H H H L H L

u q p u q p

u q p u q p

 
 

  
  
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THE SELLER’S PROBLEM CAN BE SIMPLIFIED

Two constraints are binding.

1. (IR-L) is binding at optimum

2. (IC-H) is binding at optimum

Proof. Assume not. Then                                     , so that( , ) 0L L Lu q p  

( , ) ( , ) ( , ) 0H H H L H L L L Lu q p u q p u q p       

But this means that       cannot be optimal, a contradiction.               QEDLp

(IC-H) / 0u   

Proof. Assume not. Then

( , ) ( , ) ( , ) 0H H H L H L L L Lu q p u q p u q p       

But this means that the seller could increase        , a contradiction. QEDHp

(IC-H) / 0u   

(*)
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THE SELLER’S PROBLEM CAN BE SIMPLIFIED (Cont’d)

Two constraints are redundant.

3. (IC-L) can be neglected

4. (IR-H) can be neglected

Proof. Since (IC-H) is binding, it is ( , ) ( , )H H H L H Lu q p u q p   

( , ) ( , ) ( , ) ( , )H L H H L H H L L Lp p u q u q u q u q       

Therefore

Hence,

(SC)

( , ) ( , )L L L H L Hu q p u q p    QED

The proof follows directly from (*) in the proof of claim 2.
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THE SIMPLIFIED PROBLEM

The seller’s nonlinear pricing problem is equivalent to

    
, , , 0

max (1 ) ( ) ( )
L H L H

L L H H
p p q q

p C q p C q 


   

subject to

( , ) 0L L Lu q p   (IR-L)

(IC-H)( , ) ( , )H H H L H Lu q p u q p   

The constraints (IR-L) and (IC-H) can be directly substituted into the objective function.
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THE SIMPLIFIED PROBLEM

The seller’s nonlinear pricing problem is equivalent to

    
, 0

max (1 ) ( , ) ( ) ( ( , ) ( , ) ( , )) ( )
L H

L L L H H L H L L H
q q

u q C q u q u q u q C q     


     

Hence, the seller’s optimal quality levels obtain as follows (for  > 0):

   *

0
arg max ( , ) ( ) ( , ) ( , ))

1L

L L L L L H L L
q

q u q C q u q u q
  


 
     

 *

0
arg max ( , ) ( )

H

H H H H
q

q u q C q


  (Efficient Quality Level)

(Distorted
Quality Level)

From (IR-L) and (IC-H) we then get

* *( , )L L Lp u q  (Efficient Price Level)

 * * * *( , ) ( , ) ( , )H H H L H L Lp u q u q u q     (Distorted Price Level)

Information Rent ( > 0 )
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FIRST-BEST AND SECOND-BEST SOLUTIONS
IN THE SCREENING MODEL
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PRICE AND QUALITY IN THE TWO-TYPE SCREENING MODEL

( , )u q q  2( ) / 2, 0C q q  Example:
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THIRD-DEGREE PRICE DISCRIMINATION

For simplicity, let us assume that there are two different consumer groups, 1 and 2, 
that the seller can distinguish and which can legally be charged different prices for 
the same product. Let the inverse demand curve of consumer group                  be 
given by             , where qi is the amount consumed by that group.

Given a standard (increasing, convex) cost function C(q), the monopolist then 
solves the profit-maximization problem

which for                    leads to the first-order necessary optimality conditions

( )i ip q
{1, 2}i

 
1 2

1 1 1 2 2 2 1 2
, 0

max ( ) ( ) ( )
q q

p q q p q q C q q


  

1 2, 0q q 

1 1 1 1 1 1 2

2 2 2 2 2 1 2

( ) ( ) ( )

( ) ( ) ( )

p q q p q C q q

p q q p q C q q

   

   

Hence, at an optimum, the marginal revenues from the two consumer groups are
equal to each other and equal to the marginal cost at the combined output.
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THIRD-DEGREE PRICE DISCRIMINATION (Cont’d)

More generally, the two consumer groups may not be fully separable. Each group’s 
demand may be influenced by the amount sold to the other group. Then the inverse 
demand curve of consumer group                  is given by                   , where qi is the 
amount consumed by that group.

Given an increasing, jointly convex cost function C(q1,q2), the monopolist then 
solves the profit-maximization problem

which for                    leads to the first-order necessary optimality conditions

1 2( , )ip q q{1, 2}i

 
1 2

1 1 2 1 2 1 2 2 1 2
, 0

max ( , ) ( , ) ( , )
q q

p q q q p q q q C q q


 

1 2, 0q q 

1 1 2 2 1 2 1 2
1 1 2 1 2

1 1 1

1 1 2 2 1 2 1 2
2 1 2 1 2

2 2 2

( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )
( , )

p q q p q q C q q
p q q q q

q q q

p q q p q q C q q
p q q q q

q q q

  
  

  
  

  
  

At an optimum, the marginal revenue from each of the two consumer groups is
equal to the marginal cost of increasing the output for that group (sometimes equal
to the marginal cost of increasing output for the other group, e.g., when the cost
depends only on q1 + q2).
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AGENDA

What is Market Power?

Monopoly

Monopsony

Price Discrimination

Key Concepts to Remember
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KEY CONCEPTS TO REMEMBER

• Market Power

• Monopoly/Monopsony

• (Own-)Price Elasticity

• Inverse Elasticity Pricing Rule

• Lerner Index

• Deadweight Loss

• Price Caps

• Price Discrimination (first/second/third degree)
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OLIGOPOLY THEORY
Introduction

So far in this course we have not emphasized strategic interactions between firms. 

• We have seen that externalities can lead to significant distortions of the 
market outcome, even if all firms are price takers

• When a monopolist has market power, it can use second-degree price 
discrimination to segment a heterogeneous consumer base. For that 
analysis we did consider strategic interactions, but obtained a pure 
optimization problem, since the monopolist is able to move first by 
committing to a pricing scheme, anticipating the consumers’ actions

When multiple firms select their actions simultaneously, and those actions directly 
influence each others’ payoffs (i.e., there are externalities), then we need game 
theory to produce reasonable predictions about the outcome of the interaction.

Game theory is a fundamental tool in the analysis of strategic interactions
between multiple firms with market power.
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AGENDA

What is Game Theory?

Building Blocks and Key Assumptions

Market Structure & Strategy Analysis

• Cournot Quantity Competition

• Bertrand Price Competition

Key Concepts to Remember
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GAME THEORY
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GAME THEORY
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JOHN VON NEUMANN
(1903 – 1957)

Oskar Morgenstern
(1902 – 1976)
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JOHN FORBES NASH
(1928 – 2015)

- 8 -MGT-621-Spring-2023-TAW

GAME THEORY

Game Theory is the analysis of strategic interactions among agents.

A strategic interaction is a situation in which each agent, when selecting his or her 
most preferred action, takes into account the likely decisions of the other agents.

Example: War

The objective of game theory is to provide predictions about the behavior of agents 
(players) in strategic interactions. The more precise these predictions are, the 
higher their “predictive power.”

“In war the will is directed at an animate object that reacts.”

- Carl von Clausewitz, On War

(1) Cf. von Clausewitz, C. (1976) On War, Princeton University Press, Princeton, NJ. Clausewitz lived from 1780 to 1831; for more details about his life 
and work, see http://www.clausewitz.com/. The first systematic academic treatment of game theory is von Neumann, J., Morgenstern (1944) Theory of
Games and Economic Behavior, Princeton University Press, Princeton, NJ.
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AGENDA

What is Game Theory?

Building Blocks and Key Assumptions

Market Structure & Strategy Analysis

• Cournot Quantity Competition

• Bertrand Price Competition

Key Concepts to Remember
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NORMAL-FORM GAME

Building Blocks

- Players,

- Action Sets (Strategy Spaces),     , with elements 

- Individual Payoffs(1),         , where                                                and 

- (Mixed) Strategies,(2) and 

Definition: A Normal-Form Game is a collection of players, action sets, and 
payoffs, 

},...,1{ nNi 

iA

)(aui

ii Aa 

nii AAAaaa   1),(

niiii AAAAAa    111

)( ii A )( ii A 

N

 )}({)},({,  iiN uAN

(2) Instead of pure strategies (elements of     ) we allow “mixed” strategies (elements of          ). If      is finite containing       elements, 
then           corresponds to the            -dimensional simplex over     . 

iA )( iA iA im
)( iA )1( im iA

(1) The payoff functions          are generally taken to be von Neumann-Morgenstern utility functions. You can think of them as bounded measurable
functions (functionals) mapping actions (probability distributions over actions) into real values. The payoff of a mixed strategy profile
is simply the expected value over the random action profile, 

)(iu

  )()(...)(),()( 11 auaauu i
Aa

nniiii 


  
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PRISONER’S DILEMMA
Example

Two suspects, 1 and 2, are being interrogated separately about a crime 

• If both confess, each is sentenced to five years in prison

• If both deny their involvement, each is sentenced to one year in 
prison

• If just one confesses, he is released but the other one is 
sentenced to ten years in prison

Assume that each player’s payoffs are proportional to the length of time 
of his prison sentence.

Formulate this game in normal form.
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PRISONER’S DILEMMA (Cont’d)
Example

Normal-Form Representation

- Players,

- Action Sets,     

- Individual Payoffs,                 , defined by “payoff matrix”

- (Mixed) Strategies,                                                           , with 

Payoff Matrix(1)

}2,1{Ni
}{ ConfessDeny,Ai 

),( 21 aau

0))(),((  ConfessDeny iii 
1)()(  ConfessDeny ii 

Confess

Confess

Deny

Deny

(-5,-5)

(-10,0)

(0,-10)

(-1,-1)

Player 2

Player 1

(1)  The payoff matrix is equivalent to a normal-form representation for (static) two-player games with finite action sets. 
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PRISONER’S DILEMMA (Cont’d)
Example

Find Prediction about Outcome of this Game

• Consider player 1’s “best response” when fixing player 2’s strategy

• Consider player 2’s “best response” when fixing player 1’s strategy

Hence, each player has a dominant strategy: no matter what the other player does,
it is optimal (i.e., payoff-maximizing) for player i to select                        . 

Note also that the outcome is inefficient (i.e., does not maximize social surplus).

Confess

Confess

Deny

Deny

(-5,-5)

(-10,0)

(0,-10)

(-1,-1)

Player 2

Player 1

Confessai 
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FUNDAMENTAL ASSUMPTIONS

Question: What assumptions are necessary to arrive at predictions about 
outcomes of normal-form games?

Assumption 1: All players are rational, i.e., they maximize (expected) payoffs.

