 investment, and output decisions of firms depend on market structure and the behavior of competitors.
Chapters 10 and 11 examine market power: the ability to affect price either by a seller or a buyer. We will see how market power arises, how it differs across firms, how it affects the welfare of consumers and producers, and how it can be limited by government. We will also see how firms can design pricing and advertising strategies to take maximum advantage of their market power
Chapters 12 and 13 deal with markets in which the number of firms is imited. We will examine a variety of such markets, ranging from monopolisHiccompetition, in which many firms sell differentiated products, to a cartel in which a group of firms coordinates decisions and acts as a monopolist we re particularly concerned with markets in which there are only a few firme In these cases, each firm must design its pricing output and ine firms. strategies, while keeping in mind how competitors are likely to react. We will develop and apply principles from how competitors are likely to react. We will Chapter 14 shows how markets for factor to analyze such strategies. materials, operate. We will markets for factor inputs, such as labor and raw
 hen focuses on 15 alue the futre pit decisions. We will see how a firm can
 Sol to purchorthwhile. We will also apply this idea to the decisions of individuals

CHAPTERS
10 Market Power: Monopoly and Monopsony

11
Pricing with Market Power

391
12 Monopolistic Competition and Oligopoly

443

Game Theory and Competitive Strategy

14
Markets for
Factor Inputs
521
15

Market Power: Monopoly and Monopsony

In a perfectly competitive market, the large number of sellers and buyers of a good ensures that no single seller or buyer can affect its price. The market forces of supply and demand determine price. Individual firms take the market price as a given in deciding how much to produce and sell, and consumers take it as a given in deciding how much to buy.
Monopoly and monopsony, the subjects of this chapter, are the polar ppposites of perfect competition. A monopoly is a market that has only one seller but many buyers. A monopsony is just the opposite: a marare closely relateders but only one buyer. Monopoly and monopsony First we discuss thich why we cover them in the same chapter. is the sole producer a penavist the sote that the monopolist re. Miv market demand curve relates the price ee how a monopolist caves to the quantity it offers for sale. We will eew a monopolist can take advantage of its control over price and prevail in a competitive market and quantity differ from what would In general the marke
higher than the competitive quis quantity will be lower and its price society because fortitive quantity and price. This imposes a cost on pay more for monolizing is why antitrust laws exist which forbid firms from desirable for most markets. When economies of scale make monopoly see how the example, with local electric power companies-we will monopolist's price. monopolist's price
with each plicated other. The interactions of firms in such markets can be comin Chapters often involve aspects of strategic gaming, a topic covered and may find it 13. In any case, the firms may be able to affect price These firms it profitable to charge a price higher than marginal cost, monopolys have monopoly power. We will discuss the determinants of Next we will turn to measurement, and its implications for pricing. sonist pays primpor monopsonist's a price that depends on the quantity that it purchases. The benefit from th problem is to choose the quantity that maximizes its net money paid for purchase - the value derived from the good less the trate the close it. By showing how the choice is made, we will demontrate the close parallel between monopsony a made, we will demon-

CHAPTER OUTLINE
10.1 Monopoly 350
10.2 Monopoly Power 36
10.3 Sources of Monopoly Power 366
10.4 The Social Costs of Monopoly Power 368
10.5 Monopsony 373
10.6 Monopsony Power 376
10.7 Limiting Market Power: The Antitrust Laws 381

LIST OF EXAMPLES
10.1 Astra-Merck Prices Prilosec 35
0.2 Markup Pricing: Supermarkets to Designer Jeans 364
10.3 The Pricing of Videos 365
10.4 Monopsony Power in U.S Manufacturing 380
10.5 A Phone Call about Prices 384
10.6 The United States versus Microsoft 385

- monopoly Market with only one seller.
" monopsony Market with only one buyer.

market power Ability of a seller or buyer to affect the price of a good.

Although pure monopsony is also unusual, many markets have only a few buyers who can purchase the good for less than they would pay in a competitive market. These buyers have monopsony power. Typically, this situation occurs in markets for inputs to production. For example, Genera Motors, the largest car manufacturer, has monopsony power in the markets for tires, car batteries and other parts. We will discuss the determinants of monopsony power, its me surement, and its implications for pricing.
Monopoly and monopsony power are two forms of market power: the abilityof either a seller or a buyer-to affect the price of a good. ${ }^{1}$ Because sellers or buyers often have at least some market power (in most real-world markets), we need to understand how market power works and how it affects producers and consumers

10.1 MONOPOLY

As the sole producer of a product, a monopolist is in a unique position. If the monopolist decides to raise the price of the product, it need not worry about competitors who, by charging lower prices, would capture a larger share of the market at the monopolist's expense. The monopolist is the market and completely controls the amount of output offered for sale.
But this does not mean that the monopolist can charge any price it wants-at least not if its objective is to maximize profit. This textbook is a case in point. Pearson Prentice Hall owns the copyright and is therefore a monopoly producer of this book. So why doesn't it sell the book for $\$ 500$ a copy? Because few people would buy it, and Prentice Hall would earn a much lower profit.
To maximize profit, the monopolist must first determine its costs and the characteristics of market demand. Knowledge of demand and cost is crucial for a firm's economic decision making. Given this knowledge, the monopolist must then decide how much to produce and sell. The price per unit that the monopolist receives then follows directly from the market demand curve. Equivalently, the monopolist can determine price, and the quantity it will sell at that price fol lows from the market demand curve.

Average Revenue and Marginal Revenue
The monopolist's average revenue-the price it receives per unit sold-is precisely the market demand curve. To choose its profit-maximizing output level, the monopolist also needs to know its marginal revenue: the change in revenue that results from a unit change in output. To see the relationship among total, average and marginal revenue, consider a firm facing the following demand curve:

$$
P=6-Q
$$

Table 10.1 shows the behavior of total, average, and marginal revenue for this demand curve. Note that revenue is zero when the price is $\$ 6$: At that price, nothing is sold. At a price of $\$ 5$, however, one unit is sold, so total (and marginal) ret ing is sold. At a price of $\$ 5$, Anowetity sold from 1 to 2 increases revenue from 55 to $\$ 8$; marginal revenue is thus $\$ 3$. As quantity sold increases from 2 to 3 , margina revenue falls to $\$ 1$, and when quantity increases from 3 to 4 , marginal reven
\qquad the term
${ }^{\text {1 }}$ The courts use the term "monopoly power" to mean significant and sustainable market powed ficient to warrant particular scrutiny under the antitrust laws. In this book, however, for p ct reasons we use "mo
substantial or not.

TABLE 10.1 Total, Marginal, and Average Revenue

Price (P)	Quantity (Q)	Total Revenue (R)	Marginal Revenue (MR)	Average Revenue (AR)
$\$ 6$	0	$\$ 0$	-	-
5	1	5	$\$ 5$	$\$ 5$
4	2	8	3	4
3	3	9	1	3
2	4	8	-1	2
1	5	5	-3	1

becomes negative. When marginal revenue is positive, revenue is increasing with quantity, but when marginal revenue is negative, revenue is decreasing.
When the demand curve is downward sloping, the price (average revenue) is greater than marginal revenue because all units are sold at the same price. If sales are to increase by 1 unit, the price must fall. In that case, all units sold, not just the additional unit, will earn less revenue. Note, for example, what happens in Table 10.1 when output is increased from 1 to 2 units and price is reduced to $\$ 4$ Marginal revenue is $\$ 3$: $\$ 4$ (the revenue from the sale of the additional unit of output) less $\$ 1$ (the loss of revenue from selling the first unit for $\$ 4$ instead of $\$ 5$), Thus, marginal revenue ($\$ 3$) is less than price ($\$ 4$).
Figure 10.1 plots average and marginal revenue for the data in Table 10.1. Our demand curve is a straight line and, in this case, the marginal revenue curve has twice the slope of the demand curve (and the same intercept). ${ }^{2}$

FIGURE 10.1 Average and Marginal Revenue
Average and marginal revenue are shown for the demand curve $P=6-Q$
Tt the demand curve

The Monopolist's Output Decision
What quantity should the monopolist produce? In Chapter 8, we saw that to maximize profit, a firm must set output so that marginal revenue is equal to marginal cost. This is the solution to the monopolist's problem. In Figure 10.2, the market demand curve D is the monopolist's average revenue curve. It specifies the price per unit that the monopolist receives as a function of its output level. Also shown are the corresponding marginal revenue curve MR and the average and marginal cost curves, AC and MC . Marginal revenue and marginal cost are equal at quantity Q^{*}. Then from the demand curve, we find the price P^{*} cost are equal at quantity Q^{*}.

How can we be sure that Q^{*} is the profit-maximizing quantity? Suppose the monopolist produces a smaller quantity Q_{1} and receives the corresponding higher price P_{1}. As Figure 10.2 shows, marginal revenue would then exceed marginal cost. In that case, if the monopolist produced a little more than Q_{1}, it would receive extra profit ($\mathrm{MR}-\mathrm{MC}$) and thereby increase monopolist could keep increasing output, adding more to its total profit until output Q^{*}, at which point the incremental profit earned from producing one more

MGURE 10.2 Profit is Maximized When Marginal Revenue Equals Marginal Cost Q^{*} is the output level at which $M R=M C$. If the firm produces a smaller output-say, Q_{1} and sacrifices some profit because the extra revenue that could be earned from producisg and selling the units between Q_{1} and Q^{*} exceeds the cost of producing them. Similarly, expan ing output from Q^{*} to Q_{2} would reduce profit because the additional cost would exce additional revenue.
unit is zero. So the smaller quantity Q_{1} is not profit maximizing, even though it llows the monopolist to charge a higher price. If the monopolist produced Q read below the MR
In Figure 10.2 , the larger quantity Q_{2} is likurve, between Q_{1} and Q^{*}.
uantity, marginal cost exceeds marginal ${ }^{2}$ isewise not profit maximizing. At this produced a little less produced a little less than Q_{2}, it would increase its total profit (by MC $-M R$). It increased profit achieved by more by reducing output all the way to Q^{*}. The below the MC
We can
ence between revenebraically that Q^{*} maximizes profit. Profit π is the difference between revenue and cost, both of which depend on Q :

$$
\pi(Q)=R(Q)-C(Q)
$$

As Q is increased from zero, profit will increase until it reaches a maximum and then begin to decrease. Thus the profit-maximizing Q is such that the incremental profit resulting from a small increase in Q is just zero (i.e., $\Delta \pi / \Delta Q=0$). Then

$$
\Delta \pi / \Delta Q=\Delta R / \Delta Q-\Delta C / \Delta Q=0
$$

But $\Delta R / \Delta Q$ is marginal revenue and $\Delta C / \Delta Q$ is marginal cost. Thus the profitmaximizing condition is that $\mathrm{MR}-\mathrm{MC}=0$, or $\mathrm{MR}=\mathrm{MC}$.

An Example
To grasp this result more clearly, let's look at an example. Suppose the cost of production is

$$
C(Q)=50+Q^{2}
$$

In other words, there is a fixed cost of $\$ 50$, and variable cost is Q^{2}. Suppose demand is given by

$$
P(Q)=40-Q
$$

By setting marginal revenue equal to marginal cost, you can verify that profit is maximized when $Q=10$, an output level that corresponds to a price of $\$ 30 .{ }^{3}$
Cost, revenue, and profit are plotted in Figure 10.3(a). When the firm proincreases as Q increases, reaching negative because of the fixed cost. Profit decreases as Q in increases, reaching a maximum of $\$ 150$ at $Q^{*}=10$, and then of the revenue and and $c c^{\prime}$ are parallel) The curves are the same. (Note that the tangent lines $r r^{\prime}$ enue, and the slope of the of the revenue curve is $\Delta R / \Delta Q$, or marginal revprofit is maximized slope of the cost curve is $\Delta C / \Delta Q$, or marginal cost. Because profit is maximized when marginal revenue equals marginal cost, the slopes are equal.
Figure $10.3(\mathrm{~b})$ shows both the corresponding average and marginal revenue curves and average and marginal cost curves. Marginal revenue and marginal 530 per unit. Thus average profit is $\$ 30-\$ 15=\$ 15$ pert is $\$ 15$ per unit and price is sold, profit is $(10)(\$ 15)=\$ 150$ thit is $\$ 30-\$ 15=\$ 15$ per unit. Because 10 units are old, profit is $(10)(\$ 15)=\$ 150$, the area of the shaded rectangle.

Note that average co

(4) that average cost is $C(Q) / Q=50 / Q+Q$ and marginal cost is $\Delta C / \Delta Q=2 Q$. Revenue is $R(Q)=$

FIGURE 10.3 Example of Profit Maximization
Part (a) shows total revenue R, total $\operatorname{cost} C$, and profit, the difference between the two Part (a) shows total revenue R, total cost C, and profit, the difference between the two Part (b) shows average and marginal revenue and average and marginal
Marginal revenue is the slope of the total revenue curve, and marginal cost is the slope of the total cost curve. The profit-maximizing output is $Q^{*}=10$, the point where marginal revenue equals marginal cost. At this output level, the slope of the prom curve is zero, and the slopes of the total revenue and total cost curves are equal. The profit per unit is $\$ 15$, the difference between average revenue and average cost procause 10 units are produced, total profit is $\$ 150$.

A Rule of Thumb for Pricing
We know that price and output should be chosen so that marginal revenue equals marginal cost, but how can the manager of a firm find the correct pied and output level in practice? Most managers have only limited knowledge
the average and marginal revenue curves that their firms face. Similarly, they might know the firm's marginal cost only over a limited output range. We there-
fore want to translate the condition ginal cost into a rule of thumb that can be more easily applied ind equal marTo do this, we first write the expression for marginal reved in practice.

$$
\mathrm{MR}=\frac{\Delta R}{\Delta Q}=\frac{\Delta(P Q)}{\Delta Q}
$$

Note that the extra revenue from an incremental unit of quantity, $\Delta(P Q) / \Delta Q$, has two components:

1. Producing one extra unit and selling it at price P brings in revenue $(1)(P)=P$.
2. But because the firm faces a downward-sloping demand curve, producing and selling this extra unit also results in a small drop in price $\Delta P / \Delta Q$, which reduces the revenue from all units sold (i.e., a change in revenue $Q \mid \Delta P / \Delta Q])$.
Thus,

$$
\mathrm{MR}=P+Q \frac{\Delta P}{\Delta Q}=P+P\left(\frac{Q}{P}\right)\left(\frac{\Delta P}{\Delta Q}\right)
$$

We obtained the expression on the right by taking the term $Q(\Delta P / \Delta Q)$ and multiplying and dividing it by P. Recall that the elasticity of demand is defined as $E_{d}=(P / Q)(\Delta Q / \Delta P)$. Thus $(Q / P)(\Delta P / \Delta Q)$ is the reciprocal of the elasticity of
demand, $1 / E_{d^{\prime}}$, measured at the profit-maximizing output, and

$$
\mathrm{MR}=P+P\left(1 / E_{d}\right)
$$

Now, because the firm's objective is to maximize profit, we can set marginal rev-
enue equal to marginal cost: enue equal to marginal cost:

$$
P+P\left(1 / E_{d}\right)=\mathrm{MC}
$$

which can be rearranged to give us

$$
\frac{P-\mathrm{MC}}{P}=-\frac{1}{E_{d}}
$$

This relationship provides a rule of thumb for pricing. The left-hand side $(P-M C) / P$, is the markup over marginal cost as a percentage of price. The relationship says that this markup should equal minus the inverse of the elasticity of demand. ${ }^{4}$ (This figure will be a positive number because the elasticity of demand is negative.) Equivalently, we can rearrange this equation to express price directly as a markup over marginal cost:
$P=\frac{\mathrm{MC}}{1+\left(1 / E_{d}\right)}$
ent
ty of demand that and marginap equation applies at the point of a profit maximum. If both the elastic Tro dmay have and marginal cost vary considerably over the range of outputs under consideration, pul level. On the other hand, you can use this equation to check whether a particule op timum outud price are optimal.

The elasticity of demand is
discussed in $\S \$ 2.4$ and 4.3 .

For example, if the elasticity of demand is -4 and marginal cost is $\$ 9$ per unit, price should be $\$ 9 /(1-1 / 4)=\$ 9 / .75=\$ 12$ per unit.
How does the price set by a monopolist compare with the price under competition? In Chapter 8, we saw that in a perfectly competitive market, price equals marginal cost. A monopolist charges a price that exceeds marginal cost, but by an amount that depends inversely on the elasticity of demand. As the markup equation (10.1) shows, if demand is extremely elastic, E_{d} is a large negative num ber, and price will be very close to marginal cost. In that case, a monopolized market will look much like a competitive one. In fact, when demand is very elastic, there is little benefit to being a monopolist.
Also note that a monopolist will never produce a quantity of output that is on the inelastic portion of the demand curve-i.e., where the elasticity of demand is less than 1 in absolute value. To see why, suppose that the monopolist is producing at a point on the demand curve where the elasticity is -0.5 . In that case, the monopolist could make a greater profit by producing less and selling at a higher price. (A 10percent reduction in output, for example, would allow for a 20 -percent increase in price and thus a 10 -percent increase in revenue. If marginal cost were greater than zero, the increase in profit would be even more than 10 percent because the lower output would reduce the firm's costs.) As the monopolist reduces output and raises price, it will move up the demand curve to a point where the elasticity is greater than 1 in absolute value and the markup rule of equation (10.2) will be satisfied.
Suppose, however, that marginal cost is zero. In that case, we cannot use equation (10.2) directly to determine the profit-maximizing price. However, we can see from equation (10.1) that in order to maximize profit, the firm will produce at the point where the elasticity of demand is exactly -1 . If marginal cost is zero, maximizing profit is equivalent to maximizing revenue, and revenue is maximized when $E_{d}=-1$.

EXAMPLE 10.1
Astra-Merck Prices Prilosec

In 1995, a new drug developed by AstraMerck became available for the long-term treatment of ulcers. The drug, Prilosec, represented a new generation of antiulcer medication. Other drugs to treat ulcer conditions were already on the market: Tagamet had been introduced in 1977, Zantac in 1983, Pepcid in 1986, and Axid in 1988. As we explained in Example 1.1 (page 10), these four drugs worked in much the same way to reduce the stomach s sectetion of acid. Prilosec, however, was based on a very different biochemical sechame the and was much more effective than these earlier drugs. By 1996, it had become the best-selling drug in the world and faced no major competitor. ${ }^{5}$
${ }^{5}$ Prilosec, developed through a joint venture of the Swedish firm Astra and the U.S. firm Merck, with SPrilosec, developed through a joine venture oft the gwestrosophageal reflux disease, and was apprond
introduced in 1989 , but only for the treatment of geat introduced in 1989 , but only for the treatment of gastroesophageal reflux cisease, and was in 1 108 for shoret, hat created a very large market for the drug. In 1998, Astra bought Merck's share of tho rights to Prilosec. In 1999, Astra acquired the firm Zeneca and is now called Astrazeneca. In
AstraZeneca earned over $\$ 4.9$ billion in sales of Prilosec, which remained the world's bestseliry AstraZeneca earned over $\$ 4.9$ billion in sales of Priosec, which remained the wompany introduuct prescription drug. As Astrazeneca's patent on . 1 hlosectea antiulcer drug. In 2006 , Nexiu
Nexium, a new (and,

In 1995, Astra-Merck was pricing Prilosec at about $\$ 3.50$ per daily dose. (By contrast, the prices for Tagamet and Zantac were about $\$ 1.50$ to $\$ 2.25$ per daily dose.) Is this pricing consistent with the markup formula (10.1)? The margina cost of producing and packaging Prilosec is only about 30 to 40 cents per daily dose. This low marginal cost implies that the price elasticity of demand, E_{D} should be in the range of roughly -1.0 to -1.2 . Based on statistical studies of phar maceutical demand, this is indeed a reasonable estimate for the demand elasticity. Thus, setting the price of Prilosec at a markup exceeding 400 percent over marginal cost is consistent with our rule of thumb for pricing.

Shits in Demand

In a competitive market, there is a clear relationship between price and the quantity supplied. That relationship is the supply curve, which, as we saw in Chapter 8, represents the marginal cost of production for the industry as a whole. The supply curve tells us how much will be produced at every price.

A monopolistic market has no supply curve. In other words, there is no one-tothe monopolist's outwut decisiond the quantity produced. The reason is that on the shape of the demand curvepends not only on marginal cost but also out the series of prices and do not trace curve Instead, shifts in demper to a competitive supply curve. Instead, shifts in demand can lead to changes in price with no change in output, changes in output with no change in price, or changes in both price
and output. and output.
This principle is illustrated in Figure 10.4(a) and (b). In both parts of the figure, the demand curve is initially D_{1}, the corresponding marginal revenue curve is MR_{1}, and the monopolist's initial price and quantity are P_{1} and Q_{1}. In
Figure 10.4(a), the dind Figure 10.4(a), the demand curve is shifted down and rotated. The new demand and marginal revenue curves are shown as D_{2} and MR_{2}. Note that MR_{2} interquantity produced stays the same. srice point that MR_{1} does. As a result, the In Figure 104 (b), the same. Price, however, falls to P_{2}.
In Figure 10.4(b), the demand curve is shifted up and rotated. The new marginal revenue curve $M R_{2}$ intersects the marginal cost curve at a larger quantity, Q_{2} instead of Q_{1}. But the shift in the demand curve is such that the price charged Shifty the same
Shifts in demand usually cause changes in both price and quantity. But the special cases shown in Figure 10.4 illustrate an important distinction between monopoly and competitive supply. A competitive industry supplies a specific depending every price. No such relationship exists for a monopolist, which, the same price, or the same shifts, might supply several different quantities at the same price, or the same quantity at different prices.

The Effect of a Tax

A tax on output can also have a different effect on a monopolist than on a com petitive industry. In Chapter 9, we saw that when a specific (i.e., per-unit) tax is mposed on a competitive industry, the market price rises by an amount that is less than the tax, and that the burden of the tax is shared by producers and consumers. Under monopoly, however, price can sometimes rise by more than the amount of the tax.

```
In §9.6, we explain that a
specific tax is a tax of a cer
tain amount of money per-
unit sold, and we show how
the tax affects price and
quantity.
```


Shifts in Demand

Shifing the ong the demand curve shows that a monopolistic market has no supply curve-i.e., there is no one to-one relationship between price and quantity produced. In (a), the demand curve D_{1} shifts to new the old marginal revenue curve MR_{1}. The profit-maximizing output therefore remains the same, although
 price fatls level Q_{2}. But because demand is now more elastic, price remains the same.

Analyzing the effect of a tax on a monopolist is straightforward. Suppose a specific tax of t dollars per unit is levied, so that the monopolist must remit dollars to the government for every unit it sells. Therefore, the firm's margina (and average) cost is increased by the amount of the tax t. If MC was the firm's original marginal cost, its optimal production decision is now given by

$M R=M C+t$

In $\S 8.2$, we explain that a
firm maximizes its profit by choosing the output at which marginal cost.

W. Effect of Excise Tax on Monopolist

Wi. tax per unit, the firm's effective marginal cost is increased by the amon
7. In this example, the increase in price ΔP is larger than the tax t.

We 1. seen that a firm maximizes profit by setting output at a level where mar ginai enue equals marginal cost. For many firms, production takes place in two or m. different plants whose operating costs can differ. However, the logic used Su: mse a firm has two plants. What that for the single-plant firm.
. Mse a firm has two plants. What should its total output be, and how intuit. Iy in two steps.

- Ster. Whatever

Ste. . Whatever the total output, it should be divided between the two plants so l. i marginal cost is the same in each plant. Otherwise, the firm could reduce its cos. nd increase its profit by reallocating production. For example, if marginal cost Plant 1 were higher than at Plant 2, the firm could produce the same output a lower total cost by producing less at Plant 1 and more at Plant 2
Ster \&. We know that total output must be such that marginal revenue equals mar) 4 cost. Otherwise, the firm could increase its profit by raising or lowering tota: - tput. For example, suppose marginal costs were the same at each plant, but aginal revenue exceeded marginal cost. In that case, the firm would do add producing more at both plants because the revenue earned from the dt ea: lant, and becauseed the cost. Because marginal costs must be the same that in is maximizause marginal revenue must equal marginal cost, we see - marginal revenue equals marginal cost at each plant.

We Also derive this result algebraically. Let Q_{1} and C_{1} be the output and lant 2, Uuction for Plant 1, Q_{2} and C_{2} be the output and cost of production for $Q_{T}=Q_{1}+Q_{2}$ be total output. Then profit is

$$
\pi=P Q_{T}-C_{1}\left(Q_{1}\right)-C_{2}\left(Q_{2}\right)
$$

The firm should increase output from each plant until the incremental profit from the last unit produced is zero. Start by setting incremental profit from output at Plant 1 to zero:

$$
\frac{\Delta \pi}{\Delta Q_{1}}=\frac{\Delta\left(P Q_{T}\right)}{\Delta Q_{1}}-\frac{\Delta C_{1}}{\Delta Q_{1}}=0
$$

Here $\Delta\left(P Q_{T}\right) / \Delta Q_{1}$ is the revenue from producing and selling one more uniti.e., marginal revenue, $M R$, for all of the firm's output. The next term, $\Delta C_{1} / \Delta Q_{1}$, is marginal cost at Plant $1, \mathrm{MC}_{1}$. We thus have $\mathrm{MR}-\mathrm{MC}_{1}=0$, or

$$
\mathrm{MR}=\mathrm{MC}_{1}
$$

Similarly, we can set incremental profit from output at Plant 2 to zero,

$$
\mathrm{MR}=\mathrm{MC}_{2}
$$

Putting these relations together, we see that the firm should produce so that

$$
\begin{equation*}
\mathrm{MR}=\mathrm{MC}_{1}=\mathrm{MC}_{2} \tag{10.3}
\end{equation*}
$$

Figure 10.6 illustrates this principle for a firm with two plants. MC_{1} and MC_{2} are the marginal cost curves for the two plants. (Note that Plant 1 has higher marginal costs than Plant 2.) Also shown is a curve labeled MC_{T}. This is the firm's total marginal cost and is obtained by horizontally summing MC_{1} and

FGGURE 10.6 Production with Two Plant

[^0]MC_{2}. Now we can find the profit-maximizing output levels Q_{1}, Q_{2}, and Q_{T}. First, find the intersection of MC_{T} with MR; that point determines total output Q_{1}, Next, draw a horizontal line from that point on the marginal revenue curve tu the vertical axis; point MR* determines the firm's marginal revenue. The intersections of the marginal revenue ine with MC_{1} and MC_{2} give the outputs Q_{1} and Q_{2} for the two plants, as in equation (10.3)
Note that total output Q_{T} determines the firm's marginal revenue (and hence its price P^{*}..Q_{1} and Q_{2}, however, determine marginal costs at each of the two plants. Because MC_{T} was found by horizontally summing MC_{1} and MC_{2}, we know that $Q_{1}+Q_{2}=Q_{T}$. Thus these output levels satisfy the condition that $\mathrm{MR}=\mathrm{MC}_{1}=\mathrm{MC}_{2}$

13.2 MONOPOLY POWER

Pure monopoly is rare. Markets in which several firms compete with one another are much more common. We say more about the forms that this competition can take in Chapters 12 and 13. But we should explain here why each firm in a market with several firms is likely to face a downward-sloping demand curve and, as a result, to produce so that price exceeds marginal cost.
Suppose, for example, that four firms produce toothbrushes and have the market demand curve $Q=50,000-20,000 P$, as shown in Figure $10.7(a)$. Let's assume that these four firms are producing an aggregate of 20,000 toothbrushes per day (5000 each per day) and selling them at $\$ 1.50$ each. Note that market demand is relatively inelastic; you can verify that at this $\$ 1.50$ price, the elasticity of demand is -1.5

FIGunc 10.7 The Demand for Toothbrushes

Part (a) shows the market demand for toothbrushes. Part (b) shows the demand for a market price of $\$ 1.50$, elasticity of market demand is -1.5 . Firm A, however, sees a much more elastic demand curve D monopoly power: Its profit-maximizing. At a price of $\$ 1.50$, Firm A^{\prime} 's demand elasticity is -6 . Still, Firm A has some monopoly power: Its profit-maximizing price is $\$ 1.50$, which exceeds marginal cost.

Now suppose that Firm A is deciding whether to lower its price to increase ales. To make this decision, it needs to know how its sales would respond to a lange in its price. In other words, it needs some idea of the demand curve it faces, as opposed to the market demand curve. A reasonable possibility is shown in Figure 10.7(b), where the firm's demand curve D_{A} is much more elastic than the market demand curve. (At the $\$ 1.50$ price the elasticity is -6.0 .) The firm might predict that by raising the price from $\$ 1.50$ to $\$ 1.60$, its sales will dropmight predict units to 3000 --as consumers buy more toothbrushes from other firms. (If all firms raised their prices to $\$ 1.60$, sales for Firm A would fall only to 4500 . For several reasons, sales won't drop to zero as they would in a perfectly competitive market. First, if Firm A^{\prime} 's toothbrushes are a little different from those of its competitors, some consumers will pay a bit more for them. Second, those firms might also raise their prices. Similarly, Firm A might anticipate that by lowering its price from $\$ 1.50$ to $\$ 1.40$, it can sell more toothbrushes-perhaps 7000 instead of 5000 . But it will not capture the entire market: Some consumers might still prefer the competitors' toothbrushes, and competitors might also might still prefer
Thus, Firm A's demand curve depends both on how much its product differs from its competitors' products and on how the four firms compete differs with one another. Whe clear: Firm petition in the market demand A is curve, but which
Given knowledge of its demand curve, how much should Firm A produce? The same principle applies: The profit-maximizing quantity equates marginal revenue and marginal cost. In Figure 10.7(b), that quantity is 5000 units. The corresponding price is $\$ 1.50$, which exceeds marginal cost. Thus, although Firm A is not a pure monopolist, it does have monopoly power-it can profitably charge a price greater than marginal cost. Of course, its monopoly power is less than it would be greater than marginal cost. Of course, its and monopolized the market, but it might still be substantial.

This raises two questions.

1. How can we measure monopoly power in order to compare one firm with another? (So far we have been talking about monopoly power only in qualitative terms.)
2. What are the sources of monopoly power, and why do some firms have What are the sources of monoly power than others?
We address both these questions below, although a more complete answer to the second question will be provided in Chapters 12 and 13.

Remember the important distinction between a perfectly competitive firm and a irm with monopoly power: For the competitive firm, price equals marginal cost; for the firm with monopoly power, price exceeds marginal cost. Therefore, a natural way to measure monopoly power is to examine the extent to which the profit-maximizing price exceeds marginal cost. In particular, we can use the markup ratio of price minus marginal cost to price that we introduced earlier as part of a rule of thumb or pricing. This measure of monopoly power, introduced by economist Abba
rorner in 1934, is called the Lerner Index of Monopoly Power It is the difference between price and marginal cost, divided by price. Mathematically:

$$
L=(P-\mathrm{MC}) / P
$$

The Lerner index always has a value between zero and one. For a perfectly computitive firm, $P=\mathrm{MC}$, so that $L=0$. The larger is L, the greater is the degree of munopoly power.
This index of monopoly power can also be expressed in terms of the elasticity of demand facing the firm. Using equation (10.1), we know that

$$
\begin{equation*}
L=(P-\mathrm{MC}) / P=-1 / E_{d} \tag{10.4}
\end{equation*}
$$

Remember, however, that E_{d} is now the elasticity of the firm's demand curve, not the market demand curve. In the toothbrush example discussed previously, the elasticity of demand for Firm A is -6.0 , and the degree of monopoly power is
$1 / h=0.167 .{ }^{6}$
Note that considerable monopoly power does not necessarily imply high profits. Profit depends on average cost relative to price. Firm A might have more monopoly power than Firm B but earn a lower profit because of higher average costs.

In the previous section, we used equation (10.2) to compute price as a simple markup over marginal cost

$$
P=\frac{\mathrm{MC}}{1+\left(1 / E_{d}\right)}
$$

This relationship provides a rule of thumb for any firm with monopoly power We must remember, however, that E_{d} is the elasticity of demand for the firm, not the elasticity of market demand.
It is harder to determine the elasticity of demand for the firm than for the market because the firm must consider how its competitors will react to price changes. Essentially, the manager must estimate the percentage change in the firm's unit sales that is likely to result from a 1-percent change in the firm's price. This estimate might be based on a formal model or on the manager's intuition and experience.
Given an estimate of the firm's elasticity of demand, the manager can calculate the proper markup. If the firm's elasticity of demand is large, this markup will be small (and we can say that the firm has very little monopoly power). If the firm's elasticity of demand is small, this markup will be large (and the firm will have considerable monopoly power). Figures $10.8(a)$ and $10.8(b)$ illustrate these two extremes.

There anu three problems with applying the Lerner index to the analysis of public policy toward Lerner indivecause marginal cost is difficult to measure, average variable cost is often used in triner index calculations. Second, if the firm prices below its optimal price (possibly to avoid legal
sutiny. its potential monopoly power will not be noted by the index. Third the index igeres. drutiny its potential monopoly power will not be noted by the index. Third, the index ignores
dymanic appects of pricing such as effects of the learning curve and hhifts in demand See Rocerts Pindyck, The Mesurement of Monopoly Power in Dynamic Markets," Iourval of Lariv. and Econounvics

Lerner Index of Monopoly Power Measure of mono poly power calculated as
excess of price over margin cost as a fraction of price.

Abstract

\qquad

FIGURE 10.8 Elasticity of Demand and Price Markup
The markup $(P-\mathrm{MC}) / P$ is equal to minus the inverse of the elasticity of demand facing the firm. If the
firm's demand is elastic, as in (a), the markup is small and the firm has little monopoly power. The opposite is true if demand is relatively inelastic, as in (b).

EXAMPLE 10.2
Markup Pricing: Supermarkets to Designer Jeans

Three examples should help clarify the use of markup pricing. Consider a supermarket chain. Although the elasticity of market demand for food is small (about -1), several supermarkets usually serve most areas. Thus no single supermarket can raise its prices very much without losing customers to other stores. As a result, the elasticity of demand for any one supermarket is often as large as -10 . Substituting this number for E_{d} in equation (10.2), we find $P=\mathrm{MC} /(1-0.1)$ $\mathrm{MC} /(0.9)=(1.11) \mathrm{MC}$. In other words, the manager of a typical supermarket show set prices about 11 percent above marginal cost. For a reasonably wide range output levels (over which the size of the store and the number of its employees will remain fixed), marginal cost includes the cost of purchasing the food at wholesale plus the costs of storing the food, arranging it on the shelves, etc. For most supe markets, the markup is indeed about 10 or 11 percent.

Small convenience stores, which are often open 7 days a week and even 24 hours a day, typically charge higher prices than supermarkets. Why? Because a convenience store faces a less elastic demand curve. Its customers are generally less price sensitive. They might need a quart of milk or a loaf of bread late at night or may find it inconvenient to drive to the supermarket. Because
elasticity of demand for a convenience store is about -5 , the markup equation implies that its prices should be about 25 percent above marginal cost, as indeed they typically are
The Lerner index, $(P-\mathrm{MC}) / P$, tells us that the convenience store has more monopoly power, but does it make larger profits? No. Because its volume is far smaller and its average fixed costs are larger, it usually earns a much smaller profit than a large supermarket despite its higher markup

Finally, consider a producer of designer $;$ ions. Markup
but some consumers will pay much more for how much more they will pay-or more exactly, how much sales will drop just response to higher prices-is a question that the producer must will drop in sider because it is critical in determining the price at which must carefully consold (at wholesale to retail stores, which then mark wh the price furthg will be designer jeans, demand elasticities in the range of -2 to -3 price further). With major labels. This means that price should be of to to -3 are typical for the marginal cost. Marginal cost is typically $\$ 15$ to $\$ 20$ per pair the brand, the wholesale price is in the $\$ 20$ to $\$ 40$ per pair, and depending on market" jeans will typically wholesale for $\$ 18$ to $\$ 25$ pe. In contrast, "masswithout the designer label, they are far more price elastic pair. Why? Because without the designer label, they are far more price elastic

EXAMPLE 10.3 The Pricing of Videos

During the mid-1980s, the number of households owning videocassette recorders (VCRs) grew rapidly, as did the markets for rentals and sales of prerecorded cassettes. Although at that time many more videocassettes were rented through small retail outlets than sold outright, the market for sales was large and growing. Producers, however, found it difficult to decide what price to charge for cassettes. As a result, in 1985 popular movies were selling for vastly different prices, as you can see from the data in Table 10.2.
Note that while The Empire Strikes Back was selling for nearly $\$ 80$, Star Trek, a film that appealed to the same audience and was about as popular, sold for only about $\$ 25$. These price differences reflected uncertainty and a wide divergence of

TABLE 10.2 Retail Prices of VHS and DVDs

1985		2007	
Title	Retail Price VHS	Title	
Purple Rain	\$29.98	Pirates of the Caribbean	Retail Price DVD
Raiders of the Lost Ark	\$24.95	The Da Vinci Code	\$19.99
Jane Fonda Workout	\$59.95	Mission: Impossible III	\$19.99
The Empire Strikes Back	\$79.98	King Kong	$\$ 17.99$ $\$ 19.98$
An Officer and a Gentleman	\$24.95	Harry Potter and the Goblet of Fire	\$19.98
Star Treke The Motion Picture	\$24.95	Ice Age	\$17.49 $\$ 19.99$
Star Wars	\$39.98	The Devil Wears Prada	\$19.99
Source (2007): Based on httpi//wm	n.com. Suggested retail		\$17.99

图VHS DVD ■HD-DVD
FIGURE 10.9 Video Sales
Between 1990 and 1998, lower prices induced consumers to buy many more videos, By 2001, sales of DVDs overtook sales of VHS videocassettes. Hogh-detinition DVDs.
views on pricing by producers. The issue was whether lower prices would views and then recause producinduce consumers to do not share in the retailers' revenues from rentals, they should charge a low ers do not share in the cassettes only if that will induce enough consumers to buy them. Because the market was young, producers had no good estimates of the elasticity of demand, so they based prices on hunches or trial and error.?
As the market matured, however, sales data and market research studies put As the market matured, however, Those studies strongly indicated that demand pricing decisions on firmer ground. Those studies strengy in the range of $\$ 15$ to $\$ 30$. was price elastic and that the profit-maxiered prices across the board. When DVDs By the 1990s, most producers had prices of top-selling DVDs were much more uniwere first introduced in 1997, the prices of top-seling form. Since that time, prices of popular DVDs have remained typically $\$ 20$ or less. As continued to tall. As Table 10.2 shows, a resul, , ideo shigh-definition (HD) DVDs in 2006, sales of conventional DVDs are expected to fall as consumers gradually switch to the new format.