Assumption 2: The players’ payoff functions and action sets are common 
knowledge, i.e.,(1)

- Each player knows the rules of the game

- Each player knows that each player knows the rules

- Each player knows that each player knows that 

each player knows the rules
- Each player knows that each player knows that each player knows that 

each player knows the rules
- Each player knows that each player knows that each player knows that each player knows that each player knows the rules

- …

Assumptions 1 and 2 imply a unique prediction in the Prisoner’s Dilemma game;
we will maintain these assumptions throughout this course

(1) For a formal definition of common knowledge, see Osborne, M.J., Rubinstein, A. (1994) A Course in Game Theory, MIT Press, Cambridge, MA, pp. 73—75.
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WHAT HAPPENS IF PLAYERS ARE NOT RATIONAL?
Relaxing Assumption 1

Relaxing the rationality assumption leads to boundedly rational agents, which is 
compatible with empirical observations. Some features of real-world agents which 
violate the rationality assumption are:

• Overconfidence

• Sensitivity to framing of the problem

• Satisficing behavior

• Intransitive preferences over outcomes (e.g., Allais Paradox, Ellsberg Paradox)

• Limited information-processing capabilities

• Availability heuristic

• Status-quo bias (e.g., endowment effect, regret avoidance, cognitive 
dissonance)

• …

There is a fast growing literature on “behavioral game theory” (1)

(1) See e.g., Camerer, C.F. (2003) Behavioral Game Theory: Experiments in Strategic Interaction, Princeton University Press, Princeton, NJ. For more on behavioral
decision making, see Kahnemann, D., Tversky, A. (2000) Choices, Values, and Frames, Cambridge University Press, Cambridge, UK.
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UNDERSTANDING RATIONALITY

Consider the following normal-form game (for which we just provide the payoff 
matrix):

Player 2 has a strictly dominant strategy; his dominated strategy can thus be 
eliminated. This leads to a unique prediction of the outcome (U,L) in this game.

Note though that player 1 has to be absolutely sure of the rationality of player 2!

L

U

R

D

(4,4)

(3.9,3.9)

(-1000,3.9)

(4,3.8)

Player 2

Player 1
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PURE-STRATEGY NASH EQUILIBRIUM

Definition: For any normal-form game                                             a pure-strategy 

Nash equilibrium is a strategy profile                       , such that for every            :

In other words,

or equivalently

Examples: The Prisoner’s Dilemma game has a unique pure-strategy Nash 
equilibrium (NE), in the Matching Penny game such an equilibrium does not exist

),( 


  ii aaa Ni

),(maxarg 


  iii
Aa

i aaua
ii

 )}({)},({,  iiN uAN

NiAaaauaau iiiiiiii  





 ,),(),(

NiaBa iii  


 )(
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MIXED-STRATEGY NASH EQUILIBRIUM

To increase the predictive power in games such as Matching Pennies, we extend 
the definition of Nash Equilibrium to include mixed strategy profiles of the form

.

Definition: For any normal-form game                                             a mixed-strategy 

Nash equilibrium is a strategy profile                        , such that for every            :

where

)()( 1 nAA  

 )}({)},({,  iiN uAN
),( 


  ii  Ni

),(maxarg
)(




  iii
A

i u
ii




  )()(...)(),()( 11 auaauu i
Aa

nniiii 


  



- 19 -MGT-621-Spring-2023-TAW

MATCHING PENNIES

In the Prisoner’s Dilemma game the assumptions of common knowledge and 
rationality were enough to generate a unique prediction about the outcome, the 
reason being that each player found it strictly dominant to confess.

As we see below, rationality and common knowledge, are generally not enough to 
generate a prediction for the outcome of a normal-form game.

Example: Matching Pennies

In a game of Matching Pennies, Ann and Bert, show each other a penny with either 
heads (H) or tails (T) up. If they choose the same side of the penny, Ann gets both 
pennies, otherwise Bert gets them.

(Note that this is a zero-sum game, as are most games people play for leisure.)
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MATCHING PENNIES (Cont’d)

H

H

T

T

(1,-1)

(-1,1)

(-1,1)

(1,-1)

Bert

Ann

Question: What is the outcome of this game?

Normal-Form Representation

},{ BertAnnN 

NiTHAi  },,{

)(iu defined by the following payoff matrix



- 21 -MGT-621-Spring-2023-TAW

MATCHING PENNIES (Cont’d)

Consider each player’s best-response correspondence

H

H

T

T

(1,-1)

(-1,1)

(-1,1)

(1,-1)

Bert

Ann

 iiiiiiiiiiii
Aa

ii AaaauaauAaaauaB
ii

  ˆ),,ˆ(),(:),(maxarg)(

HHBAnn )(

TTBAnn )(

THBBert )(

HTBBert )(

Result: The players’ best-response correspondences do not “intersect.”
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MATCHING PENNIES (Cont’d)

Let us try to find a mixed-strategy Nash equilibrium in the Matching Pennies game. 
For simplicity set Ann = Player 1 and Bert = Player 2, so that 

The player’s mixed-strategy spaces are 

Without loss of generality, let                     and                     .

Then

 1)()(0)(),(:))(),(()(  THandTHTHA iiiiiii 

}2,1{N

pH )(1 qH )(2

   
   
   

)(

)12)(21(

21)1(12

)1()1()1(

),()1(),()1(),()1(),()(

2

11111





u

qp

qpqp

qqpqqp

TTuqHTqupTHuqHHqupu








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MATCHING PENNIES (Cont'd)

This is a linear optimization problem for each player. Note that player 1 has only 
control over     and player 2 has only control over    . 

Player 1 can make player 2 indifferent about any of his strategies by choosing

i.e.,                                              and thus 

If player 1 chooses a different strategy, player 2 is not indifferent and strictly 
prefers to play either           (for           ) or            (for           ).

On the other hand, if player 2 chooses anything other than          , player 1 is not 
indifferent about her actions and will strictly prefer to play a pure strategy.

As a result,                          with                         is the unique mixed-strategy Nash 
equilibrium of the Matching Pennies game.  

qp

5.p
)5.0,5.0()1,(ˆ1  pp

)ˆ,(maxarg)( 122
)(

2
22




uA
A



0q 5.p 1q 5.p

5.q

),( 21
   )5,.5(.

i
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ROLE OF INDIFFERENCE

We emphasize the role that the players’ indifference played in determining the NE 
in the Matching Pennies game. The following assumption is maintained for the rest 
of the course.

Assumption: provided indifference between two or more actions in a player’s 
(mixed-strategy) best-response correspondence, this player will select an action 
that is part of a (mixed-strategy) Nash equilibrium.(1)

(1) In other words, if a player is indifferent between a strategy that is not a part of a particular Nash equilibrium and a strategy that is part of a particular Nash
equilibrium, we assume that this player plays the strategy that is part of the equilibrium (i.e., he makes the equilibrium happen).  
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MATCHING PENNIES (Cont'd)

It is possible to graph the players’ best-response correspondences. The unique 
intersection is at                               . )5,.5(.*)*,( qp
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AGENDA

What is Game Theory?

Building Blocks and Key Assumptions

Market Structure & Strategy Analysis

• Cournot Quantity Competition

• Bertrand Price Competition

Key Concepts to Remember
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PORTER’S FIVE FORCES
… and what influences them

Entrants

RivalrySuppliers Buyers

Substitutes

• Concentration
• Demand Elasticity
• Information/Expectations
• Externalities
• Lock-in, Switching Costs

• Demand Cross-Elasticity
• Product Differentiation
• Technology Shifts

• Concentration
• Relationship-specific investment
• Transaction costs
• Incomplete contracts
• Incentives
• Market vs. Nonmarket Transactions

• Scale
• Product Differentiation
• Complementarities
• Reputation

• Barriers to Entry/Exit
• Information/Transparency
• Sales Growth
• Economies of Scale

Note: For the original presentation of the Five-Forces Model, see Porter, M.E. (1980) Competitive Strategy, Free Press, New York, NY.
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BRANDENBURGER AND NALEBUFF’S VALUE NET
The Firm and Its Network of Transaction Relationships

Supplier Supplier

ComplementorFirmCompetitor

Customer Customer

Flow of 
Goods & 
Services

Note that the firm and its competitors/complementors can have relationships 
in different markets at the same time (“multimarket contact”)

Note: For the original presentation of the value net, see Brandenburger, A.M., Nalebuff, B.J. (1995) “The Right Game: Use Game Theory to Shape Strategy,” 
Harvard Business Review, Vol. 73, No. 4, pp. 57—71. The presentation here is close to the one in McAfee, R.P. (2002) Competitive Solutions: The Strategist’s
Toolkit, Princeton University Press, Princeton, NJ, p. 25.
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INDUSTRY ANALYSIS
Example
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CHOOSING QUANTITIES: COURNOT DUOPOLY

Consider two firms, 1 and 2, choosing their production outputs q1 and q2
simultaneously. Each firm has a unit production cost of c (with 0 < c < 1). 

• The market (inverse) demand is given by

Question. Determine a Nash equilibrium of this game.

Solution.

Firm i’s profit is     iii qqqcqcqqpqq 212121 1),(),( 

021
),( !

21 



ji

i

i qqc
q

qq
• Its optimality condition is

• Its best-response to qj is therefore
2

1
)( j
ji

qc
qq




2121 1),( qqqqp 

2

1 
 
 i

i

qc
q• Symmetry implies that at the Nash equilibrium
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COURNOT DUOPOLY (Cont’d)

2

1
)( 2

21

qc
qq




2

1
)( 1

12

qc
qq




1q

2q


1q


2q

3

1
21

c
qq


 

Unique Nash Equilibrium:
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COURNOT OLIGOPOLY
Generalization of Previous Example

Consider the symmetric linear model and perfect substitutability, where 

with                           ,               , and

where                 .