10.3 SOURCES OF MONOPOLY POWER

Why do some firms have considerable monopoly power while other firms have little or none? Remember that monopoly power is the ability to set price above marginal cost and that the amount by which price exceeds marginal cost depends inversely on the elasticity of demand facing the firm. As equation (10.4) shows, the less elastic its demand curve, the more monopoly power a firm has. The ultimate determinant of monopoly power is therefore the firm's elasticity of demand. Thus we should rephrase our question: Why do some firms (e.g., a
$\overline{7 \text { "Video Producers Debate the Value of Price Cuts," New York Times, February 19, 1985. For a study of }}$ Video Producers Debate the Value videocassette pricing, see Carl E. Enomoto and Soumendra
Market" (working paper, New Mexico State University, 1992).
supermarket chain) face demand curves that are more elastic than those faced bv others (e.g., a producer of designer clothing)?

Three factors determine a firm's elasticity of demand.

1. The elasticity of market demand. Because the firm's own demand will be at least as elastic as market demand, the elasticity of market demand limits the potential for monopoly power.
2. The number of firms in the market. If there are many firms, it is unlikely that any one firm will be able to affect price significantly.
3. The interaction among firms. Even if only two or three firms are in the market, each firm will be unable to profitably raise price very much if the rivalry among them is aggressive, with each firm trying to capture as
much of the market as it can.

Let's examine each of these three determinants of monopoly power.

If there is only one firm-a pure monopolist-its demand curve is the market demand curve. In this case, the firm's degree of monopoly power depends completely on the elasticity of market demand. More often, however, several firms compete with one another; then the elasticity of market demand sets a lower limit on the magnitude of the elasticity of demand for each firm. Recall our example of the toothbrush producers illustrated in Figure 10.7 (page 361). The market demand for toothbrushes might not be very elastic, but each firm's demand will be more elastic. (In Figure 10.7, the elasticity of market demand is -1.5 , and the elasticity of demand for each firm is -6) A particular firm's elasticity depends on how the firms compete with one another. But no matter how they compete, the elasticity of compete with one another. But no matter how they compete, the elasticity of Because the demand for oil is fairly inelastic (in magnitude than -1.5 . could raise oil prices far above marginal production cost during the 1970 s early 1980s. Because the demands for such commodities as coffee coco and and copper are much more elastic, attempts by producers to cartelize thes markets and raise prices have largely failed In each case the elaticity of mase demand limits the potential monopoly power of individul protuces.

T:

The second determinant of a firm's demand curve-and thus of its monopoly power-is the number of firms in its market. Other things being equal, the monopoly power of each firm will fall as the number of firms increases: As more and more firms compete, each firm will find it harder to raise prices and avoid losing sales to other firms.
What matters, of course, is not just the total number of firms, but the number of "mafor players"-firms with significant market share. For example, if only two large firms account for 90 percent of sales in a market, with another 20 firms accounting for the remaining 10 percent, the two large firms might have considerable monopoly power. When only a few firms account for most of the sales in a market, we say that the market is highly concentrated. ${ }^{8}$

[^1]It is sometimes said (not always jokingly) that the greatest fear of American business is competition. That may or may not be true. But we would certainly expect that when only a few firms are in a market, their managers will prefer that no new firms enter. An increase in the number of firms can of reduce the monopoly power of each incumbent firm. An imponas to create barriers strategy (discussed in detail in Chapter 13) is finding entry-conditions that deter entry by new competitors.

Sometimes there are natural barriers to entry. For example, one firm may have a patent on the technology needed to produce a particular product. This makes it impossible for other firms to enter the market, at least until the patent expires Other legally created rights work in the same way-a copyright can limit the sale of a book, music, or a computer software program to a single company, and the need for a government license can prevent new firms from entering the markets for telephone service, television broadcasting, or interstate trucking. Finally conomies of scale may make it too costly for more than a few firms to supply entire market. In some cases, economies of scale may be so large that it is most efficient for a single firm-a natural monopoly-to supply the entire market. We will discuss scale economies and natural monopoly in more detail shortly.

The mberaction Among Frmes
The ways in which competing firms interact is also an important-and some times the most important-determinant of monopoly power. Suppose there are four firms in a market. They might compete aggressively, undercutting one another's prices to capture more market share. This could drive prices dow to nearly competitive levels. Each firm will fear that if it raises its price it will be undercut and lose market share. As a result, it will have little monopoly power.
On the other hand, the firms might not compete much. They might even col ude (in violation of the antitrust laws), agreeing to limit output and raise prices. Because raising prices in concert rather than individually is more likely to be profitable, collusion can generate substantial monopoly power.
We will discuss the interaction among firms in detail in Chapters 12 and 13. Now we simply want to point out that, other things being equal, monopoly powe is smaller when firms compete aggressively and is larger when they cooperate.
Remember that a firm's monopoly power often changes over time, as its Rememberding conditions (market demand and cost), its behavior, and the behavior of its competitors change. Monopoly power must therefore be thought of in a dynamic context. For example, the market demand curve might be very inelastic in the short run but much more elastic in the long run. (Because this is the case with oil, the OPEC cartel enjoyed considerable short-run but much less long-run monopoly power.) Furthermore, real or potential monopoly power in the short run can make an industry more competitive in the long run: Large short-run profits can induce new firms to enter an industry, thereby reducing monopoly power over the longer term.
10.4 THE SOCIAL COSTS OF MONOPOLY POWER

In a competitive market, price equals marginal cost. Monopoly power, on the In a comprine implies that price exceeds marginal cost. Because monopoly power results in higher prices and lower quantities produced, we would expect it to make consumers worse off and the firm better off. But suppose we value the
welfare of consumers the same as that of producers. In the aggregate, does monopoly power make consumers and producers better or worse off?
thas that results when a competitive industry produces a cood producer surplas thal results when a competitive industry produces a good with the surplus Competitive market and the mopo the the mave. (We assume that the who the marag and mone molist have the same cost curves.) Figure 10.10 mor marginal cost curve for the mopo equals marginal cost, matite . P_{m} and Q_{m}. In and (nd quantity, c_{c} and Q_{c} are found at the intersection of the average revenue (demand) curve and the marginal cost curve. Now let's examine how surplus changes if we move from the competitive price and quantity, P_{c} and Q_{c} to the monopoly price and quantity, P_{m} and Q_{m}
Under monopoly, the price is higher and consumers buy less. Because of the higher price, those consumers who buy the good lose surplus of an amount given by rectangle A. Those consumers who do not buy the good at price P_{m} but Who would buy at price P_{c} also lose surplus-namely, an amount given by triangle B. The total loss of consumer surplus is therefore $A+B$. The producer, however, gains rectangle A by selling at the higher price but loses triangle C, the additional profit it would have earned by selling $Q_{c}-Q_{m}$ at price P_{c}. The total gain in producer surplus is therefore $A-C$. Subtracting the loss of consumer surplus from the gain in producer surplus, we see a net loss of surplus given by

FIGURE 10.10 Deadweight Loss from Monopoly Power
 FIGURE 10.10 Deadweight Loss from Monopoly Power

The shaded rectangle and triangles show changes in consumer and producer surplus nd quantity, P and $Q \quad$ Because of the higher prity, P_{c} and $Q_{c^{\prime}}$, o a monopolist's price producer gains $A-C$. The deadweight loss is $B+C$.

If there were two or more firms, each with some monopoly power the analysis would be mo
. However, the basic results would be the same-

In §9.1, we explain that consumer surplus is the total
benefit or benefit or value that con-
sumers receive beyond they pay for a good; produce surplus is the analogous measure for producers.
$B+C$. This is the deadweight loss from monopoly power. Even if the monopolist's profits were taxed away and redistributed to the consumers of its products, there would be an inefficiency because output would be lower than under conditions of competition. The deadweight loss is the social cost of this inefficiency
rent seeking Spending
money in socially unprod maintain, or exercise monopoly.

In practice, the social cost of monopoly power is likely to exceed the deadweigh oss in triangles B and C of Figure 10.10. The reason is that the firm may engage解 fforts to acquire, maintain, or exercise its monopoly power. Rent seeking migh involve lobbying activities (and perhaps campaign contributions) to obtain gor rnment regulations that make entry by potential competitors more difficult Rent-seeking activity could also involve advertising and legal efforts to avoid
entitrust scrutiny It might also mean installing but not utilizing extra produc ion copacity to convince potential competitors that they cannot sell enough to one entry worthwhile. We would expect the economic incentive to incur rent ceking costs to bear a direct relation to the gains from monopoly power (i.e, ectangle A minus triangle C.) Therefore, the larger the transter from consumer to the firm (rectangle A), the larger the social cost of monopoly. ${ }^{10}$
Here's an example. In 1996, the Archer Daniels Midland Company (ADM) fersfully lobbied the Clinton administration for regulations requiring tha the ethanol (ethyl alcohol) used in motor vehicle fuel be produced from con The matheal planned to add ethanol to gasoline in order to
 ehether is produced from corn, potatoes, grain, or anything else. The same wheq the corn? Because ADM had a nea ol production, so the regulation would increase its gains from monopoly power

Because of its social cost, antitrust laws prevent firms from accumulating excessive amounts of monopoly power. We will say more about such laws at the end f the cher mer limit monopoly power--price regulation.
wo saw in Chation always en a however, when a firm rests in a deadweight loss. This need not e regulation can eliminate the deadwas morght loss that results from monopoly power.

Figure 10.11 illustrates price regulation. P_{n} and Q_{m} are the price and quantity gure 10.1 , the point where marginal revenue equals , fargina cost. Now suppor hermine how its average find the firm's profit-maximizing output, we the regulation.

Because the firm can charge no more than P_{1} for output levels up to Q_{1}, its Beause the firm at P. For output levels greater

 sce Gordon Tullock, Rent Seeking (Brookfield, VT: Edward Elgar, 1993), or Robert D. Tonlisonn
Roger D. Congleton, The Economilic Amalysis of Rent Seeking (Brookfieid, VT: Edward Elgar, 1995).

- 䚣 10.18 Price Regulation

If firt alone, a monopolist produces Q_{12} and charges $P_{m j}$. When the government imposes pris ceiling of P_{1} the firm's average and marginal revenue are constant and equal to P for mutput levels up to Q_{1}. For larger output levels, the original average and marginal rev whin intersects the marginal cost curve at Q_{1}. When price is lowered to P_{c} at the point where marginal cost intersects average revenue, output increases to its maximum Q. This is the output that would be produced by a competitive industry. Lowering price further o P reduces output to Q_{3} and causes a shortage, $Q_{3}^{\prime}-Q_{3}$
urv: At these output levels, the firm will charge less than P_{1} and so will be atreded by the regulation.
The firm's new marginal revenue curve corresponds to its new average revue tnve and is shown by the purple line in Figure 10.11. For output levels up to $0_{1, ~ m a g i n a l ~ r e v e n u e ~ e q u a l s ~ a v e r a g e ~ r e v e n u e . ~(R e c a l l ~ t h a t ~ a s ~ w i t h ~ a ~ c o m p e t i t i v e ~}^{\text {a }}$ frm, If average revenue is constant, average revenue and marginal revenue are equal. For output levels greater than Q_{1}, the new marginal revenue curve is identical to the original curve. Thus the complete marginal revenue curve now has three preces: (1) the horizontal line at P_{1} for quantities up to Q_{i} (2) a vertical line at the ruantity Q connecting the original average and marginal revenue curves; and (3) the original marginal revenue curve for quantities greater than Q

Tonarimizeits profit, the firm should produce the quantity $Q_{\text {b }}$ is the woint at which its marginal revenue curve intersects its marginal cost arve. ou can verify that at price P_{1} and quantity Q_{1} the deadweight loss from monopaly power is reduced.
As the price is lowered further, the quantity produced continues to increase and the deadweight loss to decline. At price P where average revenue and marginal wost intersect, the quantity produced has increased to the competitive level; the deadweight loss from monopoly power has been eliminated. Reducing the price even more--say, to P_{3}-results in a reduction in quantity. This
reduction is equivalent to imposing a price ceiling on a competitive industry. A shortage develops, $\left(Q_{3}^{\prime}-Q_{3}\right)$, in addition to the deadweight loss from regulaion. As the price is lowered further, the quantity produced continues to fall and the shortage grows. Finally, if the price is lowered below P_{4}, the minimum average cost, the firm loses money and goes out of business.

Price regulation is most often used for natural monopolies, such as local utility companies. A natural monopoly is a firm that can produce the entire output of the market at a cost that is lower than what it would be if there were several firms. If a firm is a natural monopoly, it is more efficient to let it serve the entire market rather than have several firms compete.

A natural monopoly usually arises when there are strong economies of scale, as illustrated in Figure 10.12. If the firm represented by the figure was broken up into two competing firms, each supplying half the market, the average cost for each would be higher than the cost incurred by the original monopoly.
Note in Figure 10.12 that because average cost is declining everywhere, marginal cost is always below average cost. If the firm were unregulated, it would produce $Q_{\text {, }}$ and sell at the price P. Ideally, the regulatory agency would like to push the firm's price down to the competitive level P_{c}. At that level, however, price would not cover average cost and the firm would go out of business. The best alternative is therefore to set the price at P_{r}, where average cost and average revenue intersect. In that case, the firm earns no monopoly profit, while output remains as large as possible without driving the firm out of business.

ATGUR 10.12 Regulating the Price of a Natural Monopoly

A firm is a natural monopoly because it has economies of scale (declining average A firm is a natural monopoly because it has economies of scale (declining average
and marginal costs) over its entire output range. If price were regulated to be P_{c} the and marginal costs) over its entire output range. If price were regulated to be P_{c} the
firm would lose money and go out of business. Setting the price at P_{r} yields the largest possible output consistent with the firm's remaining in business; excess profit is zero.

Recall that the competitive price (P_{c} in Figure 10.11) is found at the point at which An: firm's marginal cost and average revenue (demand) curves intersect. Likewise for a natural monopoly: The minimum feasible price (P_{r} in Figure 10.12) is found at the point at which average cost and demand intersect. Unfortunately, it is often dificult to determine these prices accurately in practice because the firm's demand and cost curves may shift as market conditions evolve.
As a result, the regulation of a monopoly is sometimes based on the rate of return that it earns on its capital. The regulatory agency determines an allowed price, so that this rate of return is in some sense "competitive" or "fair." This pretice is called rate-of-return regulation: The maximum price allowed is based on the (expected) rate of return that the firm will earn. ${ }^{11}$
Unfortunately, difficult problems arise when implementing rate-of-return requlation. First, although it is a key element in determining the firm's rate of return, a firm's capital stock is difficult to value. Second, while a "fair" rate of return must be based on the firm's actual cost of capital, that cost depends in tum on the behavior of the regulatory agency (and on investors' perceptions of what allowed rates of return will be in the future).
The difficulty of agreeing on a set of numbers to be used in rate-of-return calcuations often leads to delays in the regulatory response to changes in cost and other market conditions (not to mention long and expensive regulatory hearings). The major beneficiaries are usually lawyers, accountants, and occa somati, economic consultants. The net result is regulatory loo-the delays of year or more usually entailed in changing regulated prices.
Another approach to regulation is setting price caps based on the firm's variable costs, past prices, and possibly inflation and productivity growth. A price cap can allow for more flexibility than rate-of-return regulation. Under price cap regulation, for example, a firm would typically be allowed to raise its prices each vear (without having to get approval from the regulatory agency) by an mount equal to the actual rate of inflation, minus expected productivity romen. price cap regulation of this sort has been used to contol prices of long distance and local telephone service.
By the 1990s, the regulatory
ar in the United States had changed lated, as had electric utilities telecommunications industry had been deregbeen largely exhausted there in many states. Because scale economies had no reason to regard these firms as natura addition, technological change made entry by new firms

10 MONOPSONY

So far, our discussion of market power has focused entirely on the seller side of the market. Now we turn to the buyer side. We will see that if there are not too many buyers, they can also have market power and use it profitably to affect the price they pay for a product.

Regulumy agencies often use a formula like the following to determine price

$$
P=\mathrm{AVC}+(D+T+s K) / Q
$$

Where $H \mathrm{C}$ is average variable cost, Q is output, s is the allowed "fair" rate of return, D is deprecia-
thon, T - anes, and K is the firm's current capital stock.

* rate-of-return regulation Maximum price allowed by a the (expected) rate of return that a firm will earn.

First, a few terms.

- Monopsony refers to a market in which there is a single buyer.

- marginal value Additiona benefit derived from purchas-

In $\S 4.1$, we explain that as In 84.1, we explalong a demand curve, the value the consumer places on an additional unit of the good falls.
marginal expenditure Additional cost of buying one more unit of a good.
average expenditure
price paid per unit of a good

- An oligopsony is a market with only a few buyers have monopsony power: a - With one or only a monopsony power enables the buyer's ability to affect for less than the price that would prevail in a competitive market.
Suppose you are trying to decide how much of a good to purchase. You could Suppose you are trying to decide-keep purchasing units of the good until the apply the basichased gives additional value, or utility, just equal to the cost of that last unit purchased gives additionargin, additional benefit should just be offset by additional cost.
Let's look at this additional benefit and additional cost in more detail. We use Let's look at this additional benefit and aditional benefit from purchasing one the term marginal value to do we determine marginal value? Recall from Chapter

 utility, as a functionand curve for the good. An individual's demand curve slope and the marginal value obtained from buying one more unit of a ood declines as the total quantity purchased increases.
good deccines an an a mood is called the marginal The addin expenditure is depends on whether you are expenditur. buyer or a buyer with monopsony power. Suppose you are a a competive buyer-in other words, you have no influence over the price of competitive buy he good. In that ase it is the market price of the good. Figure 10.13(a) many units you purchase, illustrates the all units. But what is your marginal expenture per unit? As competitive buyer, your marginal expenditure is equal diture per unich in turn is equal to the market price of to your av the good.

Figure 10.13 (a) also shows your marginal value schedule (i.e., your demand curve). How much of the good should you buy? You should buy until the unit. ginal value of the last unit is just equal to the marginal expenditure marginal expenThus you should purchase

diture and demand curves.

We introduced the concepts of marginal and average expenditure because they will make it easier to understand what happens when buyers have monopsony power. But before considering that situation, let's look at ondianalogy between competitive buy cor tions. Figure 10.13 (b) met price as given, much to produce and sell. Becane are equal to the price. The profitboth average and marginal revenue are equal to the price. The prorrmaximizing quantity is at ginal cost curves.

Now suppose that you are the only buyer of the good. Again you face a mar ket supply curve, which tells you how much producers are willing to sell as a function of the price you pay. Should the quantity you purchase be at the point where your marginal value curve intersects the market supply curve. No. N purwant to maximize your net benefit from all obtain at a lower price.