• We find that at the unique NE each firm produces

• The total supply is in a Cournot NE is thus

• The Cournot NE price is

• The industry Cournot profits are 

bQaQpqpi  )()(

nqqQ  ...1

iii cqqC )(

0, ba

),0( ac

bn

ca
qi )1( 


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bn

ca
nqQ i )/11( 


 

n

cna
bQap

/11

/




 

2

1
)( 











 

n

ca

b

n
QcpT
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COURNOT OLIGOPOLY (Cont’d)

Comparison with Perfect Competition

The market power of each firm can be measured using the Lerner index ,(1) which 
corresponds to the inverse of the own demand elasticity in equilibrium

Let      and       denote the price and total output in a symmetric equilibrium under 
perfect competition. Under perfect competition we have that necessarily
and       therefore solves

We have that 

Note also:

i

ca

nca

bq

p

dp

dq

q

p

p

q
n

ii

i

i

i

i

i
i 














 


1

log

log
)(

iL

cp cQ
cpc 

cbQac cQ

c

nn
Q

b

ca

bn

ca
nQ 





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
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

 )/11(
lim)(lim

0lim)(lim 




 nca

ca
nL

n
i

n

(1) Lerner, A.P. (1934) “The Concept of Monopoly and the Measurement of Monopoly Power,” Review of Economic Studies, Vol. 1, No. 3, pp. 157—175.
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Consider firms in industries producing goods that are perfect or at least close 
substitutes 

• Duopoly

• Oligopoly with one dominant firm

• Dominant firm and ‘competitive fringe’

Examples

• OPEC or Saudi Arabia

• Certain airlines or particular hubs

STACKELBERG QUANTITY LEADERSHIP GAME
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STACKELBERG GAME: COURNOT WITH LEADER

Suppose there are two symmetric firms. Firm 1 is the leader and gets to choose its 
quantity at t = 0. Firm 2 is the follower and chooses its quantity at t = 1.

Any SPNE (the “Stackelberg Equilibrium”) can be found using backward induction, 
i.e., we start at t = 1. Firm 2 solves 

so that the best-response for firm 2 given the leader’s output choice      becomes

22
)( 1

12

q

b

ca
qq 




  }ˆ)ˆ({maxarg)( 221
0ˆ12

2

qqqbcaqq
q






1q
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STACKELBERG GAME (Cont’d)

Let us now examine the leader’s optimal policy at t = 0. Firm 1’s residual demand is 
given by

The elasticity of firm 1’s residual demand curve is

Firm 1 maximizes its profits with respect to residual demand,

Hence, the follower produces

2
))(()(ˆ 1

1211

bqca
qqqbaqp


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11
)(ˆ

1
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11

1
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1

1

1

1
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a

bq

ca

dq
qpdq

bqca

pd

dq

q
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Demand elasticity in the
absence of followers
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STACKELBERG GAME (Cont’d)

Total Stackelberg equilibrium output of all firms is therefore

and equilibrium market price is

The leader’s equilibrium profit is

while the follower obtains in equilibrium

b

ca
qqqQ
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





  
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b
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16

)( 2

2



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BERTRAND DUOPOLY

Consider two firms selling a homogeneous product at a unit cost

• The firms simultaneously set their prices

• Let the total number of consumers be normalized to one. All consumers 
buy from the cheaper firm and randomize evenly between the two firms if 
their prices are equal

• The value of the consumers’ (common) outside option is zero; their (net) 
value from the product if they buy from firm i is   . (Assume that           )

Question: Determine the NE of this simultaneous-move game.

Answer: 1. Determine the firms’ payoff functions,         :











 





.,0

,,,2/)(

,,,

),(

otherwise

Ypppcp

Ypppcp

ppu iiiii

iiiii

iii

}2,1{],1,0[  Nici

ii Ap  ),0[

Y icY 

)(iu
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BERTRAND DUOPOLY (Cont’d)

2. Determine the firms’ best-response correspondences

• Assume that 

• Find the set of strategies that survive iterated deletion of strategies which are 
never a best response:

- For player i, the strategies             and            are dominated by

- All strategies                   could be rationalizable  not very useful

• Find best-response correspondences

- Start with                   : then                     is strictly dominated
by any

- Player 1’s payoffs are strictly increasing in . Thus, there is 
no best-response for player 1, since the payoff from any particular 
strategy in              can be strictly improved upon
However, if increments are finite, of arbitrarily small size          , then(1)
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(1) We approximate the Bertrand game at this point by a series of discrete games                     with              , as  .
 1)}({ nnN   0n n
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BERTRAND DUOPOLY (Cont’d)

3. Find the intersection of the best-response correspondences

Continuum of Nash
equilibria:

with








12

211 ],[

pp

ccp

Note that all NE involve
at least one player playing
a weakly dominated strategy

),( 21
  ppp
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BERTRAND DUOPOLY (Cont’d)

Additional Notes

• In equilibrium with             , firm 2 plays a weakly dominated strategy

• A tiebreaking rule that assigns all profits to firm 1 in case of equal prices 
guarantees a set of NE       for                : 

It is possible that all firms play a weakly dominated strategy in 
equilibrium.

21 cc 

*p  0

“In a Bertrand equilibrium, firms charge a price between the first-
the second-most efficient firm’s costs.”(1)

(1) This finding generalizes to n firms with possible equalities between the different marginal costs.
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DIFFERENTIATION SOFTENS PRICE COMPETITION
Generalization:  Imperfect Substitutes

Given: Demands for products of firm 1 and firm 2: q1(p1,p2) and q2(p1,p2)
[& the firms’ cost functions: C1(q1) and C2(q2)]
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2 2 1( )p B p

*
1MC

1 1 2( )p B p

*
2MC
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1p

Nash Equilibrium

1
mp

2
mp

BERTRAND WITH IMPERFECT SUBSTITUTES (Cont’d)
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AGENDA

What is Game Theory?

Building Blocks and Key Assumptions

Market Structure & Strategy Analysis

• Cournot Quantity Competition

• Bertrand Price Competition

Key Concepts to Remember
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KEY CONCEPTS TO REMEMBER

• Predictive Power

• Payoff Matrix

• Pure/Mixed Strategy

• Dominant Strategy

• Best-Response

• Nash Equilibrium

• Cournot and Bertrand Game

• Stackelberg Sequential-Move Games
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AGENDA

What are externalities?

Example: Production Externalities

Some Regulatory Options

Uncertainty Matters: Prices vs. Quantities

Key Concepts to Remember
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WHAT ARE EXTERNALITIES?
Example

–

–

–

–

+

Joe
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Definition. An externality exists whenever the well-being (utility) of a consumer or the 
production possibility set of a firm are directly affected by the action of another agent in 
the economy. 

WHAT ARE EXTERNALITIES? (Cont’d)

Externalities can be “positive” or “negative.”
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• Drivers’ cars release pollutants that deteriorate the air quality

• Cigarette smoke increases the probability of lung cancer for smokers and 
others

• Chemical plant releases wastes in river; fishing industry becomes less 
productive

• Fish caught by one fishing boat cannot be caught be another fishing boat

• High-tech patents lead to public disclosure of inventions that can be used by 
other firms (be they complementors or competitors)

WHAT ARE EXTERNALITIES? (Cont’d)
Some Examples
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AGENDA

What are externalities?

Example: Production Externalities

Some Regulatory Options

Uncertainty Matters: Prices vs. Quantities

Key Concepts to Remember
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One firm’s decisions may have a direct impact on another firm’s payoff. 

• Our discussion of game theory shows (see, e.g., the Prisoners’ Dilemma) 
that, in general, if each firm individually maximizes its profits, then the 
sum of both firms’ profits may not be maximal.

Consider the following situation for two firms, 1 and 2:

• Firm 1’s production produces wastewater, resulting in an externality for a 
downstream fishing company

• Firm 2, impacted by firm 1’s waste production could reduce harmful 
effects, say by treatment of water, but at a cost

EXAMPLE: PRODUCTION EXTERNALITIES
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Firm 1 produces a nonnegative amount of waste, W1

Firm 2, negatively impacted by firm 1’s waste production, could reduce the harmful 
effects through treatment T2, which comes at a cost.

1 1( )W
2 1 2( , )W T

1High W

1W

1 1( )W

2T

2 1 2( , )W T 1Low W

PRODUCTION EXTERNALITIES (Cont’d)

Payoff Functions:
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Optimal treatment T2*

Depends on W1

1 1

1

( )
0

d W

dW




2 1 2

2

( , )
0

W T

T






1W

1 1( )W

2T

2 1 2( , )W T

1UW 2*T

1High W

1Low W

PRODUCTION EXTERNALITIES (Cont’d)
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Efficient outcome maximizes total profits,

Firm 1: optimality condition for socially optimal W1 differs from the individual optimality 
condition,

Firm 2: optimality condition for socially optimal T2 is same as individually optimal, for 
any given W1

1 1 2 1 2

1 1

( ) ( , )
0

d W W T

dW W

 
 



2 1 2

2

( , )
0

W T

T






 1 2

1 1 2 1 2

, 0
max  ( ) ( , )
W T

W W T


 

PRODUCTION EXTERNALITIES (Cont’d)
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1W

2 1 2* 1( , ( ))W T W

1W

1 1( )W

1UW

1W

1 1 2 1 2* 1( ) ( , ( ))W W T W  

1UW1*W

PRODUCTION EXTERNALITIES (Cont’d)
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Define Externalities in Terms of Harm

Define harm to firm 2 as a function of W1 (corresponds to the externality 
that firm 1 exerts on firm 2)

Choose W1 to maximize profit of firm 1, minus harm:

Choose T2 to maximize profit of firm 2:

1 2 2* 2 1 2* 1( ) (0, (0)) ( , ( ))h W T W T W  

 1

1 1 1

0
max  ( ) ( )
W

W h W


 

2

2 1* 2

0
max  ( , )
T

W T




PRODUCTION EXTERNALITIES (Cont’d)



- 13 -MGT-621-Spring-2023-TAW

1W

2 1 2* 1( , ( ))W T W

1W

1 1( )W

1UW

1W

1 1 1( ) ( )W h W 

1UW1*W

h(W1) h(W1)

1 1( )W

PRODUCTION EXTERNALITIES (Cont’d)
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Gives FOC for T2 identical to optimal

Gives FOC for W1 identical to optimal

2 1 2
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1 1

( ) ( , )
0

d W W T

dW W

 
 



PRODUCTION EXTERNALITIES (Cont’d)
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AGENDA

What are externalities?

Example: Production Externalities

Some Regulatory Options

Uncertainty Matters: Prices vs. Quantities

Key Concepts to Remember
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Idea:  How can we correct market to move back toward competitive norm? 

• “Polluter Pays” Principle

• Litigation to recover harms:  “damages”

• Tax per unit on externality:  “pollution tax”

• Marketable emissions rights

- Create market for rights to produce the externality

• Regulation of emissions or other waste

- Restriction against hazardous waste

- Limits on emissions rate

• Assign property rights and allow negotiation (Coase Theorem)

REMEDIES FOR MARKET FAILURE
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Polluter may be required to pay a fee to the government, offsetting the entire 
damage. In that case, the polluter (firm 1) solves the problem

If firm 1 maximizes its profit minus harm, it will choose optimal waste (W1). No 
money paid to harmed firm (firm 2), who solves the following problem:

If firm 2 is not compensated for damages, it will choose optimal treatment.

 1

1 1 1

0
max  ( ) ( )
W

W h W


 

2

2 1* 2

0
max  ( , )
T

W T




“POLLUTER PAYS” PRINCIPLE
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Polluter may be required to pay fee to harmed firm equal to the damage. Then 
the polluter solves problem:

If firm 1 maximizes its profit minus harm, it will choose optimal waste (W1) for 
whatever is the level of T2. 

Firm 1 has an incentive to select a socially efficient waste level.

 1

1 1 1

0
max ( ) ( )
W

W h W


 

LITIGATION RECOVERS DAMAGES
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LITIGATION RECOVERS DAMAGES

Damages paid to harmed firm, with damages determined for optimal level of T2. Then firm 2 
chooses T2 to solve problem:

Monetary damages – harm – do not depend on actual choice of T2, so h(W1) is a constant, from 
perspective of firm 2.

If firm 2 is compensated a fixed amount for damages, it will maximize its before-harm-payment 
profit and will choose optimal treatment.

 2

2 1 2 1

0
max ( , ) ( )
T

W T h W


 

1 2 2* 2 1 2* 1( ) (0, (0)) ( , ( ))h W T W T W  
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Damages paid to harmed firm, with damages determined for actual level of T2. Then firm 2 
solves the problem:

Monetary damages – harm – do depend on actual choice of T2, so h(W1) is not a constant, from 
perspective of firm 2, in this case.

Profit after damage payment is independent of T2; firm 2 has no incentive to choose optimal 
treatment.

 2

2 1 2 1

0
max ( , ) ( )
T

W T h W


 

 
1 2 2 2 1 2

2 1 2 2 1 2 2 2

( ) (0, (0)) ( , )

max  ( , ) ( , ) (0, (0))

0

h W T W T

W T W T T

  

  


LITIGATION RECOVERS DAMAGES (Cont’d)
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The polluter may be required to pay a fee to government equal to a fixed amount t per unit of 
pollution.  Per-unit amount is set equal to the marginal harm.  Then polluter solves problem:

Firm 1, maximizing its own after-tax profit, leads to efficient level of waste (               ) : 

1 1*

1

1

( )

W W

h W
t

W 






 1

1 1 1

0
max ( )
W

W tW


 

1 1 1*

1 1

( ) ( )d W h W

dW W

 




POLLUTION TAX

1 1*
W W
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Government determines optimal total waste, and issues emissions rights. The  number 
of rights equal to optimal waste.  Rights can be bought and sold.  Market clearing price 
will equal marginal cost of waste reduction.  Thus, if the optimal total waste is 
produced, then the price will be equal to marginal harm,

Firm 1’s optimization problem:

Profit maximization condition leads Firm 1, maximizing its own after-tax profit, to an 
efficient level of waste: 

1

1

( )
pr

h W
p

W






 1

1 1 1

0
max  ( )  pr
W

W p W


 

1 1 1

1 1

( ) ( )
pr

d W h W
p

dW W

 
 



MARKETABLE EMISSIONS RIGHTS
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DIRECT REGULATIONS OF EMISSIONS

Government sets maximum allowable waste regulation, after determining the solution of the 
problem:

Firm required to meet regulation or else face a penalty higher than the cost of meeting the 
regulation. Incentive to just meet the regulation.

 1

1 1 1

0
max ( ) ( )
W

W h W


 
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Generally applicable only with a very small number of firms

General approach

• Assign property rights to either party

- Right to pollute or Right to no pollution

• Allow negotiation

• Efficient outcome either way

• Distribution of profits differs

Coase Theorem

PROPERTY RIGHTS AND RENEGOTIATION
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Give property rights to either  ( Case 1 and 2)

Case 1. Assume give right to polluter for some high pollution level. Then impacted firm 
will pay to firm 1 some amount of money, B, to reduce pollution.  

whence

1 1 2 1 2 1 1 2 1 2( ) ( , ) ( ) ( , )U U UW W T W W T        

2 1 2 2 1 2 1 1 1 1( , ) ( , ) ( ) ( ) 0U U UW T W T B W W        

2 1 2 2 1 2 1 1 1 1( , ) ( , ) ( ) ( ) 0U U UW T W T W W       

2 1 2 2 1 2( , ) ( , ) 0U UW T W T B    

1 1 1 1( ) ( ) 0UW W B   

PROPERTY RIGHTS AND RENEGOTIATION

Firm 2 increases profit

Firm 1 increases profit

Then B can be chosen such that
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Case 2. Assume give to affected firm right to face no pollution. Then polluting firm will pay 
firm 2 some amount of money, F, to allow pollution.  (Assume no abatement, i.e., T2 = 0, when 
there is no pollution)

1 1 2 1 2 1 2( ) ( , ) (0) (0, 0)W W T        

2 1 2 2 1 1 10 ( , ) (0,0) (0) ( )W T F W         

2 1 2 2 1 1 10 ( , ) (0,0) (0) ( )W T W       

whence

2 1 2 2( , ) (0,0) 0W T F    

1 1 1( ) (0) 0W F   

PROPERTY RIGHTS AND RENEGOTIATION

Firm 1 increases profit

Firm 2 increases profit

Then F can be chosen such that
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COASE THEOREM

Coase Theorem. If all parties can negotiate with each other costlessly and with 
perfect information, then bargaining will lead to an efficient outcome.

The outcome will be efficient, no matter how the initial property rights are 
determined.

A Caveat

If property rights are not firmly established, so that agents spend resources trying 
to reallocate property rights, then the final outcome, including the costs of 
reallocating property rights, will not be efficient.
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AGENDA

What are externalities?

Example: Production Externalities

Some Regulatory Options

Uncertainty Matters: Prices vs. Quantities

Key Concepts to Remember
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PRACTICAL PROBLEM: REDUCING GLOBAL CARBON OUTPUT

To bound global warming to less than 2 degrees Celsius by 2050, worldwide 
carbon emissions need to be reduced by 50% in that timeframe (IPCC 2008).

Hence, need to provide incentives for … 

• carbon abatement by implementing an efficient carbon pricing policy

• technological innovation by encouraging the necessary investments

Question: Design a simple (i.e., implementable) regulatory scheme
which jointly accounts for innovation and abatement.  

Remark: For details on the material in the following slides, see Weber, T.A., Neuhoff, K. 
(2010) “Carbon Markets and Technological Innovation,” Journal of Environmental
Economics and Management, Vol. 60, No. 2, pp. 115—132; an earlier version is 
also available at http://ssrn.com/abstract=1333244
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THE MODEL
Primitives

• Unit mass of firms, indexed by            , distributed on type space                               
such that

• Each firm      has business-as-usual (BAU) level of emissions                    

• BAU emissions levels of all firms are subject to a common macroeconomic shocks, 
modeled by the additive zero-mean noise      such that   

• Expected total emissions: 

 

  )( dF   )()( 22  dFand

 0)(0 e

~

  )(22  dG

  ])()~)(([ 00  dFeEe
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THE MODEL (Cont'd)
Timing

The actions take place in three periods, indexed by

• Regulation Stage (t=0)

- Regulator commits to a regulatory policy in the form of a cap-and-trade 
scheme with price controls, denoted by 

• Innovation Stage (t=1)

- Each firm     decides about its innovation activity            at the cost of

- An innovation activity of      results in the realization       of a random cost 
improvement                , where

0y

}2,1,0{t

E

),,( ULER 

y
0)(~ y

: Emissions cap (e.g., set by number of issued emissions permits)

L : Price floor in market for emissions permits

U : Price cap in market for emissions permits


2/)( 2cyyK 



1 : Innovation unsuccessful – current practice is (weakly) better

1 : Innovation successful – firm exercises option of using it

1]|}1),(~[max{  yyEy 

where           determines the slope of the marginal cost 0c
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THE MODEL (Cont'd)
Timing

• Implementation Stage (t=2)

- The macroeconomic uncertainty     realizes

- Each firm    , based on the outcome                          of its innovation activity in 
the last stage and the current price      for carbon emissions, decides about
its emission level

- Firm   's total cost of abating its emissions to a level                               is  

0)ˆ,()ˆ,(   pepe

 }1,max{ˆ  
p

   )(ˆ 00 eee

pe
ee

peeeCepeTC 






ˆ2

)ˆ(
)ˆ|ˆ,()ˆ|ˆ,,(

2
0

00



0ê

)ˆ|ˆ,( 0eeC 

e0
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MARGINAL ABATEMENT COST ALMOST LINEAR

Source: Enkvist et al. (2007)
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MODEL SOLUTION
Implementation (t = 2)

Each firm      chooses emissions so as to minimize its total emissions cost. 

0ê

)ˆ|ˆ,,( 0epeTC 

e0

$

)ˆ|,( 0epe 

pe

peepe  ˆˆ)ˆ|ˆ,( 00 

2

ˆ
ˆ)ˆ|ˆ,(

2

00

p
peepTC

 
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MODEL SOLUTION (Cont'd)
Innovation (t = 1)

Each firm      chooses a level of innovation      to maximize its expected net payoff, 

resulting in the optimal innovation of 

and the positive expected payoff



22
)(

2
),,(

222 cyyp
yK

yp
yp 


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MODEL SOLUTION (Cont'd)
Regulation (t = 0)

The set of feasible cap-and-trade schemes is

The total carbon emissions output in the economy conditional on the market price 
for carbon and the macroeconomic condition is

}:),,{( 3 ULULE  R

)
2

1()())(|)),(1(,(),( 2
22

00 p
c

pedFepypepQ







 

 




y

0
describes innovation

(for         : no innovation)

Environmental damages (measured in $) are assumed 
to be quadratic in total emissions,

2
)(

2dQ
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MODEL SOLUTION (Cont'd)
Regulation (t = 0)

Given a feasible cap-and-trade scheme                           , the market-clearing 
condition set by the regulator,

determines the price                      for carbon

Hence, expected environmental damages are 

),,( ULER 

0)),()()((),,(   pQELppURpH

],[ ULp

]0),~,~(|))~,~(([)(  RpHpQDERD 

Similarly, expected abatement cost are

]0),~,~(|)~|)
~

))
~

,~(1(,~(([)( 0   RpHepypeCERC 
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MODEL SOLUTION (Cont'd)
Regulation (t = 0)

In addition, the regulator may want to consider the firms’ cost of innovation

]0),~,~(|))
~

,~(([)(   RpHpyKERK 

The regulator's objective function is

  )()()()()( RSCRKRDRCRW 

Problem:  Find optimal R
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RELATION BETWEEN COMMON REGULATORY SCHEMES
Cap and Trade with Price Control = True Generalization

Cap and Trade
with Price Controls

Pure Taxation
Cap and Trade 

without
Price Controls

),,( ER
),0,(  ER

),,( ULER
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COMMON REGULATORY SCHEMES (Cont'd)

Price

Quantity



0

Cap and Trade
without Price Controls

E

L

U
Cap and Trade

with Price Controls

Carbon tax
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PURE TAXATION

Under pure taxation, there is no price uncertainty, but there is uncertainty about the
environmental damage.