PICURE 10.13 Competitive Buyer Compared to Competitive Seller
\ln (a), the competitive buyer takes market price P^{*} as given. Therefore, marginal expenditure and average expenditure are constant and equal; quantity purchased is found by equating price to marginal value
(demand). In (b) the competitive seller also takes price is on (demand). In (b), the competitive seller also takes price as given. Marginal revenue and average revenue
are constant and equal; quantity sold is found by equating price to marginal cost.

To determine how much to buy, set the marginal value from the last unit purchased equal to the marginal expenditure on that unit. ${ }^{12}$ Note, however that the market supply curve is not the marginal expenditure curve. The mar ket supply curve shows how much you must pay per unit, as a function of the otal number of units you buy. In other words, the supply curve is the average expenditure curve. And because this average expenditure curve is upward sloping, the marginal expenditure curve must lie above it. The decision to by an extra unit raises the price that must be paid for all units, not just the extra one. ${ }^{13}$
Figure 10.14 illustrates this principle. The optimal quantity for the monop sonist to buy, Q_{m}^{*}, is found at the intersection of the demand and marginal expenditure curves. The price that the monopsonist pays is found from the supply curve: It is the price P_{m}^{*} that brings forth the supply Q_{m}^{*}. Finally, note that this quantity Q_{m}^{*} is less, and the price P_{m}^{*} is lower, than the quantity and price that would prevail in a competitive market, Q_{c} and P

${ }^{12}$ Mathematically, we

Value to the buyer of the prite the net benefit $N B$ from the purchase as $N B=V-E$, where V is the $\triangle N B / \triangle O=0$. Then of the purchase and E is the expenditure. Net benefit is maximized when so that $\mathrm{MV}=\mathrm{ME}$.
${ }^{3}$ To obtain the marginal expenditure curve algebraically, write the supply curve with price on the eft hand side: $P=P(Q)$. Then total expenditure E is price times quantity, or $E=P(Q) Q$, and marginal expenditure is
$\mathrm{ME}=\Delta E / \Delta Q=P(Q)+Q(\Delta P / \Delta Q)$
Because the supply curve is upward sloping, $\Delta P / \Delta Q$ is positive, and marginal expenditure is greater

FIGURE 10.14 Monopsonist Buyer

The market supply curve is monopsonist's average expenditure curve AE. Because average expenditure is rising, marginal expenditure lies above it. The monopsonist purchases quantity $Q_{w^{\prime}}^{*}$, where marginal expenditure and marginal value (demand) intersect. The price paid per unit P_{m}^{*} is then found from the average expenditure (supply) curve. In a competitive market, price and quantity, P_{c} and Q_{c} are both
higher. They are found at the point where average expenditure (supply) and marginal value (demand) intersect.

Yomopswny and thanoprty Gembarev

Monopsony is easier to understand if you compare it with monopoly. Figures 10.15 (a) and 10.15 (b) illustrate this comparison. Recall that a monopolist can 10.15(a) and 10.15(b) illustrate this comparison. Recall that a monopolist can
charge a price above marginal cost because it faces a downward-sloping charge a price above marginal cost because it faces a downward-sloping
demand, or average revenue curve, so that marginal revenue is less than average demand, or average revenue curve, so that marginal revenue is less than average revenue. Equating marginal cost with marginal revenue leads arke, and to a price
that is less than what would be produced in a competitive market, that is less than what would be produced in a
P^{*} that is higher than the competitive price P_{c}.
P^{*} that is higher than the competitive price $P_{c^{*}}$. As Figure 10.15(b) illustrates,
The monopsony situation is exactly analogous. As The monopsony situation is exactly analogous. As Figure 10.15(b) illustrates,
the monopsonist can purchase a good at a price below its marginal value because it the monopsonist can purchase a good at a price below its marginal value because if faces an upward-sloping supply, or average expenditure, curve. Thus for a monopsonist, marginal expenditure is greater than average expenditure. Equating marginal value with marginal expenditure leads to a quantity Q^{*} that is less than what would be bought in a
is lower than the competitive price P_{c}.

10.6 MONOPSONY POWER

Much more common than pure monopsony are markets with only a few firms competing among themselves as buyers, so that each firm has some monopsony power. For example, the major U.S. automobile manufacturers compete with one another as buyers of tires. Because each of them accounts for a large share of the tire market, each has some monopsony power in that market. General

FIGURE 10.15 Monopoly and Monopsony

These diagrams show the close analogy between monopoly and monopsony. (a) The monopolist produces where marginal revenue intersects marginal cost. Average revenue exceeds marginal revenue, so that price exceeds marginal cost. (b) The monopsonist purchases up to the point where marginal expendrulue intersects marginal value. Marginal expenditure exceeds average expenditure, so that marginal
valce.

Motors, the largest, might be able to exert considerable monopsony power when contracting for supplies of tires (and other automotive parts).
In a competitive market, price and marginal value are equal. A buyer with monopsony power, however, can purchase a good at a price below marginal value. The extent to which price is marked down below marginal value depends on the elasticity of supply facing the buyer. ${ }^{14}$ If supply is very elastic (E_{S} is large), the markdown will be small and the buyer will have little monopsony power. Conversely, if supply is very inelastic, the markdown will be large and the buyer will have considerable monopsony power. Figures 10.16(a) and 10.16 (b) illustrate these two cases.

So as of Momonsamy Powner
What determines the degree of monopsony power in a market? Again, we can draw analogies with monopoly and monopoly power. We saw that monopoly sower depends on three things: the elasticity of market demand, the number of sellers in the market, and the way those sellers interact. Monopsony power
depends on three similar things: The elasticity of market buyers in three similar things: The elasticity of market supply, the number of une in the market, and the way those buyers interact.
Elasticity of Market Supply A monopsonist benefits because it faces an upward-sloping supply curve, so that marginal expenditure exceeds average

The exact relationship (analogous
follows bura

Monopsony power depends on the elasticity of supply. When supply is elastic, as in (a), marginal expen diture and average expenditure do not differ by much, so price is close to what it would be in a compet itive market. The opposite is true when supply is inelastic, as in (b)
expenditure. The less elastic the supply curve, the greater the difference between marginal expenditure and average expenditure and the more monopsony power the buyer enjoys. If only one buyer is in the market-a pure monopsonist-its monopsony power is completely determined by the elasticity of market supply. If supply is highly elastic, monopsony power is small and there is little gain in being the only buyer.

Number of Buyers Most markets have more than one buyer, and the number Number of Buyers Most markets have more than one buyer, and the number of buyers is an important determinant of monopsony power. When the number of buyers is very large, no single buyer can have much influence over price. Thus
 number of buyers is limited.

Interaction Among Buyers Finally, suppose three or four buyers are in the market. If those buyers compete aggressively, they will bid up the price close to their marginal value of the product, and will thus have little monopsony power. On the other hand, if those buyers compete less aggressively, or even collude, prices will not be bid up very much, and the buyers' degree of monopsony power might be nearly as high as if there were only one buyer.

So, as with monopoly power, there is no simple way to predict how much monopsony power buyers will have in a market. We can count the number of buyers, and we can often estimate the elasticity of supply, but that is not enough. Monopsony power also depends on the interaction among buyers, which can be more difficult to ascertain.

Bucause monopsony power results in lower prices and lower quantities purchased, we would expect it to make the buyer better off and sellers worse off. Bu: suppose we value the welfare of buyers and sellers equally. How is aggregite welfare affected by monopsony power?
We can find out by comparing the buyer and seller surplus that results from a competitive market to the surplus that results when a monopsonist is the sole buiver. Figure 10.17 shows the average and marginal expenditure curves and marginal value curve for the monopsonist. The monopsonist's net benefit is maimized by purchasing a quantity Q_{m} at a price P_{m} such that marginal value equals marginal expenditure. In a competitive market, price equals marginal value. Thus the competitive price and quantity, P_{c} and $Q_{c^{\prime}}$, are found where the average expenditure and marginal value curves intersect. Now let's see how to the monopsony price and from the competitive price and quantity, P_{c} and $Q_{c^{\prime}}$ With monopsony the price is ly, P_{m} and Q_{m}
price, sellers lose an the price is lower and less is sold. Because of the lower price, sellers lose an amount of surplus given by rectangle A. In addition, elicrs lose the surplus given by triangle C because of the reduced sales. The price the buyer gains (seller) surplus is therefore $A+C$. By buying at a lower pre, the buyer gains the surplus given by rectangle A. However, the buyer and loss of surplur is A, Atogether, there is a net s. surp he poducers, entucers, there would be an inefficiency because output would be effer competition. The deadweight loss is the social cost of thi nefficiency

Note the similarity with the deadweight loss from monopoly power discussed in §10.4.

16 10.17 Deadweight Loss from Monopsony Powe

The shaded rectangle and triangles show changes in buyer and seller surples movise from competitive price and quantity, P_{c} and Q_{c}, to the monopsonist's price and quantity, $P_{m a}$ and Q_{m}. Because both price and quantity are lower, there is an so them is a deadweight loss given by triangles B and C.

What happens when a monopolist meets a monopsonist? It's hard to say. We call a market with only one seller and only one buyer a bilateral monopoly. If you think about such a market, you II see why it is difficult to predict the price and quantity. Both the buyer and the seller are in a bargaining situation. Unfortunately, no simple rule determines which, if either, will get the better part of the bargain. One party might have more time and patience, or might be able to convince the other party that it will walk away if the price is too low or too high.
Bilateral monopoly is rare. Markets in which a few producers have some monopoly power and sell to a few buyers who have some monopsony power are more common. Although bargaining may still be involved, we can apply a rough principle here: Monopsony power and monopoly power will tend to counteract each other. In other words, the monopsony power of buyers will reduce the effective monopoly power of sellers, and vice versa. This tendency does not mean that the market will end up looking perfectly competitive; if, for example, monopoly power is large and monopsony power small, the residual monopoly power would still be significant. But in general, monopsony power will push price closer to marginal cost, and monopoly power will push price closer to marginal value.

EXAMPLE 10.4
Monopsony Power in U.S. Manufacturing

Monopoly power, as measured by the pricecost margin $(P-\mathrm{MC}) / P$, varies consider ably across manufacturing industries in the United States. Some industries have price cost margins close to zero, while in other margins are as high as 0.4 or 0.5 . These variations are due in part to differences in the determinants of monopoly power: In some industries, market demand is more elastic than in others; some industries have more sellers than others; and in some indus tries, sellers compete more aggressively than in others. But something else can help explain these variations in monopoly power-differences in monopsony power among the firms' customers.
The role of monopsony power was investigated in a statistical study of 327 U.S. manufacturing industries. ${ }^{15}$ The study sought to determine the extent to which variations in price-cost margins could be attributed to variations in monopsony power by buyers in each industry. Although the degree of buyers monopsony power could not be measured directly, data were available for variables that help determine monopsony power, such as buyer concentration (the fraction of total sales going to the three or four largest firms) and the average annual size of buyers' orders.
The study found that buyers' monopsony power had an important effect on the price-cost margins of sellers and could significantly reduce any monopoly power that sellers might otherwise have. Take, for example, the concentration o buyers, an important determinant of monopsony power. In industries wher

The study was by Industries," Review of Ecomomics and Stetistics 57 (May 1975): 125-32.

正 of sellers would on average be as much as 10 percentage points lower than in comparable industries with hundreds of buyers accounting for sales
good example of monopsony power in manufacturing is the market fo producer in the and components, such as brakes and radiators. Each major car hree, and often as many as a dozen, suppliers. In addition part from at leas product, such as brakes, each automobile company usually for a standardized needs itself, so that it is not totally reliant on ourd like General Motors and Ford in an excellent bargaining posit puts companie their suppliers. Each supplier must compete for saining position with respect to pliers, but each can sell to only a few buyers. For a spainst five or 10 other sup ompany may be the only buyer. As a result. For a specialized part, a single auto , This monopsony power.
pliers must operate. To obtain a sales contract a the conditions under which supof reliability, in terms of both a sales contract, a supplier must have a track record schedules. Suppliers are also often required to ability to meet tight delivery auto sales and production levels flequired to respond to changes in volume as ously difficult; a potential supplier will a penny per item higher than those of its compes lose a contract because its bid is of parts and components usually have little or mots. Not surprisingly, producers or parts and components usually have little or no monopoly power

10.7
 LIMITING MARKET POWER: THE ANTITRUST LAWS

We have seen that market power-whether wielded by sellers or buyers harms potential purchasers who could have bought at competitive prices. addition, market power reduces output, which leads to a deadweight liss xcessive market power also raises problems of equity and fairness: If a firm has ignificant monopoly power, it will profit at the expense of consumers. In the of its pirm's excess profits could be taxed away and redistributed to the buyer its products, but such a redistribution is often impractical. It is difficult to terme what portion of a firm's profit is attributable to monopoly power locate all the buyers and reimburse them in propor ion to their purchases.
How, then, can society limit market power and prevent it from being used Anticompetitively? For a natural monopoly, such as an electric utility compen rect price regulation is the answer. But more generally, the answer is to pre ent firms from acquiring excessive market power in the first place, and to limit use of that power if it is acquired. In the United States, this is done via the mas a set of rules and regulations designed to promote a competitive onny by prohibiting actions that restrain, or are likely to restrain, competi , and by restricting the forms of allowable market structure. Monopoly power can arise in a number of mays,
e antitrust laws. Section 1 of the Sherman Act (which was passed ined by俍 example of an illegal combination is an explicit agreement ane. One obvi-
antitrust laws Rules and regulations prohibiting actions
that restrain, or are likely to restrain, competition.
to restrict their outputs and/or "fix" price above the competitive level. There have been numerous instances of such illegal combinations. For example

- In 1996, Archer Daniels Midland Company (ADM) and two other major producers of lysine (an animal feed additive) pleaded guilty to criminal charges of price fixing. In 1999, three ADM executives were sentenced to prison term ranging from two to three years for their roles in the price-fixing scheme. ${ }^{16}$
- In 1999, four of the world's largest drug and chemical companies-Roche A.G. of Switzerland, BASF A.G. of Germany, Rhone-Poulenc of France, and Takeda Chemical Industries of Japan-were charged by the U.S. Department of Justice with taking part in a global conspiracy to fix the prices of vitaming sold in the United States. The companies pleaded guilty to price fixing and agreed to pay fines totaling more than $\$ 1$ billion. ${ }^{17}$
- In 2002, the U.S. Department of Justice began an investigation of price fixing by DRAM (dynamic access random memory) producers. By 2006, five manufacturers-Hynix, Infineon, Micron Technology, Samsung, and Elpidahad pled guilty for participating in an international price-fixing scheme. As part of these pleas, the companies agreed to pay fines totaling close to $\$ 1$ billion to the DOJ, and several executives received prison sentences.
Two firms need not meet or talk on the telephone to violate Section 1 of the Sherman Act; implicit collusion in the form of parallel conduct can also be construed as violating the law. For example, if Firm B consistently follows Firm $A^{\prime} \mathrm{s}$ pricing (parallel pricing), and if the firm's conduct is contrary to what one would expect companies to do if the absence of collusion (such as raising prices解 may be in
Section 2 of the Sherman Act makes it illegal to monopolize or to attempt to monopolize a market and prohibits conspiracies that result in monopolization The Clayton Act (1914) did much to pinpoint the kinds of practices that are likely to be anticompetitive. For example, the act makes it unlawful for a firm with a large market share to require the buyer or lessor of a good not to buy from a competitor. It also makes it illegal to engage in predatory pricingpricing designed to drive current competitors out of business and to discourage new entrants (so that the predatory firm can enjoy higher prices in the future).
Monopoly power can also be achieved by a merger of firms into a larger and more dominant firm, or by one firm acquiring or taking control of another firm by purchasing its stock. The Clayton Act prohibits mergers and acquisitions if they "substantially lessen competition" or "tend to create a monopoly."
${ }^{6}$ In the lysine case, proof of the conspiracy came in part from tapes of meetings at which prices were set and market shares divided up. At one meeting with executives from Ajinimoto Company o Japan, another lysine producer, James Randall, then the president of ADM, said, "We have a sayin
at this company. Our competitors are our friends and our customers are our enemies." See "Vide Tapes Take Star Role at Archer Daniels Trial," New York Times, August 4, 1998; "Three Sentenced in Archer Daniels Midland Case," New York Times, July 10, 1999. In 1993, ADM and three other firm "T Doprices.
"Tearing Down the Facades of 'Vitamins Inc.,'" New York Times, October 10, 1999.
${ }^{8}$ The Sherman Act applies to all firms that do business in the United States (to the extent that a conspiracy to restrain trade could affect U.S. markets). However, foreign governments (or firms operat
ng under their government's control) are not subject to the act, so OPEC need not fear the wrath of ng under their government's control) are not subject to the act, so OPEC need not fear the wrath of
he Justice Department. Also, firms can collude with respect to exports. The Webb-Pomerene Act
(1918) 1918) allows price fixing and related collusion with respect to export markets, as long as domesti Larkets are unaffected by such collusion. Firms operat

The antitrust laws also limit possible anticompetitive conduct by firms in other ways. For example, the Clayton Act, as amended by the Robinson-Patman Act (1936), makes it illegal to discriminate by charging buyers of essentially the same product different prices if those price differences are likely to injure competition. Even then, firms are not liable if they can show that the price differences were necessary to meet competition. (As we will see in the next chapter, price discrimination is a common practice. It becomes the target of antitrust action only when buyers suffer economic damages and competition is reduced.) Another important component of the antitrust laws is the Federal Trade Commission Act (1914, amended in 1938, 1973, 1975), which created the Federal frade Commission (FIC). This act supplements the Sherman and Clayton acts by osterng competition through a whole set of prohibitions against unfair and anticompetitive practices, such as deceptive advertising and labeling, agreements with retailers to exclude competing brands, and so on. Because these prohibitions are interpreted and enforced in administrative proceedings before the FTC, the act provides broad powers that reach further than those of other antitrust laws.
The antitrust laws are actually phrased vaguely in terms of what is and what is not allowed. They are intended to provide a general statutory framework to give the Justice Department, the FTC, and the courts wide discretion in interpreting and applying them. This approach is important because it is difficult to know in advance what might be an impediment to competition. Such ambiguity creates a need for common law (i.e., the practice whereby courts interpret statutes) and supplemental provisions and rulings (e.g., by the FTC or the Justice Department).