Let                    be the planner's objective function;)(W

and the optimal tax becomes

))((
22

)( 2
0

2
2

   e
d

W

d

de




1
0*
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Optimal carbon tax – numerical example

Assume: 

Without innovation     =40$/tCO2

E0 = 13.5 GT (OECD)

10% reduction from existing technologies: = 33 106 tCO2
2/$2

Innovation delivers additional 33% reductions:  c = 100$ * 109

Result

(        ) =    46 $/t CO2

`





0

… with innovation

Marginal damage cost

$/tCO2

Emission tCO2

Marginal abatement cost

… + innovation incentives
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Optimal Carbon Tax

c
 

2

22 
Innovation effectiveness

Criteria for development 
of optimal t  for small 

Tax 0 for      inf




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BASIC CAP AND TRADE (WITHOUT PRICE CONTROLS)

Under basic cap and trade, there is no output uncertainty, but there is price uncertainty.

Let                    be the planner's objective function;)(EW

and the optimal emissions cap becomes

Note that expected price under this cap is the same as the optimal tax, i.e.,

BUT, this does not mean that the two are equivalent!

22

)(
)(

222
0 dEEe
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
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OPTIMAL CAP

Optimal cap decreasing in

Cap  0 for    inf

Analytic 
solution
optimal cap





Increase in      increases relative attractiveness of quantity based regulation
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PRICES (TAXES) VS. QUANTITIES (EMISSIONS CAP)
Weitzman (1974)

Depending on the relative magnitude of the marginal abatement cost (1) and the 
environmental damages (d), it may be better to either impose a pure tax or a basic
cap-and-trade scheme:

Tax is strictly better if and only if 

Small damage cost d  Pure Tax

Large damage cost d  Basic Cap and Trade

2
)1(

2
*

&
* dWW TCBasicTax 

1d
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CAP AND TRADE WITH PRICE CONTROLS
A Simple Example

Example. Assume that the macroeconomic shock      is uniformly distributed 
on               , where               . Then, 






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


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






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e
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e
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e
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

- 48 -MGT-621-Spring-2023-TAW

CAP AND TRADE WITH PRICE CONTROLS
A Simple Example (Cont'd)

Price

Emissions
Potential

0
0e 0e0e 0e0e

)( *

L

U

E

Regulated 
Emissions
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OPTIMAL HYBRID SCHEME
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EXPECTED MARKET PRICE VARIES WITH INNOVATION 
EFFECTIVENESS
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OPTIMAL REGULATION
Is Cap and Trade with Price Controls Really the Best One Can Do?

Price

Quantity

L

U



E0

Cap and Trade
without Price Controls

Cap and Trade
with Price Controls

Carbon tax
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OPTIMAL REGULATION
Ex-Ante (Infinite-Dimensional) Solution Might Be Quite Different

Price

Quantity

L

U



E0

Cap and Trade
without Price Controls

Cap and Trade
with Price Controls

Carbon tax

Ex-Ante Optimal Scheme
(Infinite-Dimensional)
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MULTI-CAP AND TRADE
Implementation (e.g.) via Derivative Securities such as Options

Price

Quantity

L

U



E0

Cap and Trade
without Price Controls

Cap and Trade
with Price Controls

Carbon tax

Ex-Ante Optimal Scheme
(Infinite-Dimensional)

Finite-Dimensional
Approximation

Possible Reasons:
• Risk Hedging
• Speculation
• Inventory control
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ANOTHER IMPORTANT QUESTION: REGULATORY COMMITMENT

When the macroeconomic uncertainty has realized the regulator may want to 
deviate from his announced regulatory policy R and deviate to R'

• Is it good for a regulator to commit ex ante to a scheme R? 

• What are credible commitment devices? 

• What degree of commitment is optimal?

Additional policy instruments available at the implementation stage

• Incentives

• Supplementary regulation

• Emissions banking

• Mode of permit allocation
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DYNAMIC POLICY ISSUES
A consistent policy mix is credible

Carbon pricing 

• Short-term – address risk from extreme carbon prices
(e.g., via price controls)

• Medium-term – flexible price response to deliver target
(e.g., national targets, minimize leakage)

• Long-term – global mechanism with joint carbon price, 
where equity can be implemented via “green fund” 
(e.g., on per-capita-emission basis)

Complementary policies

• Common trajectory to ensure action across governments

• Fairness in the design of regional and global mechanism

Technology policy

• Innovation incentives (e.g., provided by law, technology competitions)

• Aggressive standard setting

• Certification (e.g., green labelling)
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AGENDA

What are externalities?

Example: Production Externalities

Some Regulatory Options

Uncertainty Matters: Prices vs. Quantities

Key Concepts to Remember
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KEY CONCEPTS TO REMEMBER

• Positive/Negative Externalities

• Production Externalities

• Market Failure

• Regulatory options to deal with market failure due to externalities

• Coase Theorem

• Prices vs. Quantities, and how to regulate both!
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AGENDA

General Equilibrium: The Standard Model

Pure Exchange

Production Economies

Key Concepts to Remember
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THE STANDARD MODEL

Basic Assumptions:

• goods,

• consumers, 

- Each consumer      has a rational (i.e., complete and transitive) 
preference ordering over        representable by a continuous utility 
function                       . Consumers are price takers

• firms, 

- Each firm      has a production set

ꞏ Nonempty and closed

ꞏ No free lunch (                          ; can’t produce something from 
nothing)

ꞏ Possibility of inaction (           )

ꞏ Free disposal (                        )

ꞏ Irreversibility (                                      )

• Initial endowments: each consumer      starts with an endowment vector 
and a fractional share distribution                           , where                    for 
each firm     with

N
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F  
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WALRASIAN EQUILIBRIUM

Definition: A Walrasian equilibrium (WE) is a specification of a price vector , 
a demand vector for each consumer    , and a supply vector for each 
firm    , such that  

• profit maximization, i.e.,

• utility maximization, i.e.,

where consumer c’s budget set is given by

with total income

• demand = supply,                                                  

hold.

Np 
Ncx  c f

f Yy 
f

ypy
fYy

f 


maxarg

)(maxarg
),(

xux c
IpBx

c

c


}:{),( cNc
c IxpxIpBB  





F

f

fc
f

cc yppI
1

)(





F

f

f
C

c

c
C

c

c yx
111

 (i.e., allocation is feasible)
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PURE EXCHANGE IS A SPECIAL CASE
OF THE STANDARD MODEL

Consider an “exchange economy” without firms and without production

• Two goods, 1 and 2

• M consumers of each of two types, 1 and 2

• Each consumer of type begins with an allocation
(his endowment) and solves a utility maximization problem given a price 
vector             , which defines his “offer curve”,

• Any feasible allocation satisfies

This two-consumer two-good exchange economy can be represented graphically 
using a “Edgeworth box” (sometimes also referred to as “Edgeworth-Bowley 
Diagram”).

)(maxarg)(
),(

xupx c
ppBx

c

c


}2,1{c 2
c

2121   xx

2
p
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EDGEWORTH BOX

Consider one consumer of
each type, Ms. 1 and Mr. 2

Any allocation of the totally
available quantities
of good i can be represented
as a point in the Edgeworth box

21
iii  
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THERE MAY BE GAINS FROM TRADE
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PARETO-OPTIMAL ALLOCATIONS AND CONTRACT CURVE
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BUDGET LINE AND BUDGET SETS
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THE SLOPE OF THE BUDGET LINE IS (– p1/p2)

Walrasian Equilibrium
depends only on the
slope of the budget line.
Thus, without loss of 
generality can choose 
good 1 as the numeraire
with 11 p
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THE OFFER CURVE DESCRIBES THE OPTIMAL CONSUMPTION 
CHOICE AS A FUNCTION OF MARKET PRICES

OC is tangent to 
indifference curve through
the endowment point

It also has to lie within
the upper contour set
delineated by that 
indifference curve, since
any offer has to yield at
least the same utility as
the consumer’s initial
endowment

Offer Curve Properties:
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IN A WALRASIAN EQUILIBRIUM THE OFFER CURVES INTERSECT
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EXAMPLE: EXCHANGE WITH COBB-DOUGLAS UTILITIES
Compute the Walrasian Equilibrium

Consider two consumers, 1 and 2, with Cobb-Douglas utility functions

where                  is a constant and                . The endowment vectors are
and                    respectively

Given a price vector                     , consumer 1’s utility maximization problem can be 
stated (after taking the logarithm) in the form

Similarly, we find consumer 2’s offer curve,

  1
2121 )()(),( cccc

c xxxxu

)1,0( }2,1{c )2,1(1 
)1,2(2 








 



2

21

1

21
21

)2,(),(

1 )2)(1(
,

)2(
}log)1(log{maxarg)(

2121 p

pp

p

pp
xxpx

pppBxx



),( 21 ppp 

Consumer 1’s offer curve








 


2

21

1

212 )2)(1(
,

)2(
)(

p

pp

p

pp
px


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EXCHANGE WITH COBB-DOUGLAS UTILITIES (cont’d)

Using the Demand = Supply condition for the Walrasian equilibrium we can clear 
the market for good 1,

or equivalently,

which yields                                 and 

In other words, the price ratio in equilibrium is equal to the marginal rate of 
substitution between the two goods at the equilibrium allocation.(1)

Note also that market clearing for good 1 implies market clearing for good 2 (why?)

2
1

1
1

2
1

1
1 )()(   pxpx

3
)2()2(

1

21

1

21 





p

pp

p

pp 






12

1

p

p

(1) The marginal rate of substitution for consumer 1 between goods 1 and 2 is                                                .  





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
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THERE MAY BE DIFFERENT WALRASIAN EQUILIBRIA
Nonuniqueness
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A WALRASIAN EQUILIBRIUM MAY NOT EXIST
Example: Preferences Not Strictly Monotone

No supporting price
vector exists!

- 18 -MGT-621-Spring-2023-TAW

A WALRASIAN EQUILIBRIUM MAY NOT EXIST (cont’d)
Example: Nonconvex Preferences

Offer curves may
be disconnected!
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ROBINSON CRUSOE ECONOMY

Robinson is alone on an island. He 
can either rest (i.e., consume leisure

) or use his own labor to pick 
yummy coconuts

You can think of the firm “Robinson 
Crusoe Enterprises” producing 
coconuts using Robinson’s labor

as the only production 
input, i.e., the firm maximizes profits

where         is the firm’s production 
function,(1) is the wage Robinson 
pays himself,        is the price of 
coconuts, and             is a constant

Question: If Robinson maximizes his
utility               , what is the Walrasian 
equilibrium of his private economy?

1x
2x

 wzzpfpw
z




)(max),(
0



1xLz 

)(f

),( 21 xxu

w
p

(1) For simplicity assume that the production function is strictly concave, increasing, and continuously differentiable; we also assume that Robinson’s utility is smooth.
In addition it is sometimes useful to add the assumptions that                  (to all for the possibility of inaction), and the so-called Inada conditions                                     
(to guarantee strict interiority of the optimizer). 

0)0( f 0)(',)0('  Lff

0L
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ROBINSON CRUSOE ECONOMY (cont’d)

Answer: Naturally, Robinson owns all of “Robinson Crusoe Enterprises,” whence 
we obtain his utility maximization problem,

where

From the definition of a Walrasian equilibrium, we obtain the following conditions:

• Profit maximization: 

• Utility Maximization:

where                                         is the equilibrium production quantity of 
coconuts

• Demand = Supply:

),(maxarg),( 21
)),,((),( 21

xxupwx
IwpBxx 



)},()(:),{()),,(( 12
2

21 pwxLwpxxxIpwB  

p

w
pwzf  )),(('

0)),(),()(,( 11
21























  pwz

p

w
pwyxL

p

w
x

x

u

p

w

x

u

)),((),( pwzfpwy  









yx

zLx

2

1

Note: Without loss of generality we can take coconuts as the numeraire good (Robinson pays himself in coconuts), i.e.,           . 1p
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ROBINSON CRUSOE ECONOMY (cont’d)
Production Problem



- 23 -MGT-621-Spring-2023-TAW

ROBINSON CRUSOE ECONOMY (cont’d)
Walrasian Equilibrium
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2X2 PRODUCTION ECONOMY

Consider now a simple two-input two-output production economy:

• 2 Outputs,                : there are 2N firms producing one output each (1)

• 2 Inputs, capital and labor

• The production function of each firm for output is given by 

where                      (possibility of inaction) and        is strictly concave

• N consumers of each of two types,               , with increasing and strictly 
quasi-concave utility functions                  , where       is the amount a 
consumer of type c consumes of product j

• We assume for simplicity that consumers do not want to consume either 
capital or labor

• Consumers start with zero endowments in the production goods
and with      units of capital and      units of labor. In addition, each 
consumer of type c owns the fraction      of the outstanding shares in the 
firms producing output j 

}2,1{j
jK jL

j

),( jjjj LKfy 

0)0,0( jf jf
}2,1{c

),( 21
cc

c xxu c
jx

}2,1{j
cK cL c

j

(1) More precisely, we assume that there are N firms producing output 1 and N firms producing output 2.
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2X2 PRODUCTION ECONOMY (cont’d)

Definition: A symmetric allocation is one in which all consumers of type c receive 
the same consumption vector                        and all firms of type j produce the 
same output level      using the same input vector               .

A symmetric allocation is feasible, if demand = 
supply, i.e., 

Let      be the set of feasible allocations.

),( 21
ccc xxx 

jy ),( jj LK

),(

21

21

21

21

21

jjjj

jjj

ccc

jjj

ccc

jj
j

LKfy

LLL

LLL

KKK

KKK

xxy













(3)

(4)

(5)

(6)

(1)

(2)

)),,(),,,(),,(( 22211121 LKyLKyxx

F
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2X2 PRODUCTION ECONOMY (cont’d)

Definition: A symmetric Walrasian equilibrium is a specification of a price       for 
each output     , a price    of capital, a wage      for labor, a consumption vector
for each consumer type c, and a production vector for each type of firm, 
such that the following three conditions are satisfied.

• Utility maximization

• Profit maximization

• Demand = supply, i.e.,                                                                                  is a 
symmetric feasible allocation for each                , where

is firm j’s equilibrium profit

jp
j r w cx̂

)ˆ,ˆ,ˆ( jjj LKy

}2,1{j
))ˆ,ˆ,ˆ(),ˆ,ˆ,ˆ(),ˆ,ˆ(( 22211121 LKyLKyxx

)}({maxargˆ xux c
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c
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
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jj




jjj
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2X2 PRODUCTION ECONOMY (cont’d)

First-order necessary optimality conditions hold in a symmetric WE:

• Utility maximization

• Profit maximization

From (7)—(9) we obtain

All marginal rates of substitution are determined by the equilibrium price ratio of 
the traded market commodities.
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KEY CONCEPTS TO REMEMBER

• Edgeworth Box

• Pareto Optimality

• Budget Line

• Endowment

• Numeraire Good

• Offer Curve

• Walrasian Equilibrium (Competitive Equilibrium) (w/ or w/o transfers)

• Pareto Set

• Contract Curve/Core

• Pure Exchange / Production Economy 

• Private Ownership Economy

• Price-Taking Behavior

• Walras’ Law
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General Equilibrium vs. Partial Equilibrium
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Set summation of set Y1 and set Y2:

Intuition. Choose any point, y1 from set Y1 and any point  y2 from set Y2; the set Y consists of 
the set of all points y1 + y2. 

1 2 1 2 1 1 2 2{ : , , }Y Y Y y y y y y Y y Y      

Y1

Y2

y1

y2

y1 +  y2

1 2Y Y Y 

CONCEPT OF SET SUMMATION
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Initial Endowment of commodities by consumer c:

Net output by firm f:  

 Total Supply: 

Define total Initial Endowments

Then, feasible set of total outputs is

1 1

C F
c f

c f

y
 

 

c

f fy Y

1

C
c

c

 




1 2 FY Y Y Y    

FEASIBLE TOTAL OUTPUT IN THE ECONOMY

Remark. Note that this depends on the assumption that there are no externalities in production.  If there are externalities, then the feasible set of total outputs 
is not set summation of individual production sets.
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 y1

1 2 FY Y Y    

1 2 FY Y Y  

y2

TOTAL FEASIBLE OUTPUT IN THE ECONOMY (Cont’d)
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1 1

C F
c f

c f

p y p p y
 

     

Value of Total Output in Economy = Value of Initial Endowments + Sum of Firms’ Profits

VALUING TOTAL OUTPUT AT MARKET PRICES
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1 1p y  

2 2p y  

Y1

Y2

y1

y2

y1+ y2

1 2p y      

INDIVIDUAL MAXIMIZATION IMPLIES GLOBAL MAXIMIZATION
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1

F
f

f

y



 y1
T

y2
T

1

F
f

f

y



1

constant
F

f

f

p y


 

constantp y 

MAXIMUM VALUE OF TOTAL OUTPUT

1 2 FY Y Y  
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Consumer maximizes utility, subject to budget constraint

Equivalently, consumer minimizes expenditure for achieving a certain utility level

* max  ( )

s.t.  

c c c

c c

u u x

p x w



 

*

*

min  

s.t. ( )

c c

c c c

w p x

u x U

 



CONSUMER CHOICE
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Define set of consumption bundles weakly preferred to optimal choice as preference set for 
consumer c:  Rc

Then consumer minimizes expenditure, given xc in Rc

min  
c c

c

x R
p x




CONSUMER CHOICE (Cont’d)
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CONSUMER CHOICE (Cont’d)

*c cp x w 

x1
c

x2
c

* *

                  

( ) ( )

c

c c c c

R

u x U u x 

c*x

- 12 -MGT-621-Spring-2023-TAW

Set summation of individual preference sets is the set of total consumption bundles that allows 
each consumer to have utility at least as high as his/her Uc*. R is the aggregate preference set.

Total consumption in interior of R could allow Pareto-superior allocations to consumers. 

R1

R2

x1

x2

x1+ x2

1 2R R R 

SET SUMMATION OF INDIVIDUAL PREFERENCE SETS

Remark. Note that this depends on the assumption that there are no externalities in consumption.  If there are externalities, then the aggregate preference set 
is not set summation of individual preference sets.
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INDIVIDUAL MINIMIZATION IMPLIES GLOBAL MINIMIZATION

1 1p x w 

2 2p x w 

1 2p x w w w   

R1

R2

x1

x2

x =x1 + x2

1 2R R R 
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x1

x2

R

*x

1

*
c

c

i

p x w p y


   
Note:  This is same
line we saw for the total 
output of the economy

MINIMIZATION OF TOTAL EXPENDITURE

min  
x R

p x



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T

1 2 3 ....T NY Y Y Y     

x1, y1

x2, y2

m ax p y

R

min p x

constant

constant

p y

p x

 
 

COMPETITIVE EQUILIBRIUM MATCHES SUPPLY AND DEMAND
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Competitive equilibrium implies set of economy-wide feasible outputs is separated 
from aggregate preference set, the set of points that allow Pareto-dominant allocation 
(neither set includes interior point of other set).  Therefore, the competitive market 
equilibrium must be a Pareto-optimal allocation

T

1 2 3 ....T NY Y Y Y     

x1, y1

x2, y2

max  p y

R

min  p x

FIRST FUNDAMENTAL WELFARE THEOREM
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T

1 2 3 ....T NY Y Y Y     

x1, y1

x2, y2

max p y

min p x

constant

constant

p y

p x

 
 1 2 FY Y Y    

1 2 CR R R R   

COMPETITIVE EQUILIBRIUM IS PARETO OPTIMAL
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FIRST FUNDAMENTAL WELFARE THEOREM

Definition: Assume that consumer c’s preferences are representable by a 
continuous utility function         . His preferences are locally nonsatiated if for any 
feasible consumption vector                and any             there exists another feasible 
consumption vector                                                                such that .

Theorem (1st FWT): Assume that for all consumers                     the utility function          
is locally nonsatiated. If                                             is a Walrasian equilibrium, then 
the allocation                                        is Pareto optimal.

},...,1{ Cc

)(cu Ncx  0
}||:||{)(ˆ   

cNcc xyyxUx )()ˆ( c
c

c
c xuxu 

(1) Local nonsatiation is implied by strict monotonicity of consumer c’s utility function. The converse is not true since some of the components of
the consumption vector may not be desirable, i.e., it may contain “bads” instead of “goods”. (However, it is not possible that all consumption goods are
“bads,” since then at 0 would become a (global) satiation point.)