The antitrust laws are enforced in three ways:

1. Through the Antitrust Division of the Department of Justice. As an arm of the executive branch, its enforcement policies closely reflect the view of the administration in power. Responding to an external complaint or an inter nal study, the department can institute a criminal proceeding, bring a civil suit, or both. The result of a criminal action can be fines for the corporation and fines or jail sentences for individuals. For example, individuals who conspire to fix prices or rig bids can be charged with a felony and, if found guilty, may be sentenced to jail-something to remember if you are planning to parlay your knowledge of microeconomics into a successful usiness career! Losing a civil action forces a corporation to cease its anticompetitive practices and often to pay damages.
2. Through the administrative procedures of the Federal Trade Commission. Again action can result from an external complaint or from the FTC's own initiaive. Should the FTC decide that action is required it can either request voluntary understanding to comply with the law or seek a formal commission order requiring compliance
3. Through private proceedings. Individuals or companies can sue for treble (three-fold) damages inflicted on their businesses or property. The prospect of treble damages can be a strong deterrent to would-be violators. Individuals or companies can also ask the courts for injunctions to force wrongdoers to cease anticompetitive actions.
U.S. antitrust laws are more stringent and far-reaching than those of most other countries. In fact, some people have argued that they have prevented American
industry from competing effectively in international markets. The laws certain! constrain American business and may at times have put American firms at a disadvantage in world markets. But this criticism must be weighed against their benffits: Antitrust laws have been crucial for maintaining competition, and compens tion is essential for economic efficiency, innovation, and growth

As the European Union has grown, its methods of antitrust enforcement have evolved. The responsibility for the enforcement of antitrust concerns that involve two or more member states resides in a single entity, the Competition Directorate, located in Brussels. Separate and distinct antitrust authorities within individual member states are responsible for those issues whose effects are felt largely or entirely within particular countries.
At first glance, the antitrust laws of the European Union are quite similar to hose of the United States. Article 81 of the Treaty of the European Community concerns restraints of trade, much like Section 1 of the Sherman Act. Article 82 which focuses on abuses of market power by dominant firms, is similar in many ways to Section 2 of the Sherman Act. Finally, with respect to mergers, the European Merger Control Act is similar in spirit to Section 7 of the Clayton Act.
Nevertheless, there remain a number of procedural and substantive differnces between antitrust laws in Europe and the United States. Merger evaluations typically are conducted more quickly in Europe, and it is easier in practice o prove that a European firm is dominant than it is to show that a U.S. firm has monopoly power. Both the European Union and the U.S. have been actively enforcing laws against price fixing, but Europe imposes only civil penalties, whereas the U.S. can impose prison sentences as well as fines.

In 1981 and early 1982, American Airlines and Braniff Airways were competing fiercely with each other for passengers. A fare war broke out as the firms under ut each other's prices to capture market share. On February 21, 1982, Robert Crandall, president and CEO of American, made a phone call to Howard Putnam, president and chief executive of Braniff. To Crandall's later surprise, the fall had been taped. It went like this: ${ }^{19}$

Crantall: I think it's dumb as hell for Christ's sake, all right, to sit here and pound the @!\#\$\%\&! out of each other and neither one of us making a @!\#\$\%\&! dime.
Putnam: Well ...
Crandall: I mean, you know, @! ! \ddagger \$\% \&!, what the hell is the point of it?
Putnam: But if you're going to overlay every route of American's on top of every route that Braniff has-I just can't sit here and allow you to bury us without giving our best effort.
Crandall: Oh sure, but Eastern and Delta do the same thing in Atlanta and have for years
Putnam: Do you have a suggestion for me?
andall: Yes, I have a suggestion for you. Raise your @!\#\$\%\&! fares 20 perat. I'll raise mine the next morning.
tnam: Robert, we.
findall: You'll make more money and I will, too
tham: We can't talk about pricing!
andall: Oh @!\#\$\%\&!, Howard. We can talk about any @!\#\$\%\&! thing we int to talk about.
andall was wrong. Corporate executives cannot talk about anything they w. Talking about prices and agreeing to fix them is a clear violation of Section 1 of esherman Act. Putnam must have known this because he promptly rejected Cr : Idall's suggestion. After learning about the call, the Justice Department filed a st: rccusing Crandall of violating the antitrust laws by proposing to fix prices. owever, proposing to fix prices is not enough to violate Section 1 of the Sh. man Act: For the law to be violated, the two parties must agree to collude. Th eefore, because Putnam had rejected Crandall's proposal, Section 1 was not vi ated. The court later ruled, however, that a proposal to fix prices could be an : ttempt to monopolize part of the airline industry and, if so, would violate Se :hon 2 of the Sherman Act. American Airlines promised the Justice Department ne s again to engage in such activity.

Over the past decade, Microsoft Corporation has grown to become the largest computer software company in the world. Its Windows operating system has over 94 percent of the worldwide market for personal computer operating systems. Microsoft also dominates the office productivity market: Its Office Suite, which includes Word (word processing), Excel (spreadsheets), and Powerpoint (p. sentations), held over a 95-percent worldwide market share in 2006.
ficrosoft's incredible success has been due in good part to the creative tech-
fich ngical and marketing decisions of the company and its CEO, Bill Gates. Is the anything wrong as a matter of either economics or law with being so st essful and dominant? It all depends. Under the antitrust laws, efforts by fires to restrain trade or to engage in activities that inappropriately maintain m. nopolies are illegal. Did Microsoft engage in anticompetitive, illegal 3.tices?
he U.S. Government said yes; Microsoft disagreed. In October 1998, the A mitrust Division of the U.S. Department of Justice (DOJ) put Microsoft's behavio to the test: It filed suit, raising a broad set of issues that created the most sig cant antitrust law suit of the past two decades. The ensuing trial ended in It e 1999, but it wasn't until early in 2003 that a settlement between the govern13) It and Microsoft was finalized. Here is a brief road map of some of the DOJ's mor claims and Microsoft's responses.

- DOJ claim: Microsoft has a great deal of market power in the market for PC operating systems-enough to meet the legal definition of monopoly power.
MS response: Microsoft does not meet the legal test for monopoly power because it faces significant threats from potential competitors that offer or will offer platforms to compete with Windows.
- DOJ claim: Microsoft viewed Netscape's Internet browser (Netscape Navigator) as a threat to its monopoly over the PC operating system market. The threat existed because Netscape's browser includes Sun's Java software, which can run programs that have been written for any operating system, including those that compete with Windows, such as Apple, Unix, and Linux. In violation of Section 1 of the Sherman Act, Microsoft entered into exclusionary agreements with computer manufacturers and Internet service providers with the objective of raising the cost to Netscape of making its browser available to consumers. This action impaired Netscape's ability to compete fairly with Microsoft's Internet Explorer for the browser business.
MS response: The contracts were not unduly restrictive. In any case, Microsoft unilaterally agreed to stop most of them.
- DOJ claim: In violation of Section 2 of the Sherman Act, Microsoft engaged in practices designed to maintain its monopoly in the market for desktop PC operating systems. Most importantly, it tied its browser to the Windows 98 operating system, even though doing so was technically unnecessary and provides little or no benefit to consumers. This action was predatory because it made it difficult or impossible for Netscape and other firms to successfully offer competing products.
MS response: There are benefits to incorporating the browser functionality into the operating system. Not being allowed to integrate new functionality into an operating system will discourage innovation. Offering consumers a choice between separate or integrated browsers would cause confusion in the marketplace.
- DOJ claim: In violation of Section 2 of the Sherman Act, Microsoft attempted to divide the browser business with Netscape and engaged in similar conduct with both Apple Computer and Intel.
MS response: Microsoft's meetings with Netscape, Apple, and Intel were for valid business reasons. Indeed, it is useful for consumers and firms to agree on common standards and protocols in developing computer software.

These are some of the highlights of an eight-month trial that was hard-fought on a range of economic issues. The District Court reached its findings regarding the facts of the case in November 1999 and the legal conclusions in April 2000. It found that Microsoft did have monopoly power in the market for PC operating systems. The Court concluded further that Microsoft had viewed Netscape as a threat and that in responding to that threat, it had engaged in a series of anticompetitive acts to protect and extend its operating system monopoly. The court deemed these actions to violate Section 2 of the Sherman Act. However, the Court also found that the exclusionary agreements with computer manufacturers and Internet service providers had not foreclosed competition sufficiently to violate Section 1 of the Sherman Act. Microsoft's appeal to the Circuit Court of

Appeals for the District of Columbia was decided in June 2001. The Appellate Court supported the District Court's conclusions that Microsoft was a monopoly and had engaged in anticompetitive practices to protect that monopoly However, the Court left undecided whether including Internet Explorer in the operating system was itself illegal.
Since this decision, the DOJ and Microsoft agreed to settle the case. Among other things, the agreement required Microsoft (1) to give computer manufacturer the ability to offer its operating system without Internet Explorer and (2) to include competing browser programs when loading the Windows operating system onto the machines they sell. Microsoft also agreed to a program that would monitor its compliance with the terms of the settlement. Despite opposition from critics who believed the remedy insufficient, the settlement was approved by the Appellate Court in 2004, putting an end to this landmark antitrust case in the United States.
Microsoft's problems did not end with the U.S. settlement, however. In 2004, the European Commission ordered Microsoft to pay $\$ 610$ million in fines for its anticompetitive practices and to produce a version of Windows without the Windows Media Player to be sold alongside its standard editions. In addition, numerous private lawsuits were brought in the United States, with most settling for substantial sums of money.

SUMMARY

1. Market power is the ability of sellers or buyers to affect the price of a good.
Market power comes in two forms. When sellers charg price that is above marginal cost, we say that they have which price exceeds marginal cost. When buyers can obtain a price below their marginal value of the good, we say they have monopsony power, which we measure by the extent to which marginal value exceeds price.
2. Monopoly power is determined in part by the number of firms competing in a market. If there is only one firm-a pure monopoly-monopoly power depends entirely on the elasticity of market demand. The less elastic the demand, the more monopoly power the firm will have. When there are several firms, monopoly aggressively they compete, the less monopoly power each firm will have. each firm will have.
3. Monopsony power is determined in part by the num ber of buyers in a market. If there is only one buyerpure monopsony-monopsony power depends on the elasticity of market supply. The less elastic th supply, the more monopsony power the buyer will have. When there are several buyers, monopsony power also depends on how aggressively they com-
4. pete for supplies.

Market power can impose costs on society. Because monopoly and monopsony power both cause produc
tion to fall below the competitive level there is a dead weight loss of consumer and producer surplus. There can be additional social costs from rent seeking.
6. Sometimes, scale economies make pure mono desirable. But the government will still want to regulate price to maximize social welfare
7. More generally, we rely on the antitrust laws to prevent firms from obtaining excessive market power.

QUESTIONS FOR REVIEW

1. A monopolist is producing at a point at which marginal cost exceeds marginal revenue. How should it adjust its output to increase profit?
2. We write the percentage markup of price over marginal cost as $(P-M C) / P$. For a profit-maximizing monopolist, how does this markup depend on the
elasticity of demand? Why can this markup be viewed as a measure of monopoly power?
3. Why is there no market supply curve under conditions
4. Why might a firm have monopoly power even if it is not the only producer in the market?
5. What are some of the different types of barriers to entry that give rise to monopoly power? Give an example of each.
6. What factors determine the amount of monopoly power an individual firm is likely to have? Explain ach one briefly
7. Why is there a social cost to monopoly power? If the gains to producers from monopoly power could be redistributed to consumers, would the social cost of
monopoly power be eliminated? Explain briefly.
8. Why will a monopolist's output increase if the government forces it to lower its price? If the government wants to set a price ceiling that maximizes the monop-
olist's output, what price should it set?
How much of a product to buy? Will it buy more or less than a competitive buyer? Explain briefly.
9. What is meant by the term "monopsony power"? Why might a firm have monopsony power even if it is not 1. What are some wurces of mon
10. What are some sources of monopsony power? What determines the amount of monopsony power an indi-
11. Why is there a social cost to gains to buyers from monopsony power could be redistributed to sellers, would the social cost of monopsony power be eliminated? Explain briefly.
12. How do the antitrust laws limit market power in the United States? Give examples of major provisions of
these laws. these laws.
13. Explain briefly how the U.S. antitrust laws are actually
enforced.

EXERCISES

1. Will an increase in the demand for a monopolist's product always result in a higher price? Explain. Will an increase in the supply facing a mo
2. Caterpillar Tractor, one of the largest producers of farm machinery in the world, has hired you to advise it on pricing policy. One of the things the company would like to know is how much a 5 -percent increase in price is likely to reduce sales. What would you need to know to help the company with this problem? Explain why these facts are important.
3. A monopolist firm faces a demand with constant elasticity of -2.0 . It has a constant marginal cost of $\$ 20$ per unit and sets a price to maximize profit. If marginal cost should increase by 25 percent, would the price charged also rise by 25 percent?
4. A firm faces the following average revenue (demand) curve:

$$
P=120-0.02 Q
$$

where Q is weekly production and P is price, measured in cents per unit. The firm's cost function is given by $C=60 \mathrm{Q}+25,000$. Assume that the firm maximizes profits.
a. What is the level of production, price, and total profit per week?
b. If the government decides to levy a tax of 14 cents per unit on this product, what will be the new level
5. The following table shows the den

The following table shows the demand curve facing a
monopolist who produces at a constant marginal cost of $\$ 10$:

Price	Quantity
18	0
16	4
14	8
12	12
10	16
8	20
6	24
4	28
2	32
0	36

a. Calculate the firm's marginal revenue curve.
b. What are the firm's profit-maximizing output and
price? What is its profit?in a competitive industry?
d. What would the social gain be if this monopolist were forced to produce and price at the competitive equilibrium? Who would gain and lose as a result?
6. Suppose that an industry is characterized as follows:
$C=100+2 q^{2}$
$\mathrm{MC}=4 q$
$P=90-2 Q$
$M R=90-4 Q$
cost function firm's marginal cost function industry demand curve industry marginal revenue curve
a. If there is only one firm in the industry, find the monopoly price, quantity, and level of profit
b. Find the price, quantity, and level of profit if the Graphically illustrate
Graphically illustrate the demand curve, marginal revenue curve, marginal cost curve, and average cost
curve. Identify the difference between the profitlevel of the monopoly and the profit level of the competitive industry in two different ways. Verify that the two are numerically equivalent.
suppose a profit-maximizing monopolist is producing 800 units of output and is charging a price of $\$ 40$ per unit.
a. If the elasticity of demand for the product is -2 , find the marginal cost of the last unit produced.
. What is the firm's percentage markup of price over th?
. Suppose that the average cost of the last unit produced is $\$ 15$ and the firm's fixed cost is $\$ 2000$. Find A firm has two fact

$$
\begin{aligned}
& \text { Factory \#1: } C_{1}\left(Q_{1}\right)=10 Q_{1}^{2} \\
& \text { Factory \#2: } C_{2}\left(Q_{2}\right)=20 Q_{2}^{2}
\end{aligned}
$$

The firm faces the following demand curve:

$$
P=700-5 Q
$$

where Q is total output-i.e., $Q=Q_{1}+Q_{2}$.
a. On a diagram, draw the marginal cost curves for the two factories, the average and marginal revenue curves, and the total marginal cost curve (i.e., the marginal cost of producing $Q=Q_{1}+Q_{2}$. Indicate the profit-maximizing output for each factory, total output, and price.
b. Calculate the values of Q_{1}, Q_{2}, Q, and P that maximize profit.
c. Suppose that labor costs increase in Factory 1 but not in Factory 2. How should the firm adjust (i.e., Output in Far leave unchanged) the following output? Price?
9. A drug company has a monopoly on a new patented medicine. The product can be made in either of two plants. The costs of production for the two plants are $\mathrm{MC}_{1}=20+2 Q_{1}$ and $\mathrm{MC}_{2}=10+5 Q_{2}$. The firm's estimate of demand for the product is $P=20-3\left(Q_{1}+Q_{2}\right)$. How much should the firm plan to produce in each plant? At what price should it plan to sell the product? 10. One of the more important antitrust cases of the 20th (Alcoa) in 1945. At Aluminum Company of America percent of primary aluminum production in the United States, and the company had been accused of monopolizing the aluminum market. In its defense,

Alcoa argued that although it indeed controlled a larg fraction of the primary market, secondary aluminum
(i.e., aluminum produced from the recycling of scrap) (i.e., aluminum produced from the recycling of scrap) accounted for roughly 30 percent of the total supply of aluminum and that many competitive firms were engaged in recycling. Therefore, Alcoa argued, it did at have much monopoly power.
a. Provide a clear argument in farvor of Alcoo's position
b. Provide a clear argument against Alcoa's position
c. The 1945 decision by Judge Learned Hand has been called "one of the most celebrated judicial opinions of our time." Do you know what Judge Hand's rul ing was?
11. A monopolist faces the demand curve $P=11-Q$ where P is measured in dollars per unit and Q in thouands of units. The monopolist has a constant average cost of $\$ 6$ per unit.
a. Draw the average and marginal revenue curves and the average and marginal cost curves. What are the monopolist's profit-maximizing price and quantity? degree of monopoly power using the Lerner index
b. A government regulatory agency sets a price ceiling
of $\$ 7$ per unit. What quantity will be produced and what will the firm's profit be? What happens to the degree of monopoly power?
c. What price ceiling yields the largest level of out put? What is that level of output? What is the firm's degree of monopoly power at this price?
12. Michelle's Monopoly Mutant Turtles (MMMT) has the exclusive right to sell Mutant Turtle t-shirts in the United States. The demand for these t-shirts is $Q=10,000 / P^{2}$ The firm's short-run cost is SRTC $=2000+5 Q$, and its What ost is LRTC $=6 \mathrm{Q}$
profit in the shourt run? What charge to maximize profit in the short run? What quantity does it sell, ter off shutting down in the short run?
b. What price should MMMT charge in the long run? What quantity does it sell and how much profit does it make? Would it be better off shutting down in the long run?
c. Can we expect MMMT to have lower marginal cost in the short run than in the long run? Explain why. 13. You produce widgets for sale in a perfectly competitive market at a market price of $\$ 10$ per widget. Your widgets are manufactured in two plants, one in of labor problems in Connecticut you raise wages there, so that marginal costs in that plant increase. In response to this, should you shift production and produce more in your Massachusetts plant?
14. The employment of teaching assistants (TAs) by major universities can be characterized as a monopsony. Suppose the demand for TAs is $W=30,000-125 n$,
where W is the wage (as an annual salary) and n is the number of TAs hired. The supply of TAs is given by $W=1000+75 n$.
a. If the university takes advantage of its monopsonist position, how many TAs will it hire? What wage
b. If, instead, the university faced an infinite supply of TAs at the annual wage level of $\$ 10,000$, how many TAs would it hire?
*15. Dayna's Doorstops, Inc. (DD) is a monopolist in the doorstop industry. Its cost is $C=100-5 Q+Q^{2}$, and
demand is $P=55-20$ demand is $P=55-2 Q$.
a. What price should DD set to maximize profit? What output does the firm produce? How much
profit and consumer surplus does DD generate?
b. What would output be if DD acted like a perfe competitor and set MC = P? What profit and consumer surplus would then be generated?
c. What is the deadweight loss from monopoly power in part (a)?
d. Suppose the government, concerned about the high price of doorstops, sets a maximum price at $\$ 27$. How does this affect price, quantity, consumer surplus, and DD's profit? What is the resulting deadweight loss?
e. Now suppose the government sets the maximum price at $\$ 23$. How does this decision affect price quantity, consumer surplus, DD's profit, and dead weight loss?
f. Finally, consider a maximum price of $\$ 12$. What will this do to quantity, consumer surplus, profit,
*16. There are 10 households. each with a demand for electricity of $Q=50-P$. Lake Wobegon Electric's (LWE) cost of producing electricity is $\mathrm{TC}=500+Q$.
a. If the regulators of LWE want to make sure that there is no deadweight loss in this market, what price will they force LWE to charge? What will output be in that case? Calculate consumer surplus
and LWE's profit with that price and LWE's profit with that price.
b. If regulators want to ensure that LWE doesn't lose money, what is the lowest price they can impose?
Calculate output, consumer surplus, and profit Calculate output, consumer surplus, and profit. Is
there any deadweight loss? there any deadweight loss?
c. Kristina knows that deadweight loss is something
that this small town can do without. She suggests that each household be required to pay a fixed amount just to receive any electricity at all, and then a per-unit charge for electricity. Then LWE can break even while charging the price calculated in part (a). What fixed amount would each household have to pay for Kristina's plan to work? Why can you be sure that no household will choose instead to refuse the payment and go without electricity?
17. A certain town in the Midwest obtains all of its elec tricity from one company, Northstar Electric. Although the company is a monopoly, it is owned by the citizens
of the town, all of whom split the profits equally at the of the town, all of whom split the profits equally at the
end of each year. The CEO of the company claims that because all of the profits will be given back to the citizens, it makes economic sense to charge a monopoly price for electricity. True or false? Explain.
A monopolist faces the following demand curve:

$Q=144 / P^{2}$

where Q is the quantity demanded and P is price. It average variable cost is
$\mathrm{AVC}=Q^{1 / 2}$
and its fixed cost is 5 .
a. What are its profit-maximizing price and quantity? a. What are its profit-maximizin
What is the resulting profit?
b. Suppose the government regulates the price to be no greater than $\$ 4$ per unit. How much will the monopolist produce? What will its profit be?
. Suppose the government wants to set a ceiling price that induces the monopolist to produce the largest possible output. What price will accomplish this goal?