(1)

))ˆ,...,ˆ(),ˆ,...,ˆ(,( 11 FC yyxxp
))ˆ,...,ˆ(),ˆ,...,ˆ(( 11 FC yyxx
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FIRST FUNDAMENTAL WELFARE THEOREM
Proof

Proof: [by contradiction]

Suppose that                                          is a feasible allocation, such that for all 
:

and for some   , say           , we have a strict inequality. Then, necessarily (by utility 
maximization), it is

and local nonsatiation implies that as a consequence of (1), for all                     :(1) 

Hence, using (2),

)),...,(),,...,(( 11 FC yyxx
},...,1{ Cc

)ˆ()( c
c

c
c xuxu 

c 'cc 

'' ˆcc xpxp 

},...,1{ Cc
cc xpxp ˆ

(1)

(1) Otherwise, any               sufficiently close to      must satisfy                     . But by local nonsatiation, there must exist at least one such       for which also
. By transitivity this implies                           , which contradicts the assumption that      solves the utility maximization problem as part of a 

Walrasian equilibrium. If some consumers were local satiated one may be able to transfer small amounts of money from consumers that are locally indifferent
to a  consumer that cares at the margin. 
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FIRST FUNDAMENTAL WELFARE THEOREM
Proof (cont’d)

Feasibility of the WE (i.e., demand = supply) implies

and 

Combining (3)—(5) we obtain

whence
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FIRST FUNDAMENTAL WELFARE THEOREM
Proof (cont’d)

Since the allocation                                         is by assumption feasible, we have that                 
for all                     . Profit maximization implies that for all                      : 

But then it must be true that

which contradicts (6). QED

f
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The common point is the competitive equilibrium, since 

(1) it minimizes expenditure, 

(2) it maximizes profits, 

(3) it has all supplies equal to all demands, and 

(4) it has all profits allocated to consumers.  

However, wealth is not necessarily consistent with initial endowments.  Thus, a lump-
sum wealth redistribution is likely to be required.

T

1 2 3 ....T NY Y Y Y     

x1, y1

x2, y2

m ax p y

R

min  p x

SECOND FUNDAMENTAL WELFARE THEOREM
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SECOND FUNDAMENTAL WELFARE THEOREM

Theorem (2nd FWT): Assume that for all consumers                     the utility function 
is locally nonsatiated, continuous, and has convex upper contour sets. Let

be some vector of initial resources (endowments). (i) If, starting from , 
the allocation                                          is Pareto optimal, then there exists a price
vector              such that 

• for all                      : 

• for all                      :

(ii) If, in addition, for all                      there exists a vector                such that
, then there is a division of initial resources ,                    , and of 

firm ownership shares,                  , such that is a 
Walrasian equilibrium relative to                     and   .
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c
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N
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cc xpxp  ˆ
},...,1{ Cc

 ),...,( 1 C
),...,( 1 C ))ˆ,...,ˆ(),ˆ,...,ˆ(,( 11 FC yyxxp

),...,( 1 C ),...,( 1 C
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SEPARATING HYPERPLANE THEOREM

Definition: A plane separates two sets , if

Hahn-Banach Theorem: Let      and       be two disjoint nonempty convex sets in a 
vector space . If     has an inner point, then there exists a plane     separating     
and     .(1)

Separating Hyperplane Theorem: Let                    be two disjoint nonempty convex 
sets. Then there exists a nonzero vector             and a scalar             such that

for any                        .(2)

A B

(1) For a proof of this theorem, see e.g., Berge, C. (1963), “Topological Spaces,” Oliver & Boyd, Edinburgh and London, UK, pp. 154—157. Reprinted by 
Dover Publications in 1997.
(2) In other words, it is possible to select a linear form in the Hahn-Banach theorem. For a proof of that theorem, see MWG, p. 948.

X A A
B

}1)(:{  xfXxP XBA ,

1)(

1)(
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

xfBx
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NBA ,
Np  
ypxp  

BAyx ),(

P

f
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SEPARATING HYPERPLANE THEOREM
Geometric Interpretation
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SECOND FUNDAMENTAL WELFARE THEOREM
Proof

Proof: [proceeds in 7 steps]

Step 1: Apply the Separating Hyperplane Theorem

For all consumers                     , the set of preferred allocations (upper contour set),

is convex. As a result,                            is convex. Similarly, convexity of the 
production set       for all                     implies that

is convex. By assumption we know that the allocation 
is Pareto optimal, i.e.,

In other words, there is nothing that the economy can produce that makes 
everybody better off.
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c
c
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
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SECOND FUNDAMENTAL WELFARE THEOREM
Proof (cont’d)

The separating hyperplane theorem implies that for any                        there exists a 
vector     and a scalar     , such that

Step 2: Show that

Since                                         is feasible, we have                                      , so that by 
Step 1:

Now, for each                    and         , let 

By local nonsatiation(1) it is                           and thus                      . Hence by Step 1:

xpyp  
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(1) Actually we are using monotonicity here. For a justification see Step 3, where the same construction is used.
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SECOND FUNDAMENTAL WELFARE THEOREM
Proof (cont’d)

Taking the limit for              gives thus

Step 3: Show that , where

For simplicity, let us assume here that all the commodities are desirable, so that 
local nonsatiation is equivalent to monotonicity of the consumers’ utility functions. 
For any             let

so that by monotonicity,                           and 

Hence, by Step 1,                              , so that after taking the limit for               we 
obtain  
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SECOND FUNDAMENTAL WELFARE THEOREM
Proof (cont’d)

Step 4:                                                  and thus(1)

Step 5:                                                  and thus(1)

Step 6: Show that: if for all consumers                      there exists a vector
such that                      , then                                                    .

By Step 5,                           implies that                             and (since                           )
also                      . Thus,                                                              for any                 .

By the continuity of            there is a                  such that                                                 .  

But                                             , so that by Step 5                                                  ,
and thus                                                               as claimed.
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(1) Just consider the inequality for each consumer/producer individually by setting all other components to       or        ,
so that they cancel out.
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SECOND FUNDAMENTAL WELFARE THEOREM
Proof (cont’d)

Step 7: It is now enough to choose a division of the initial endowment    ,                 , 
and of firm ownership shares,                  , such that

which completes our proof. QED
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T

1 2 3 ....T NY Y Y Y     

x1
T,y1

T

x2
T,y2

T

m ax p y

R

min p x

If in Competitive 
Equilibrium, 
Allocation is 

Pareto Optimal

NONCONVEXITY (1st FWC)
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T

1 2 3 ....T NY Y Y Y     

x1, y1

x2, y2

NOT max p y

TR

min p x

Pareto Optimal 
Allocation, But 
No Competitive 

Equilibrium 
Exists

NONCONVEXITY (2nd FWC)
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AGENDA

Some Preliminaries

Fundamental Welfare Theorems

Existence of a Competitive Equilibrium

General Equilibrium vs. Partial Equilibrium

Key Concepts to Remember
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HOMOGENEOUS FUNCTIONS

Definition: A function is homogeneous of degree    , if for any 
and              :

Examples:

• The supply function

is homogeneous of degree zero. Indeed, for any            we have that 

• The profit function is also homogeneous of degree 
one, since
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EXCESS DEMAND

Definition: The excess demand function for consumer                     is

Summing up over all consumers and subtracting the firms’ production, the 
function 

denotes excess market demand (also referred to aggregate excess demand 
function).

Exercise: Show that the excess demand function and the excess market demand 
are homogeneous of degree zero.
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WALRAS’ LAW

Proposition (Walras’ Law): For any price vector       the value of excess market 
demand is zero, i.e.,

Proof: Consumer c’s budget constraint implies that

Adding up over all consumers and subtracting the firms’ production yields
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EXISTENCE OF A WALRASIAN EQUILIBRIUM

Proposition: Assume that the supply function and the (finite) demand 
function 

exist for all                     ,                       , and all                                            
Suppose further that

• The production sets are closed, bounded, and strictly convex

• The utility functions are continuous, locally nonsatiated, and with 
strictly convex upper contour sets 

Then there exists a price vector              such that excess market demand is zero, 
i.e.,                   (this price supports a WE)
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EXISTENCE OF A WALRASIAN EQUILIBRIUM
Proof

Proof: The supply function               and the (finite) demand function 

exist for all                     ,                       , are unique as a consequence of the 
imposed convexity/concavity assumptions, and are continuous(1) in            . 
Hence the market excess demand function                                          is unique and 
continuous on . 

Let us now define                                         

and the corresponding vector

Then the mapping                   with

is well-defined and continuous on .
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(1) This can be concluded e.g., from Berge’s maximum theorem (cf. an earlier lecture).
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EXISTENCE OF A WALRASIAN EQUILIBRIUM
Proof (cont’d)

Brower’s fixed-point theorem implies that the mapping h possesses a fixed point p* 
in , i.e., 

Using Walras’ Law we find

and therefore

which implies that
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(1) This can be concluded e.g., from Berge’s maximum theorem (cf. an earlier lecture).
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EXISTENCE OF A WALRASIAN EQUILIBRIUM
Proof (Cont'd)

In addition, since                                        , good i can be in excess supply, i.e., 

, only if it is worthless, that is to say only if              .

In particular,                                                                              implies that

One can also show that the fixed point p* needs to occur in the interior of the 
simplex , (cf. MWG, p. 586) so that the excess demand must vanish in
equilibrium,

QED
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GENERAL VS. PARTIAL EQUILIBRIUM ANALYSIS

To see how General Equilibrium Theory can yield predictions that are radically 
different from Partial Equilibrium Theory, consider the following example.

Example: Tax Incidence

Consider an economy with N cities (where N is a large number). 

• In each city there is a single price-taking firm that produces a single 
consumption good using the increasing, strictly concave production 
function

• There are M identical workers. Each worker is free to move between cities 
to be paid the highest wage. 

• Each worker derives utility from the single consumption good that is 
available. Without loss of generality the price of the consumption good 
can be normalized to 1.

Question: If a tax on labor is levied in city 1, who bears the cost (firms or workers)?

)(f
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GENERAL VS. PARTIAL EQUILIBRIUM (cont’d)

Analysis I (Partial Equilibrium) – Consider only City 1

• Before the tax is introduced, given that workers can move freely, wages 
must be equal in each city, i.e.,

which yields each firm’s equilibrium profit,

• The supply of workers in city 1 must be completely elastic, and thus the 
equilibrium wage after the tax          is introduced must still be equal to

• Hence, we find that in city 1, output drops to  

where the labor used in city 1,     , is such that 

• As a result, since                  , some labor moves away from city 1, but all 
the tax is borne by producers!
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GENERAL VS. PARTIAL EQUILIBRIUM (cont’d)

Analysis II (General Equilibrium)

• Before the tax is introduced, we obtain the same analysis as before. 