Pricing with Market Power

As we explained in Chapter 10, market power is quite common. Many industries have only a few producers, so that each producer has some monopoly power. And many firms, as buyers of raw materials, labor or specialized capital goods, have some monopsony power in the mar kets for these factor inputs. The problem faced by the managers of these firms is how to use their market power most effectively. They must decide how to set prices, choose quantities of factor inputs, and determine output in both the short and long run to maximize profit
Managers of firms with market power have a harder job than those who manage perfectly competitive firms. A firm that is perfectly competitive in output markets has no influence over market price. As a result, its managers need worry only about the cost side of the firm's operations, choosing output so that price is equal to marginal cost. But the managers of a firm with monopoly power must also worry about the characteristics of demand. Even if they set a single price for the firm's output, they must obtain at least a rough estimate of the elasticity of demand to determine what that price (and corresponding output level) should be. Furthermore, firms can often do much better by using a more complicated pricing strategy-for example, charging different prices to different customers. To design such pricing strategies, managers need ingenuity and even more information about demand.
This chapter explains how firms with market power set prices. We begin with the basic objective of every pricing strategy: capturing consumer surplus and converting it into additional profit for the firm. Then we discuss how this goal can be achieved using price discriminationcharging different prices to different customers, sometimes for the same product and sometimes for small variations in the product. Because price discrimination is widely practiced in one form or another, it is
important to understand how important to understand how it works.
advance for the right to purchase tariff-requiring customers to pay in advance for the right to purchase units of a good at a later time (and at where customers The classic example of this is an amusement park, where customers pay a fee to enter and then additional fees for each market, there are many other parks may seem like a rather specialized a Gillette razor which oher examples of two-part tariffs: the price of Gillette razor blades; gurchase and then an hourly, an annual fee cost of long-ditance rate for court time; or the monthly subscription nity to make istance the opportunity to make long-distance calls, paying by the minute as they do so.
products together and selling the a pricing strategy that involves tying products together and selling them as a package. For example: a per-
sonal computer that comes bundled with sonal computer that comes bundled with several software packages; a

CHAPTER OUTLINE
11.1 Capturing Consumer Surplus 392
11.2 Price Discrimination 393
11.3 Intertemporal Price Discrimination and Peak-Load Pricing 403
11.4 The Two-Part Tariff 406
-11.5 Bundling 413
*11.6 Advertising 424
Appendix: Transfer Pricing in the Integrated Firm 433

LIST OF EXAMPLES
11.1 The Economics of Coupons and Rebates 400
11.2 Airline Fares 402
11.3 How to Price a Best-Selling Novel 406
11.4 Polaroid Cameras 410
11.5 Pricing Cellular Phone Service 411
11.6 The Complete Dinner versus à la Carte: A Restaurant's Pricing Problem 422
11.7 Advertising in Practice 427
one-week vacation in which the airfare, rental car, and hotel are bundled and sold at a single package price; or a luxury car, in which the sun roof, power windows, and leather seats are "standard" features
Finally, we will examine the use of advertising by firms with market power. As we will see, deciding how much money to spend on advertising requires information about demand and is closely related to the firm's pricing decision. We will derive a simple rule of thumb for determining the profit-maximizing advertising-to-sales ratio.

11.1 CAPTURING CONSUMER SURPLUS

All the pricing strategies that we will examine have one thing in common: They are means of capturing consumer surplus and transferring it to the producer. You can see this more clearly in Figure 11.1. Suppose the firm sold all its output at a single price. To maximize profit, it would pick a price P^{*} and corresponding output Q^{*} at the intersection of its marginal cost and marginal revenue curves. Although the firm would then be profitable, its managers might still wonder if they could make it even more profitable.

They know that some customers (in region A of the demand curve) would pay more than $p^{* *}$. But raising the price would mean losing some customers, selling less, and earning smaller profits. Similarly, other potential customers are not buying the firm's product because they will not pay a price as high as P^{*}. Many

FIGURE 11.1 Capturing Consumer Surplus

If a firm can charge only one price for all its customers, that price will be P^{*} and the quantity produced will be Q^{*}. Ideally, the firm would like to charge a higher price oo consumers willing to pay more than p^{*}, thereby capturing some of the consumer surplus under region A of the demand curve. The firm would also like to sell to con-
sumers willing to pay prices lower than P^{*} but only if doing so does not entail lowersumers willing to pay prices lower than P^{*}, but only if doing so does not entail lower-
ing the price to other consumers. In that way, the firm could also capture some of the surplus under region B of the demand curve.
of them, however, would pay prices higher than the firm's marginal cost (These customers are in region B of the demand curve.) By lowering its price, the firm could sell to some of these customers. Unfortunately, it would then earn less revenue from its existing customers, and again profits would shrink
How can the firm capture the consumer surplus (or at least part of it) from its customers in region A, and perhaps also sell profitably to some of its potential customers in region B ? Charging a single price clearly will not do the trick However, the firm might charge different prices to different customers, accord ing to where the customers are along the demand curve. For example, some customers in the upper end of region A would be charged the higher price P_{1}, some in region B would be charged the lower price P_{2}, and some in between would be charger . Tifferent tomers, and to get the to pay tomers, and to get them to pay different prices. We will see how this can be done in the next section.

The other pricing techniques that we will discuss in this chapter-two-part tariffs and bundling-also expand the range of a firm's market to include more customers and to capture more consumer surplus. In each case, we will examine both the amount by which the firm's profit can be increased and the effect on consumer welfare. (As we will see, when there is a high degree of monopoly power, these pricing techniques can sometimes make both consumers and the
producer better off.) We turn first to price discrimination.

11.2 PRICE DISCRIMINATION

Price discrimination can take three broad forms, which we call first-, secondand third-degree price discrimination. We will examine them in turn.

Fist Degree Price Discrimination
Ideally, a firm would like to charge a different price to each of its customers. If it could, it would charge each customer the maximum price that the customer is willing to pay for each unit bought. We call this maximum price the customer's reservation price. The practice of charging each customer his or her reservation price is called perfect first-degree price discrimination. ${ }^{1}$ Let's see how it affects the firm's profit
First, we need to know the profit that the firm earns when it charges only the single price P^{*} in Figure 11.2. To find out, we can add the profit on each incremental unit produced and sold, up to the total quantity Q^{*}. This incremental pront is the marginal revenue less the marginal cost for each unit. In Figure 11.2, his marginal revenue is highest and marginal cost lowest for the first unit. For each additional unit, marginal revenue falls and marginal cost rises. Thus the firm produces the total output Q^{*}, at which point marginal revenue and marginal cost are equal.
If we add up the profits on each incremental unit produced, we obtain the firm's ariable profit; the firm's proft, ignoring its fixed costs. In Figure 11.2, variable profit is given by the yellow-shaded area between the marginal revenue and
\qquad
We are assuming that each customer buys one unit of the good If customer buys mor unit, the firm will have to charge different prices for each of the units.

price discrimination ractice of charging different for similar goods.

reservation price Maximum

 price that a customer is willing to pay for a good.first-degree price discrimi nation Practice of charging price.

In $\S 8.3$, we explain that a firm's profit-maximizing outmarginal revenue is equal to
marginal cost marginal cost.
variable profit Sum of profits on each incremental profit ignoring fixed costs.

FIGURE 11.2 Additional Profit from Perfect First-Degree Price Discrimination
Because the firm charges each consumer her reservation price, it is profitable to expand output to $Q^{* *}$. When only a single price, P^{*}, is charged, the firm's variable profit is the area between the marginal revenue and marginal cost curves. With perfect price discrimination, this profit expands to the area between the demand curve and he marginal cost curve.
marginal cost curves. ${ }^{2}$ Consumer surplus, which is the area between the average revenue curve and the price P^{*} that customers pay, is outlined as a black triangle.

Perfect Price Discrimination What happens if the firm can perfectly price discriminate? Because each consumer is charged exactly what he or she is willing to pay, the marginal revenue curve is no longer relevant to the firm's output decision. Instead, the incremental revenue earned from each additional unit sold is simply the price paid for that unit; it is therefore given by the demand curve.

Since price discrimination does not affect the firm 's cost structure, the cost of each additional unit is again given by the firm's marginal cost curve. Therefore, the additional profit from producing and selling an incremental unit is now the difference between demand and marginal cost. As long as demand exceeds marginal cost, the firm can increase its profit by expanding production. It will do so until it produces a total output $Q^{* *}$. At $Q^{* *}$, demand is equal to marginal cost, and producing any more reduces profit.
${ }^{2}$ Recall from Chapter 10 that because total profit π is the difference between total revenue R and total $\Delta T s$, and thus it is the area between the MR and MC curves. This ignores fixed costs, which are indepen$\Delta \pi s$, and thus it is the area between the MR and MC curves. This ignores fixed costs, which are indepen-

Variable profit is now given by the area between the demand and margina cost curves. ${ }^{3}$ Observe from Figure 11.2 how the firm's profit has increased. (The dditional profit resulting from price discrimination is shown by the purple haded area.) Note also that because every customer is being charged the maxi num amount that he or she is willing to pay, all consumer surplus has been captured by the firm.

Imperfect Price Discrimination In practice, perfect first-degree price discrimi nation is almost never possible. First, it is usually impractical to charge each and every customer a different price (unless there are only a few customers). Second firm usually does not know the reservation price of each customer. Even if it could ask how much each customer would be willing to pay, it probably would ot receive honest answers. After all, it is in the customers' interest to claim that hey would pay very little.
Sometimes, however, firms can discriminate imperfectly by charging a few different prices based on estimates of customers' reservation prices. This prac ice is often used by professionals, such as doctors, lawyers, accountants, or architects, who know thesions, such as doctors, lawyers, accountants, or willingness to pay her ciens reasonably well. In such cases, the client's tor may offer insurance coverage is low but or incured patiens an better rems, is in and and accountant, having just completed a client's tax pay for the service.
Another example is profit margin. The sala a car salesperson, who typically works with a 15 -percent promer by making " "desperson can give part of this margin away to the cusprise the customer pay the full sticker likely to likely to look elsewhere for a car is given a large discount (from the salesperson's point of view, a small profit is better than no sale and no profit), but the customer in a hurry is offered little or no discount. In other words, a successful car salesperson knows how to price discriminate.
Still another example is college and university tuition. Colleges don't charge different tuition rates to different students in the same degree programs. Instead, they offer financial aid, in the form of scholarships or subsidized loans, which reduces the net tuition that the student must pay. By requiring those who seek aid to disclose information about family income and wealth, colleges can link the amount of aid to ability (and hence willingness) to pay. Thus students who are financially well off pay more for their education, while students who are less well off pay less.
Figure 11.3 illustrates imperfect first-degree price discrimination. If only a single price were charged, it would be P_{4}^{*}. Instead, six different prices are charged, the lowest of which, P_{6}, is set at about the point where marginal cost intersects the demand curve. Note that those customers who would not have been willing to pay a price of P_{4}^{*} or greater are actually better off in this situation-they are now in the market and may be enjoying at least some consumer surplus. In fact, if price discrimination brings enough new customers into the market, consumer welfare can increase to the point that both the producer and consumers are better off.

Incremental profit is again $\Delta \pi=A R-\Delta C$, Verage revenue curve), so $\Delta \pi=A R-M C$. Variable profit is the sum of these $\Delta \pi s$ and is given by the

Quantity

FIGURE 11.3 First-Degree Price Discrimination in Practice

Firms usually don't know the reservation price of every consumer, but sometimes reservation prices can be roughly identified. Here, six different prices are charged. The firm earns higher profits, but some consumers may also benefit. With a single price P_{4}^{4} there are fewer consumers. The consumers who now pay P_{5} or P_{6} enjoy a surplus.

Second-Degree Price Discrimination
In some markets, as each consumer purchases many units of a good over any given period, his reservation price declines with the number of units purchased. Examples include water, heating fuel, and electricity. Consumers may each purchase a few hundred kilowatt-hours of electricity a month, but their willingness to pay declines with increasing consumption. The first 100 kilowatt-hours may be worth a lot to the consumer-operating a refrigerator and providing for minimal lighting. Conservation becomes easier with the additional units and may be worthwhile if the price is high. In this situation, a firm can discriminate according to the quantity consumed. This is called second-degree price discrimination, and it works by charging different prices for different quantities of the same good or service.

Quantity discounts are an example of second-degree price discrimination. A single roll of Kodak film might be priced at $\$ 5$, while a box containing four rolls of the same film might be priced at $\$ 14$, making the average price per roll $\$ 3.50$. Similarly, the price per ounce for breakfast cereal is likely to be smaller for the 24 -ounce box than for the 16 -ounce box.

Another example of second-degree price discrimination is block pricing by electric power companies, natural gas utilities, and municipal water companies. With block pricing, the consumer is charged different prices for different quantities or "blocks" of a good. If scale economies cause average and marginal costs to decline, the government agency that controls rates may encourage block pricing. Because it leads to expanded output and greater scale economies, this policy can increase consumer welfare while allowing for greater profit to the company: While prices are reduced overall, the savings from the lower unit cost still permits the company to increase its profit.
Figure 11.4 illustrates second-degree price discrimination for a firm with declining average and marginal costs. If a single price were charged, it would be P_{0}, and the quantity produced would be Q_{0}. Instead, three different prices are

FIGURE 11.4 Second-Degree Price Discrimination

Difterent prices are charged for different quantities, or "blocks," of the same good. Heres there are three blocks, with corresponding prices P_{1}, P_{2}, and P_{7}. There are also economies of scale, and average and marginal costs are declining. Second-degree price discrimination can then make consumers better off by expanding output and lowering cost.
charged, based on the quantities purchased. The first block of sales is priced at P_{1}, the second at P_{2}, and the third at P_{3}.

Third-Degree Price Discrimination

A well-known liquor company has what seems to be a strange pricing practice. The company produces a vodka that it advertises as one of the smoothest and best-tasting available. This vodka is called "Three Star Golden Crown" and sells for about $\$ 16$ a bottle. However, the company also takes some of this same Vodka and bottles it under the name "Old Sloshbucket," which is sold for about $\$ 8$ a bottle. Why does it do this? Has the president of the company been spending too much time near the vats?
Perhaps, but this company is also practicing third-degree price discrimination, and it does so because the practice is profitable. This form of price discrimination divides consumers into two or more groups with separate demand curves for each group. It is the most prevalent form of price discrimination, and examples bound: regular versus "special" airline fares; premium versus nonpremium brands of liquor, canned food or frozen vegetables; discounts to students and senior citizens; and so on
Creating Consumer Groups In each case, some characteristic is used to divid consumers into distinct groups. For many goods, for example, students and senior citizens are usually willing to pay less on average than the rest of the population
'We have changed the names to protect the innocent.

- third-degree price discrimination Practice of dividing groups with se two or more curves and charging different

 prices to each group.- block pricing Practice of charging different prices for
different quantities or "blocks" of a good.
second-degree price discrimination Practice of unit for different quantities of the same good or service.
(because their incomes are lower), and identity can be readily established (via a college ID or driver's license). Likewise, to separate vacationers from business travelers (whose companies are usually willing to pay higher fares), airlines can put restrictions on special low-fare tickets, such as requiring advance purchase or a Saturday night stay. With the liquor company, or the premium versus nonpremium (e.g., supermarket label) brand of food, the label itself divides consumers; many consumers are willing to pay more for a name brand even though the nonpremium brand is identical or nearly identical (and might be manufactured by the same company that produced the premium brand)
If third-degree price discrimination is feasible, how should the firm decide what price to charge each group of consumers? Let's think about this in two steps.

1. We know that however much is produced, total output should be divided between the groups of customers so that marginal revenues for each group are equal. Otherwise, the firm would not be maximizing profit. For example, if there are two groups of customers and the marginal revenue for the first group, MR_{1}, exceeds the marginal revenue for the second group, MR the firm could clearly do better by shifting output from the second group to the first. It would do this by lowering the price to the first group and raising the price to the second group. Thus, whatever the two prices, they must be such that the marginal revenues for the different groups are equal
2. We know that total output must be such that the marginal revenue for each group of consumers is equal to the marginal cost of production. Again, if this were not the case, the firm could increase its profit by raising or lowering total output (and lowering or raising its prices to both groups). For example, suppose that marginal revenues were the same for each group of consumer but that marginal revenue exceeded marginal cost. The firm could then make a greater profit by increasing its total output. It would lower its prices to both groups of consumers, so that marginal revenues for each group would fall (but would still be equal to each other) and would approach marginal cost.
Let's look at this problem algebraically. Let P_{1} be the price charged to the first group of consumers, P_{2} the price charged to the second group, and $C\left(Q_{T}\right)$ the total cost of producing output $Q_{T}=Q_{1}+Q_{2}$. Total profit is then

$$
\pi=P_{1} Q_{1}+P_{2} Q_{2}-C\left(Q_{T}\right)
$$

The firm should increase its sales to each group of consumers, Q_{1} and Q_{2}, until the incremental profit from the last unit sold is zero. First, we set incremental profit for sales to the first group of consumers equal to zero:

$$
\frac{\Delta \pi}{\Delta Q_{1}}=\frac{\Delta\left(P_{1} Q_{1}\right)}{\Delta Q_{1}}-\frac{\Delta C}{\Delta Q_{1}}=0
$$

Here, $\Delta\left(P_{1} Q_{1}\right) / \Delta Q_{1}$ is the incremental revenue from an extra unit of sales to the first group of consumers (i.e., MR_{1}). The next term, $\Delta C / \Delta Q_{1}$, is the incremental cost of producing this extra unit-i.e., marginal cost, MC. We thus have

$$
\mathrm{MR}_{1}=\mathrm{MC}
$$

Similarly, for the second group of consumers, we must have

$$
\mathrm{MR}_{2}=\mathrm{MC}
$$

Putting these relations together, we see that prices and output must be set so that

Again, marginal revenue must be equal across groups of consumers and must qual marginal cost.