• Let                                   be the common equilibrium wage in all cities after 
the tax            is introduced

• Demand = Supply yields                                        , where           is the 
equilibrium labor demand in cities 2,…,N, and         is the equilibrium labor 
demand in city 1

• Profit maximization yields                                  and 

• Using the boundary condition for          , when                                     , we 
find by differentiating the optimality conditions and evaluating at          :

so that                         . In other words, the wage rate in all cities declines
with an imposition of a tax on labor
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GENERAL VS. PARTIAL EQUILIBRIUM (cont’d)

• Let us now consider the change of firm profits, which again can be done 
by differentiating profits with respect to t and evaluating at t=0:(1)

In other words, aggregate profits are very little affected (and in the limit 
unaffected) by a (small) tax.

• We therefore find that (at least for small taxes) virtually all of the tax in 
city 1 is incurred by the workers, which is the opposite conclusion of what 
we obtained using partial equilibrium analysis!
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(1) A more detailed proof of this statement can be given as follows. Let                                                 
be the sum of the firms' profits at the tax rate t. Note that (supply = demand) implies that                              , so that                                                               . We
obtained earlier that                        , and                                   . We can therefore differentiate        with respect to    and evaluate at          :

The significance of this result is that small deviations from zero in the tax level have an arbitrarily small impact on aggregate profit, whereas the impact on the
workers' utilities has a strictly positive slope. In other words, in the limit a very small positive tax is borne entirely by the workers.

11111 ))1(()()1()())()(1())()(()( tzzNzwzfNzfwzzfNztwzftS 
MzNz  )1(1 11 )()1()()( tzwMzfNzftS 

Nw /1)0(  NMzz /)0()0(1  )(tS t 0t

  00))(/()/()/())()1()(()/()0()0())0()1()0()(/()0( 1
0

11 


MNMfNMNMtzNtz
dt

d
NMfzMwzNzNMfS

t



- 47 -MGT-621-Spring-2023-TAW

AGENDA

Some Preliminaries

Fundamental Welfare Theorems

Existence of a Competitive Equilibrium

General Equilibrium vs. Partial Equilibrium

Key Concepts to Remember

- 48 -MGT-621-Spring-2023-TAW

KEY CONCEPTS TO REMEMBER

• Set Summation

• Walrasian Equilibrium (Competitive Equilibrium) (w/ or w/o transfers)

• Fundamental Welfare Theorems

• Separating Hyperplane Theorem 

• Walras’ Law

• General Equilibrium vs. Partial Equilibrium
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WHAT IS AN INTERMEDIARY

Definition. An intermediary offers intermediation services between two trading 
parties by acting as a conduit for goods and services offered by a supplier to a 
consumer. Typically the intermediary offers an added value to the transaction that 
is not available in a direct exchange between the two trading parties.
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INTERMEDIARIES ARE MARKET MAKERS
… and Create Two-Sided Markets …

Source: Spulber (1999)

Supply SideConsumption Side
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EXAMPLES OF INTERMEDIARIES

There are plenty … 

•

•

•

•
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DIRECT EXCHANGE

Buyer Seller

Price P

Cost C

Transaction Cost T = tB + tS

tB tS

US = P – tS – C UB = V – tB – P 

Direct exchange takes place TCV 
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INTERMEDIATED EXCHANGE

Buyer Seller

Retail
price R

Cost C

Intermediation Cost K 

US = W – C UB = V – R 

Intermediated exchange takes place KCV 

Wholesale 
price W

Inter-
mediary

and KT 
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REASONS FOR LOWER TRANSACTION COSTS

• Intermediary trades larger volume  Economies of scale

• Commitment power Intermediary can guarantee prices

• Longevity of Intermediary  Reputation

• Information aggregation  Intermediary knows more

• Inventory  Intermediary can achieve immediacy by keeping an inventory
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MONOPOLISTIC INTERMEDIARY

The profit-maximizing prices (R,W) satisfy

V – R = (V – C – T)/2 = W – C

The intermediary’s “markup” is therefore

R – W = T.

Hence, the intermediary is viable if and only if

K < T.
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PRICE COMPETITION BETWEEN INTERMEDIARIES

“Bertrand Price Competition”

Assume two intermediaries have identical intermediation cost K. Then in a 
simultaneous-move price-setting game their gains are dissipated fully since 
undercutting the opponent is a dominant strategy, as long as payoffs are positive.

Hence, at the unique Nash equilibrium, both intermediaries charge (P,W) such that 

V – P = (V – C – K)/2 = W – C

The intermediaries’ equilibrium payoffs are zero, while the seller’s and the buyer’s 
payoffs are (V – C – K)/2, respectively.

Intermediaries can enable social gains by lowering transaction cost.
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TRANSACTION COST DECREASE: IMMEDIACY

Assume that the buyer and seller are equally sensitive to the time value of money 
and have a common per-period discount factor   (0,1). When conducting a direct 
exchange, the gains from trade V – C are realized in the following period, so that 
the surplus to be divided between the trading parties becomes

S = (V – C).

An intermediary, e.g., by keeping an inventory of the items to be traded, can 
provide immediacy of the exchange.

It is viable if and only if the intermediation cost K is such that

K < (1 – )(V – C)
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TRANSACTION COST DECREASE: ELIMINATION OF SEARCH

Assume that the buyer and seller have a probability  (0,1) of meeting in a direct 
exchange. Then with probability (1 – ) no exchange takes place, resulting in a 
transaction cost

T = (1 – )(V – C)

Hence, an well-known intermediary that provides a trading platform can be viable if 
the intermediation cost K is such that

K < (1 – (V – C)

The lower the probability of matching between buyers and sellers, the higher the 
likelihood that an intermediary emerges.
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INTERMEDIARY CAN ENABLE TRADE WHEN MARKETS FAIL

Consider a buyer whose value for an item is either high (VH) or low (VL), with equal 
probability (where VH > VL > 0), so that in expectation

V = (VH + VL)/2.

Suppose further that a seller has either high opportunity cost (CH) or low 
opportunity cost (CL), with equal probability (where CH > CL > 0), so that in 
expectation

C = (CH + CL)/2.

Assume that VH > CH > VL > CL . After meeting and learning each other’s type they
decide to transact or not. Thus, with probability 1/4 there is no trade.
The expected gains from direct transaction are therefore

• Buyer L: (VL – CL)/4

• Buyer H: (VH – C)/2

• Seller L: (V – CL)/2

• Seller H: (VH – CH)/4

Total ex-ante expected surplus:

VH – CL – (CH – VL)/2      (< VH – CL) 
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ENABLE TRADE WHEN MARKETS FAIL (Cont’d)

If a monopolist intermediary offers prices R = VH – (VH – C)/2 and W = CL + (V – CL)/2, 
then buyer H’s and seller L’s expected surplus from using the intermediary are equal 
to the expected surplus from direct exchange, since

VH – R = VH – VH + (VH – C)/2 = (VH – C)/2

and

W – CL = CL + (V – CL)/2 – CL = (V – CL)/2.

However, buyer L’s and seller H’s surplus are negative, preventing them from using 
the intermediary. Hence, they will be inactive in equilibrium, while the intermediary is 
viable if its intermediation cost K is such that

R – W = VH – (VH – C)/2 – CL – (V – CL)/2 = (VH – VL + CH – CL)/4 > K.

Thus, an intermediary may produce a separating equilibrium in a market that has a 
positive probability of failing if intermediation costs are low enough.
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INTERMEDIARY MAY ALLEVIATE ADVERSE SELECTION

Consider a seller whose product is of either high (H) or low quality (L). The seller’s 
opportunity cost increases with the quality of the good supplied, CH > CL > 0. The 
buyer’s willingness to pay is increasing in the product quality, VH >  VL > 0. 

Let  (0,1) be the probability that the good is a “lemon”, i.e., is of low quality, 
such that the following “lemons condition” is satisfied:

V =  VL + (1 – ) VH < CH.

Hence, if the buyer cannot distinguish between the two product qualities in 
equilibrium, the high-quality seller will leave the market, as the buyer’s willingness 
to pay does not cover the cost of providing the good.

Therefore, the lemons condition implies that only lemons are directly exchanged in 
the market. The payoff for the remaining buyer and seller type (L,L) is (VL – CL)/2. 
Trade occurs with probability .
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ALLEVIATE ADVERSE SELECTION (Cont’d)

Assume that a trusted intermediary is able to observe the quality of the seller’s 
product at a cost K and then to communicate that information to the buyer.

V =  VL + (1 – ) VH < CH.

The intermediary can then make the prices (R,W) contingent on the observed 
quality (L or H). The optimal intermediation prices are such that buyer’s and sellers 
are just as well off as under direct exchange, so that

(RH,WH) = (VH,CH)

and

(RL,WL):    WL – CL = (VL – CL)/2          and         VL – RL =  (VL – CL)/2.

The intermediary is viable if (1 – )(VH – CH) + (VL – (1 + )(VL – CL)/2 – CL) > K.

- 18 -MGT-621-Spring-2023-TAW

INTERMEDIARIES CAN MITIGATE MORAL HAZARD

Suppose that a buyer can enhance the default value VL obtained from a certain 
good or service to VH by making a relationship-specific investment I. This 
investment is non-contractable. The seller’s cost is C < VL, and the surplus is 
evenly divided such that both parties obtain (Vi – C)/2 for i = L,H.

Assume that the required investment is “substantial”, i.e., VH – VL > I > (VH – VL)/2.

Then the buyer will not find it worthwhile to make the relationship-specific 
investment, since

(VH – C)/2 – I < (VL – C)/2.
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MITIGATE MORAL HAZARD (Cont’d)

An intermediary can set prices (R,W) such that

VH – I – R = (VL – C)/2 = W – C.

The intermediary is viable if

R – W = VH – VL – I > K.
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INTERMEDIARIES AND TRANSACTION COST
Summary

• Provide Immediacy

• Reduce Search & Matching Cost

• Enable Trade when Markets Fail (Bilateral Asymmetric Information)

• Alleviate Adverse Selection

• Mitigate Moral Hazard

… and reduce “coordination problems”
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CONCLUSION

Public-Policy Implications with respect to Intermediaries

• Should the government encourage the entrance of intermediaries?

• Should the government act as an intermediary?

• Should the government encourage the competition of intermediaries?
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KEY CONCEPTS TO REMEMBER

• Intermediary / Market Maker / Two-Sided Market

• Transaction Cost

• Intermediation Cost

• Immediacy

• Search Cost

• Market Failure

• Adverse Selection

• Moral Hazard
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