Determining Relative Prices Managers may find it easier to think in terms of the relative prices that should be charged to each group of consumers and to relate these prices to the elasticities of demand. Recall from Section 101 that we can write marginal revenue in terms of the elasticity of demand:

$$
\mathrm{MR}=P\left(1+1 / E_{d}\right)
$$

Thus $\mathrm{MR}_{1}=P_{1}\left(1+1 / E_{1}\right)$ and $\mathrm{MR}_{2}=P_{2}\left(1+1 / E_{2}\right)$, where E_{1} and E_{2} are the elasticities of demand for the firm's sales in the first and second markets, respec tively. Now equating MR_{1} and MR_{2} as in equation (11.1) gives the following relationship that must hold for the prices:

$$
\frac{P_{1}}{P_{2}}=\frac{\left(1+1 / E_{2}\right)}{\left(1+1 / E_{1}\right)}
$$

As you would expect, the higher price will be charged to consumers with the lower demand elasticity. For example, if the elasticity of demand for consumers in group 1 is -2 and the elasticity for consumers in group 2 is -4 , we will have $P_{1} / P_{2}=(1-1 / 4) /(1-1 / 2)=(3 / 4) /(1 / 2)=1.5$. In other words, the price charged to the first group of consumers should be 1.5 times as high as the price charged to the second group
Figure 11.5 illustrates third-degree price discrimination. Note that the demand curve D_{1} for the first group of consumers is less elastic than the curve for the second

FIGURE 11.5 Third-Degree Price Discrimination
Consumers are divided into two groups, with separate demand curves for each group. The optimal prices and quantities are such that the marginal revenue from each group is the same and equal to marginal cost Here and quantidemand curve D_{1}, is charged P_{1}, and group 2 , with the more elastic demand curve D_{2}, is charged the lower price P_{2} Marginal cost depends on the total quantity produced Q_{T}. Note that Q_{1} and Q_{2} are chosen so that $M R_{1}=M R_{2}=M C$.

FIGURE 11.6 No Sales to Smaller Market

Even if third-degree price discrimination is feasible, it may not pay to sell to both groups of consumers if marginal cost is rising. Here the first group of consumers with demand D_{1}, are not willing to pay much for the product. It is unprofitable to sell to them because the price would have to be too low to compensate for the resulting
increase in marginal cost.
group; thus the price charged to the first group is higher. The total quantity produced, $Q_{T}=Q_{1}+Q_{2}$, is found by summing the marginal revenue curves $M R_{1}$ and MR_{2} horizontally, which yields the dashed curve MR_{T}, and finding its intersection with the marginal cost curve. Because MC must equal $M R_{1}$ and $M R_{2}$, we can draw horizontal line leftward from this intersection to find the quantities Q_{1} and Q_{2}. It may not always be worthwhile for the firm to try to sell to more than one group of consumers. In particular, if demand is small for the second group and marginal cost is rising steeply, the increased cost of producing and selling to this group may outweigh the increase in revenue. In Figure 11.6, the firm is better off charging a single price P^{*} and selling only to the larger group of consumers: The additional cost of serving the smaller market would outweigh the additional revenue that might come from selling to it.

EXAMPLE 11.1
The Economics of Coupons and Rebates

Producers of processed foods and related consumer goods often issue coupons that let customers buy products at discounts. These coupons are usually distributed as part of an advertisement for the product. They may appear in newspapers or magazines or in promotional mailings. For example, a coupon for a particular breakfast cereal might be worth 50 cents toward the purchase of a box of the cereal. Why do firms issue these coupons? Why not just lower the price of the product and thereby save the costs of printing and collecting the coupons?
Coupons provide a means of price discrimination. Studies show that only about 20 to 30 percent of all consumers regularly bother to clip, save, and use
coupons. These consumers tend to be more sensitive to price than those who ignore coupons. They generally have more price-elastic demands and lower reservation prices. By issuing coupons, therefore, a cereal company can separate its customers into two groups and, in effect, charge the more price-sensitive customers a lower price than the other customers.
Rebate programs work the same way. For example, Kodak ran a program in which a consumer could mail in a form together with the proof of purchase of three rolls of film and receive a rebate of $\$ 1.50$. Why not just lower the price of film by 50 cents a roll? Because only those consumers with relatively pricesensitive demands bother to send in the materials and request rebates. Again, the
program is a means of price discrimination. program is a means of price discrimination.
Can consumers really be divided into distinct groups in this way? Table 11.1 shows the results of a statistical study in which, for a variety of products, price elasticities of demand were estimated for users and nonusers of coupons. ${ }^{5}$ This study confirms that users of coupons tend to have more price-sensitive demands. It also shows the extent to which the elasticities differ for the two groups of consumers and how the difference varies from one product to another.
By themselves, these elasticity estimates do not tell a firm what price to set and how large a discount to offer because they pertain to market demand, not to the demand for the firm's particular brand. For example, Table 11.1 indicates that the elasticity of demand for cake mix is -0.21 for nonusers of coupons and -0.43

TABLE 11.1 Price Elasticities of Demand for Users versus Nonusers of Coupons

	PRICE ELASTICITY	
Product	Nonusers	Users
Toilet tissue	-0.60	-0.66
Stuffing/dressing	-0.71	-0.96
Shampoo	-0.84	-1.04
Cooking/salad oil	-1.22	-1.32
Dry mix dinners	-0.88	-1.09
Cake mix	-0.21	-0.43
Cat food	-0.49	-1.13
Frozen entrees	-0.60	-0.95
Gelatin	-0.97	-1.25
Spaghetti sauce	-1.65	-1.81
Creme rinse/conditioner	-0.82	-1.12
Soups	-1.05	-1.22
Hot dogs	-0.59	-0.77

${ }^{5}$ The study is by Chakravarthi Narasimhan, "A Price Discrimination Theory of Coupons," Marketing Science (Spring 19844.. A recent study of coupons for breakfast cereals finds that countrary," to the theting
dictions pof the price-discrimination model, when coupons are more widely available. This might occur because couponing spurs more price competition among cereal manufacturers. See Aviv Nevo and Catherine Wolfram, "Prices and cornpetition among cereal manufacturers. See Aviv Nevo and Catherine
Coupons for Breakfast Cereals," RAND Journal of Economics 33 (2002): $319-39$
for users. But the elasticity of demand for any of the five or six major brands of cake mix on the market will be much larger than either of these numbers-about five or six times as large, as a rule of thumb. ${ }^{6}$ So for any one brand of cake mix say, Pillsbury-the elasticity of demand for users of coupons might be about-24, versus about -1.2 for nonusers. From equation (11.2), therefore, we can deter mine that the price to nonusers of coupons should be about 1.5 times the price to users. In other words, if a box of cake mix sells for $\$ 3.00$, the company should offer coupons that give a $\$ 1.00$ discount.

EXAMPLE 11.2

Airline Fares

Travelers are often amazed at the variety of fares available for round-trip flights from New York to Los Angeles. Recently, for example, the first-class fare was above $\$ 2000$; the regular (unrestricted) economy fare was about $\$ 1700$, and special discount fares (often requiring the purchase of a ticket two weeks in advance and/or a Saturday night stayover) could be bought for as little as $\$ 400$. Although first-class service is not the same as economy service with a minimum stay requirement, the difference would not seem to warrant a price that is seven times as high. Why do airlines set such fares?
These fares provide a profitable form of price discrimination. The gains from discriminating are large because different types of customers, with very different elasticities of demand, purchase these different types of tickets. Table 11.2 shows price (and income) elasticities of demand for three categories of service within the United States: first class, unrestricted coach, and discounted tickets (which often have restrictions and may be partly nonrefundable).
Note that the demand for discounted fares is about two or three times as price elastic as first-class or unrestricted coach service. Why the difference? While discounted tickets are usually used by families and other leisure travelers, first-class and unrestricted coach tickets are more often bought by business travelers, who have little choice about when they travel and whose companies pick up the tab of course, these elasticities pertain to market demand, and with several airline competing for customers, the elasticities of demand for each airline will be larger But the relative sizes of elasticities across the three categories of service should be about the same. When elasticities of demand differ so widely, it should not be surprising that airlines set such different fares for different categories of service.

TABLE 11.2	Elasticities of Demand for Air Travel		
FARE CATEGORY			
Elasticity	First Class	Unrestricted Coach	Discounted
Price	-0.3	-0.4	-0.9
Income	1.2	1.2	1.8

${ }^{6}$ This rule of thumb applies if interfirm competition can be described by the Cournot model, which we will discuss in Chapter 12.

Airline price discrimination has become increasingly sophisticated. A wide variety of fares is available, depending on how far in advance the ticket is bought, the percentage of the fare that is refundable if the trip is changed or cancelled, and whether the trip includes a weekend stay. ${ }^{7}$ The objective of the airtion prices, As one industry executive puts it "Youvelers with different reservation prices. As one industry executive puts it, "You don't want to sell a seat to a guy for $\$ 69$ when he is willing to pay $\$ 400 .{ }^{\prime \prime}$ At the same time, an airline would rather sell a seat for $\$ 69$ than leave it empty

11.3 INTERTEMPORAL PRICE DISCRIMINATION AND PEAK-LOAD PRICING

Two other closely related forms of price discrimination are important and widely practiced. The first of these is intertemporal price discrimination: separating consumers with different demand functions into different groups by charging different prices at different points in time. The second is peak-load pricing: charging higher prices during peak periods when capacity constraints cause marginal costs to be high. Both of these strategies involve charging different prices at different times, but the reasons for doing so are somewhat different in each case. We will take each in turn.
miertemporal Price Discrimination
The objective of intertemporal price discrimination is to divide consumers into high-demand and low-demand groups by charging a price that is high at first but falls later. To see how this strategy works, think about how an electronics company might price new, technologically advanced equipment, such as highperformance digital cameras or LCD television monitors. In Figure 11.7, D_{1} is the (inelastic) demand curve for a small group of consumers who value the product highly and do not want to wait to buy it (e.g., photography buffs who want the latest camera). D_{2} is the demand curve for the broader group of conumers who are more willing to forgo the product if the price is too high. Th strategy, then, is to offer the product initially at the high price $P_{\text {, selling mostly }}$ o consumers on demand curve D_{1}. Later, after this first group of consumers has bought the product the price is lowered to P_{2} and sales are made to the group of consumers on demand curve $D_{2} .{ }^{9}$
There are other examples of intertemporal price discrimination. One involve charging a high price for a first-run movie and then lowering the price after the movie has been out a year. Another, practiced almost universally by publishers to charge a high price for the hardcover edition of a book and then to releas the paperback version at a much lower price about a year later. Many people
${ }^{7}$ Airlines also allocate
Airlines also allocate the number of seats on each flight that will be available for each fare category hange as the departure of the flight nears and estimates of demand and passenger mix change. "The Art of Devising Air Fares," New York Times, March 4, 1987.
The prices of new electronic products also come down over time because costs fall as producers
start to achieve greater scale economies and 11, producers can make more money by first setting high prices and then teducing the costs did no hereby discriminating and capturing bonsumer surplus

intertemporal price

 discrimination Practice of separating consumers with difderent demand functions into different groups by charging points in time.- peak-load pricing Practice of charging higher prices during
peak periods when capacity peak periods when capacity
constraints cause marginal cos to be high.

FIGURE 11.7 Intertemporal Price Discrimination
Consumers are divided into groups by changing the price over time. Initially, the price is high. The firm captures surplus from consumers who have a high demand for to the mass market.
think that the lower price of the paperback is due to a much lower cost o production, but this is not true. Once a book has been edited and typeset, the marginal cost of printing an additional copy, whether hardcover or paperback, quite low, perhaps a dollar or so. The paperback version is sold for much les not because it is much cheaper to print but because high-demand consumers have already purchased the hardbound edition. The remaining consumerspaperback buyers-generally have more elastic demands.

Peak-Load Pricing
Peak-load pricing also involves charging different prices at different points in time Rather than capturing consumer surplus, however, the objective is to increase economic efficiency by charging consumers prices that are close to marginal cost.
For some goods and services, demand peaks at particular times-for roads For some goods and services, demand peaks at particular times-for roads afternoons, and for ski resorts and amusement parks on weekends. Margina cost is also high during these peak periods because of capacity constraints. Prices should thus be higher during peak periods.
This is illustrated in Figure 11.8 , where D_{1} is the demand curve for the peak period and D_{2} the demand curve for the nonpeak period. The firm sets marginal revenue equal to marginal cost for each period, obtaining the high price P_{1} for revenue equal to marginal cost for each period, obtaining the high price P_{1} for
the peak period and the lower price P_{2} for the nonpeak period, selling correhe peak period and the lower price P_{2} for the nonpeak period, selling corre ponding quantities Q_{1} and Q_{2}. This strategy increases the firm's profit above The sum of producer and consumer surplus is greater because prices are closer to marginal cost.

FGURE 11.8 Peak-Load Pricing

Demands for some goods and services increase sharply during particular times of the day or year. Charging a higher price P_{1} during the peak periods is more profitable for the firm than charging a single price at all times. It is also more efficient because mar
ginal cost is higher during peak periods.

The efficiency gain from peak-load pricing is important. If the firm were a regulated monopolist (e.g., an electric utility), the regulatory agency should set the prices P_{1} and P_{2} at the points where the demand curves, D_{1} and D_{2} intersect the marginal cost curve, rather than where the marginal revenue D_{2}, intersect sect marginal cost. In that case, consumers realize the entire efficiency curves in
Note that peak-load pricing is different from third-degree price discrim
With third-degree price discrimination, marginal revenue price discrimination. group of consumers and equal to marginal cost. Why? Because the costs of each ing the different groups are not independent. For example, with unrestricted ver sus discounted air fares, increaing the number of seats sold at discounted fer susfects the cost of selling increasing the number of seats sold at discounted fares airplane fills up. But this is not so with peak-load pricing (or for that mer with most instances of intertemporal price discrimination). Selling more tickers for lifts or amusement parks on a week lay does not significantly raise the cost skil ing tickets on the weekend Similarly selling more electricity during off-pek pell ods will not significantly increare the sers of ealling ods. As a result, price and sales ine cost of selling electricity during peak peri by setting marginal cost equal to marginal revenue be determined independently by setting marginal cost equal to marginal revenue for each period.
Movie theaters, which charge more for evening shows than for matinees, are nother example. For most movie theaters, the marginal cost of serving cus tomers during the matinee is independent of marginal cost during the evening. and matinee shows indendently using the optimal prices for the evening and matinee shows ind cost in each period.
example 11.3 How to Price a Best-Selling Novel

Publishing both hardbound and paperback editions of a book allows publishers to price discriminate. As they do with most goods, consumers differ considerably in their willingness to pay for books. For example, some consumers want to buy a new bestseller as soon as it is released, even if the price is $\$ 25$, Other consumers, however, will wait a year until the book is available in paperback for \$10. But how does a publisher decide that $\$ 25$ is the right price for the new hardbound edition and $\$ 10$ is the right price for the paperback edition? And how long should it wait before bringing out the paperback edition?
The key is to divide consumers into two groups, so that those who are willing to pay a high price do so and only those unwilling to pay a high price wait and buy the paperback. This means that significant time must be allowed to pass before the paperback is released. If consumers know that the paperback will be before the paperback is released. If consumers know that the paperback will be bound edition. ${ }^{10}$ On the other hand, if the publisher waits too long to bring out the paperback edition, interest will wane and the market will dry up. As a result, the paperback edition, interest will wane and the market will dry up. As a result,
publishers typically wait 12 to 18 months before releasing paperback editions. publishers typically wait 12 to 18 months betore releasing paperback editions.
What about price? Setting the price of the hardbound edition is difficult: Except for a few authors whose books always seem to sell, publishers have little Except for a few authors whose books always seem to sell, publishers have little
data with which to estimate demand for a book that is about to be published. Often, they can judge only from the past sales of similar books. But usually only Often, they can judge only from the past sales of similar books. But usually only
aggregate data are available for each category of book. Most new novels, thereaggregate data are available for each category of book. Most new novels, thereing to wait for the paperback edition have demands that are far more elastic than ing to wait for the paperback edition have demands that are far more elastic than
those of bibliophiles. It is not surprising, then, that paperback editions sell for so much less than hardbacks. ${ }^{11}$

11.4 THE TWO-PART TARIFF

two-part tariff Form of

 pricing in which consumers are usage fee.The two-part tariff is related to price discrimination and provides another means of extracting consumer surplus. It requires consumers to pay a fee up front for the right to buy a product. Consumers then pay an additional fee for each unit of the product they wish to consume. The classic example of this strategy is an amusement park. ${ }^{12}$ You pay an admission fee to enter, and you also

Mose
${ }^{10}$ Some consumers will buy the hardbound edition even if the paperback is already available because it is more durable and more attractive on a bookshelf. This must be taken into account when setting prices, but it is of secondary importance compared with intertemporal price discrimination. "Hardbound and paperback editions are often published by different companies. The author's agent auctions the rights to the two editions, but the contract for the paperback specifies a delay to protect the sales of the hardbound edition. The principle still applics, however. The length of the delay and the prices of the two editions are chosen to price discriminate intertemporally.
2This pricing strategy was first analyzed by Walter Oi, "A Disneyland Dilemma: Two-Part Tarifts
For
pay a certain amount for each ride. The owner of the park must decide whether to charge a high entrance fee and a low price for the rides or, alternatively, to admit people for free but charge high prices for the rides.
The two-part tariff has been applied in many settings: tennis and golf clubs you pay an annual membership fee plus a fee for each use of a court or round of goif); the rental of large mainframe computers (a flat monthly fee plus a fee for each unit of processing time consumed); telephone service (a monthly hook-up fee plus a fee for minutes of usage). The strategy also applies to the sale of products like safety razors (you pay for the razor, which lets you consume the blades that fit that brand of razor)
The problem for the firm is how to set the entry fee (which we denote by T) versus the usage fee (which we denote by P). Assuming that the firm has some market power, should it set a high entry fee and low usage fee, or vice versa? To solve this problem, we need to understand the basic principles involved.

Single Consumer Let's begin with the artificial but simple case illustrated in Figure 11.9. Suppose there is only one consumer in the market (or many consumers with identical demand curves). Suppose also that the firm knows this consumer's demand curve. Now, remember that the firm wants to capture a much consumer surplus as possible. In this case, the solution is straightforward Set the usage fee P equal to marginal cost and the entry fee T equal to the total consumer surplus for each consumer. Thus, the consumer pays T^{*} (or a bit less) to use the product, and $P^{*}=$ MC per unit consumed. With the fees set in this way, the firm captures all the consumer surplus as its profit.

Two Consumers Now suppose that there are two different consumers (or two groups of identical consumers). The firm, however, can set only one entry fee and one usage fee. It would thus no longer want to set the usage fee equal to marginal cost. If it did, it could make the entry fee no larger than the consumer surplus of the consumer with the smaller demand (or else it would lose that consumer), and this would not yield a maximum profit. Instead, the firm should set the usage fee above marginal cost and then set the entry fee equal to the remaining consumer surplus of the consumer with the smaller demand.

FGURE 11.9 Two-Part Tariff with a Single Consumer

The consumer has demand curve D. The firm maximizes profit by setting usage fee P equal to marginal cost and entry fee T^{*} equal to the entire surplus of the consumer.

FIGURE 11.10 Two-Part Tariff with Two Consumers
The profit-maximizing usage fee P^{*} will exceed marginal cost. The entry fee T^{*} is equal to the surplus of the consumer with the smaller demand. The resulting profit is $2 T^{*}+\left(P^{*}-M C\right)\left(Q_{1}+Q_{2}\right)$. Note that this profit is larger than twice the area of triangle

Figure 11.10 illustrates this. With the optimal usage fee at P^{*} greater than MC the firm's profit is $2 T^{*}+\left(P^{*}-\mathrm{MC}\right)\left(Q_{1}+Q_{2}\right)$. (There are two consumers, and each pays T^{*}.) You can verify that this profit is more than twice the area of triangle MC. To determine in addition to it mex in addition to its marginal cost) the demand carves D_{1} and D_{2}. It would then write down its profit as a function of P and T and choose the two prices that maximize this function. (See Exercise 10 for an example of how to do this.)

Many Consumers Most firms, however, face a variety of consumers with different demands. Unfortunately, there is no simple formula to calculate the optimal two-part tariff in this case, and some trial-and-error experiments might be required. But there is always a trade-off: A lower entry fee means more entrants and thus more profit from sales of the item. On the other hand s the entry fee becomes smaller and the number of entrants larger, the profit derived from the entry fee will fall. The problem, then, is to pick an entry fe hat results in the optimum number of entrants-that is, the fee that allows for naximum profit. In principle, we can do this by starting with a price for sale of the item P, finding the optimum entry fee T, and then estimating the resul ing profit. The price P is then changed, and the corresponding entry fee calcu lated, along with the new profit level. By iterating this way, we can approac
Figure 11.11 illustrates this principle. The firm's profit π is divided into two components, each of which is plotted as a function of the entry fee T, assuming a fixed sales price P. The first component, $\pi_{a^{\prime}}$, is the profit from the entry fee and equal to the revenue $n(T) T$, where $n(T)$ is the number of entrants. (Note that high T implies a small n.) Initially, as T is increased from zero, revenue $n(T) T$

FIGURE 11.11 Two-Part Tariff with Many Different Consumers

Total profit π is the sum of the profit from the entry fee π and the profit from sales π. Both π_{a} and π_{s} depend on T, the entry fee. Therefore

$$
\pi=\pi_{a}+\pi_{s}=n(T) T+(P-\mathrm{MC}) Q(n)
$$

where n is the number of entrants, which depends on the entry fee T, and Q is the rate of sales, which is greater the larger is n. Here T^{*} is the profit-maximizing entry fee given P. To calculate optimum values for P and T, we can start with a number for P, corresponding T recalculated, along with the new profit level
rises. Eventually, however, further increases in T will make n so small that $n(T) T$ falls. The second component, π_{s}, is the profit from sales of the item itself at price P and is equal to $(P-\mathrm{MC}) Q$, where Q is the rate at which entrants purchase the item. The larger the number of entrants n, the larger Q will be. Thus π_{s} falls When T is increased because a higher T reduces n.
Starting with a number for P, we determine the optimal (profit-maximizing) T^{*}. We then change P, find a new T^{*}, and determine whether profit is now higher or lower. This procedure is repeated until profit has been maximized.
Obviously, more data are needed to design an optimal two-part tariff than to choose a single price. Knowing marginal cost and the aggregate demand curve is not enough. It is impossible (in most cases) to determine the demand curve of every consumer, but one would at least like to know by how much individual demands differ from one another. If consumers' demands for your product are fairly similar, you would want to charge a price P that is close to marginal cost and make the entry fee T large. This is the ideal situation from the firm's point of view because most of the consumer surplus could then be captured. On the other hand, if consumers have different demands for your product, you would probably want to set P well above marginal cost and charge a lower entry fee T. in that case, however, the two-part tariff is a less effective means of capturing consumer surplus; setting a single price may do almost as well.
At Disneyland in California and Walt Disney World in Florida, the strategy is o charge a high entry fee and charge nothing for the rides. This policy makes sense because consumers have reasonably similar demands for Disney vacahons. Most people visiting the parks plan daily budgets (including expenditures for food and beverages) that, for most consumers, do not differ very much.

Firms are perpetually searching for innovative pricing strategies, and a few have devised and introduced a two-part tariff with a "twist"-the entry fee T entitles the customer to a certain number of free units. For example, if you buy a Gillette razor, several blades are usually included in the package. The monthly lease fee for a mainframe computer usually includes some free usage before
usage is charged. This twist lets the firm set a higher entry fee T without usage is charged. This twist lets the firm set a higher entry fee T without losing as many small customers. Because these small customers might pay little or nothing for usage under this scheme, the higher entry fee will capture their surplus without driving them out of the market, while also capturing more of the
surplus of the large customers. surplus of the large customers.

EXAMPLE 11.4

Polaroid Cameras

In 1971, Polaroid introduced its SX-70 camera. This camera was sold, not leased, to consumers. Nevertheless, because film was sold sumers. Neverthely, Polaroid could apply a two-part separately, Polaroid could apply a two-part
tariff to the pricing of the SX-70. Let's see how this pricing strategy gave Polaroid greater profits than would have been possigreater profits than would have been possi-
ble if its camera had used ordinary roll film, and how Polaroid might have determined, the optimal prices for each part of its two-part tariff.
Why did the pricing of Polaroid's cameras and film involve a two-part tariff? Because Polaroid had a monopoly on both its camera and the film, only Polaroid film could be used in the camera. Consumers bought the camera and film to take instant pictures: The camera was the "entry fee" that provided access to the consumption of instant pictures, which was what consumers ultimately demanded ${ }^{13}$ In this sense, the price of the camera was like the entry fee at an amusement park. However, while the marginal cost of allowing someone entry into the park is close to zero, the marginal cost of producing a camera is significantly above zero, and thus had to be taken into account when designing the two-part tariff
It was important that Polaroid have a monopoly on the film as well as the camera. If the camera had used ordinary roll film, competitive forces would have pushed the price of film close to its marginal cost. If all consumers had identical demands, Polaroid could still have captured all the consumer surplus by setting a high price for the camera (equal to the surplus of each consumer). But in practice, consumers were heterogeneous, and the optimal two-part tariff required a price for the film well above marginal cost.
How should Polaroid have selected its prices for the camera and film? It could have begun with some analytical spadework. Its profit is given by

$$
\pi=P Q+n T-C_{1}(Q)-C_{2}(n)
$$

where P is the price of the film, T the price of the camera, Q the quantity of film sold, n the number of cameras sold, and $C_{1}(Q)$ and $C_{2}(n)$ the costs of producing film and cameras, respectively.

[^2]Polaroid wanted to maximize its profit π, taking into account that Q and n depend on P and T. Given a heterogeneous base of potential consumers, managers might initially have guessed at this dependence on P and T, drawing on ing of demand and of how Q and n, they may have gotten a better understandfrom the firm's sales experien. They may have found kney accumulated data from the firm sales experce. They may have found knowledge of C_{1} and C_{2} easier to come by, perhaps from engineering and statistical studies (as discussed in Chapter 7)
Given some initial guesses or estimates for $Q(P), n(T), C_{1}(Q)$, and $C_{2}(n)$, Polaroid could have calculated the profit-maximizing prices P and T. It could also have determined how sensitive these prices were to uncertainty over demand and cost. This knowledge could have provided a guideline for trial-and-error pricing experiments. Over time these experiments would also have told Polaroid more In demand and cost, so that it could refine its two-part tariff accordingly. ${ }^{14}$
In 1999, Polaroid introduced its I-Zone camera and film, which takes match-book-size pictures. The camera was priced at $\$ 25$ and the film at $\$ 7$ per pack. In 200, Pold for $\$ 30$ to $\$ 50$ and used Polaroid 600 film, which was priced at about $\$ 14$ per pack of 10 pictures. Polaroid's higher-end Spectra cameras sold for $\$ 60$ to over $\$ 100$ and used Spectra film, priced at about siderable heterogeneity of consumere well above marginal cost, reflecting the considerable heterogeneity of consumer demands.

EXAMPLE 11.5

Pricing Cellular Phone Service

Most telephone service is priced using a twopart tariff: a monthly access fee, which may include some free minutes, plus a per-minute harge for additional minutes. This is also rue for cellular phone service, which has grown explosively, both in the United States and around the world. In the case of cellular service, providers have taken the two-part ariff and turned it into an art form.
In most parts of the United States, consumers can choose among four national network providers-Verizon, T-Mobile, AT\&T, and Sprint. These providers compet mong themselves for customers, but each has some market power. This marke power arises in part from oligopolistic pricing and output decisions, as we will in ith ing they must typically make men
. Most service providers impose a penalty upwards of $\$ 200$ for early termination.
Because providers have market power, they must think carefully about profit maximizing pricing strategies. The two-part tariff provides an ideal means by Thble 113 phers can ture it into profit.
Table 11.3 shows cellular rate plans (for 2007) offered by Verizon Wireless T-Mobile, and AT\&T. The plans are structured in similar ways, so let's focus on

[^3]| Anytime
 Minutes | Monthly Access Fee | Unlimited Nights/ Weekends | Per-Minute Rate After Allowance |
| :---: | :---: | :---: | :---: |
| A. Verizon: America's Choice Basic | | | |
| 450 | \$39.99 | included | \$0.45 |
| 900 | \$59.99 | Included | \$0.40 |
| 1350 | \$79.99 | Included | \$0.35 |
| 2000 | \$99.99 | Included | \$0.25 |
| 4000 | \$149.99 | Included | \$0.25 |
| 6000 | \$199.99 | Included | \$0.20 |
| B. T-Mobile Individual Plans | | | |
| 300 | \$29.99 | Unlimited weekends, not weeknights | \$0.40 |
| 1000 | \$39.99 | Included | \$0.40 |
| 1500 | \$59.99 | Included | \$0.40 |
| 2500 | \$99.99 | Included | \$0.30 |
| 5000 | \$129.99 | Included | \$0.30 |
| C. AT\&T Individual Plans | | | |
| 450 | \$39.99 | Includes 5000 minutes | \$0.45 |
| 900 | \$59.99 | included | \$0.40 |
| 1350 | \$79.99 | - included | \$0.35 |
| 2000 | \$99.99 | Included | \$0.25 |
| 4000 | \$149.99 | included | \$0.25 |
| 6000 | \$199.99 | \therefore Included | \$0.20 |
| Note: T-Mobile plans do not include any mobile-to-mobile minutes; for T-Mobile these calis are charged from the Anytime Minutes. All other plans include unlimited mobile to mobile minutes. | | | |

the Verizon plan. The least expensive Verizon plan has a monthly access charge of $\$ 39.99$ and includes 450 "anytime" minutes (i.e., 450 minutes of talk time pe month that can be used at any hour of the day). The plan also includes an unlimited amount of talk time during nights and weekends (periods when demand is generally much lower). A subscriber who uses more than the 450 "anytime" min utes is charged $\$ 0.45$ for each additional minute. A customer who uses her cell phone more frequently could sign up for a more expensive plan, e.g., one that costs $\$ 59.99$ per month but includes 900 "anytime" minutes and a charge of $\$ 0.40$ for additional minutes. And if you, the reader, use your cell phone constantly (and thus have time for little else), you could sign up for a plan that includes 6000 "anytime" minutes, at a monthly cost of \$199.99.
Why do cellular phone providers offer several different types of plans and options within each? Why don't they simply offer a single two-part tariff with a monthly access charge and a per-minute usage charge? Offering several different plans and options allows companies to combine third-degree price discrimination
with the two-part tariff. The plans are structured so that consumers sort them selves into groups based on their plan choices. A different two-part tariff is then applied to each group.

To see how this sorting works, consider the plan choices of different types of consumers. People who use a cell phone only occasionally will want to spend as little as possible on the service and will choose the least expensive plan (with the fewest "anytime" minutes). The most expensive plans are best suited to very heavy users (perhaps a salesperson who travels extensively and makes call throughout the day), who will want to minimize their per-minute cost. Other plans are better suited to consumers with moderate calling needs.
Consumers will choose a plan that best matches their needs. Thus they will sort themselves into groups, and the consumers in each group will be rela Wively homogeneous in terms of demands for cellular service. Remember that the two-part tariff works best when consumers have identical or very similar demands. (Recall from Figure 11.9 that with identical consumers, the two-part tariff can be used to capture all consumer surplus.) Creating a situation in which consumers sort themselves into groups in this way makes best use of th two-part tariff.

*11.5 BUNDIING

You have probably seen the 1939 film Gone with the Wind. It is a classic that is nearly as popular now as it was then. ${ }^{15}$ Yet we would guess that you have is nearly as popular now as it was then. ${ }^{5}$ Yet we would guess that you have
not seen Getting Gertie's Garter, a flop that the same company (MGM, not seen Getting Gertie's Garter, a flop that the same company (MGM, a division of Loews) also distributed. And we would also guess that you did not kative way. ${ }^{16}$
Movie theaters that leased Gone with the Wind also had to lease Getting Gertie's Garter. (Movie theaters pay the film companies or their distributors a daily or weekly fee for the films they lease) In other words, these two films daily or weekly fee for the films they lease.) In other words, these two films
You might think that the answer is Wbvious: Gone with the Wind was a great film and Gertie was a lousy film, so bundling the two forced movie the great film a Bertic But this onswer doen't make lease Gertie. But this answer doesn't make economic sense. Suppose a theater's reservation price (the maximun price will pay) for Gone with the Wind is , Then the most it would pay for both films is $\$ 15,000$, whether it takes the films individu-
ally or as a package. ally or as a package

Bundling makes sense when customers have heterogeneous demands and when the firm cannot price discriminate. With films, different movie theaters serve different groups of patrons and therefore different theaters may face different demands for films. For example, different theaters might appeal to different age groups, who in turn have different relative film preferences.

[^4]
-bundling Practice of selling two or more products as a ing two o package.

To see how a film company can use customer heterogeneity to its advantage, suppose that there are two movie theaters and that their reservation prices for our two films are as follows:

	Gone with the Wind	Getting Gertie's Garter
Theater A	$\$ 12,000$	$\$ 3000$
Theater B	$\$ 10,000$	$\$ 4000$

If the films are rented separately, the maximum price that could be charged for Wind is $\$ 10,000$ because charging more would exclude Theater B. Similarly, the maximum price that could be charged for Gertie is $\$ 3000$. Charging these the maximum price that could be charged for Gertie is $\$ 3000$. Charging these
two prices would yield $\$ 13,000$ from each theater, for a total of $\$ 26,000$ in revtwo prices would yield $\$ 13,000$ from each theater, for a total of $\$ 26,000$ in rev-
enue. But suppose the films are bundled. Theater A values the pair of films at enue. But suppose the films are bundled. Theater A values the pair of films at $\$ 4000$). Therefore, we can charge each theater $\$ 14,000$ for the pair of films and $\$ 4000$). Therefore, we can charge each theater $\$ 14,000$ for the pair of films and
earn a total revenue of $\$ 28,000$. Clearly, we can earn more revenue ($\$ 2000$ more) earn a total revenue of
by bundling the films.

Relative Valuations
Why is bundling more profitable than selling the films separately? Because (in this example) the relative valuations of the two films are reversed. In other words, although both theaters would pay much more for Wind than for Gertie, Theater A would pay more than Theater B for Wind ($\$ 12,000 \mathrm{vs} . \$ 10,000$), while Theater B would pay more than Theater A for Gertic ($\$ 4000 \mathrm{vs}$. $\$ 3000$). In technical terms, we say that the demands are negatively correlated-the customer willing to pay the most for Wind is willing to pay the least for Gertie. To see why this is critical, suppose demands were positively correlated-that is, Theater A would pay more for both films:

	Gone with the Wind	Getting Gertie's Garter
Theater A	$\$ 12,000$	$\$ 4000$
Theater B	$\$ 10,000$	$\$ 3000$

The most that Theater A would pay for the pair of films is now $\$ 16,000$, but the most that Theater B would pay is only $\$ 13,000$. Thus if we bundled the films, the maximum price that could be charged for the package is $\$ 13,000$, yielding a total revenue of $\$ 26,000$, the same as by renting the films separately
Now, suppose a firm is selling two different goods to mately
Now, suppose a firm is selling two different goods to many consumers. To analyze the possible advantages of bundling, we will use a simple diagram to describe the preferences of the consumers in terms of their reservation prices and their consumption decisions given the prices charged. In Figure 11.12 the horizontal axis is r_{1}, which is the reservation price of a consumer for good 1 , and he vertical axis is r_{2}, which is the reservation price for good 2. The figure shows $\$ 3.25$ for good 1 and up to $\$ 6$ for good 2 ; consumer B is willing to pay up to $\$ 8.25$ for good 1 and up to $\$ 3.25$ for good 2 ; and consumer C is willing to pay to to $\$ 8.25$ for good 1 and up to $\$ 3.25$ for good 2; and consumer C is willing to pay up to $\$ 10$ for each of the goods. In general, the reservation prices for any number of con-
sumers can be plotted this way. sumers can be plotted this way.
Suppose that there are many consumers and that the products are sold separately, at prices P_{1} and P_{2}, respectively. Figure 11.13 shows how consumers can

FIGURE 11.12 Reservation Prices

Reservation prices r_{1} and r_{2} for two goods are shown for three consumers labeled A B, and C. Consumer A is willing to pay up to $\$ 3.25$ for good 1 and up to $\$ 6$ for good 2
be divided into groups. Consumers in region I of the graph have reservation prices that are above the prices being charged for each of the goods, so they will buy both goods. Consumers in region II have a reservation price for good 2 that is above P_{2}, but a reservation price for good 1 that is below P_{1}; they will buy

FIGURE 11.13 Consumption Decisions When Products Are Sold Separately
The reservation prices of consumers in region I exceed the prices P_{1} and P_{2} for the two goods, so these consumers buy both goods. Consumers in regions II and IV buy only one of the goods, and consumers in region III buy neither good.

FIGURE 11.14 Consumption Decisions When Products Are Bundled

Compare the sum of their reservation prices $r_{1} r_{2}$, with the price of the bundle P_{B}. They buy the bundle only if $r_{1}+r_{2}$ is at least as large as P_{B}.
only good 2. Similarly, consumers in region IV will buy only good 1. Finally, consumers in region III have reservation prices below the prices charged for each of the goods, and so will buy neither.
Now suppose the goods are sold only as a bundle, for a total price of P_{B}. We can then divide the graph into two regions, as in Figure 11.14. Any given consumer will buy the bundle only if its price is less than or equal to the sum of that consumer's reservation prices for the two goods. The dividing line is therefore the equation $P_{B}=r_{1}+r_{2}$ or, equivalently, $r_{2}=P_{B}-r_{1}$. Consumers in region I have reservation prices that add up to more than P_{B}, so they will buy the bundle. Consumers in region II, who have reservation prices that add up to less than P_{B}, will not buy the bundle
Depending on the prices, some of the consumers in region II of Figure 11.14 might have bought one of the goods if they had been sold separately. These consumers are lost to the firm, however, when it sells the goods only as a bundle. The firm, then, must determine whether it can do better by bundling.
In general, the effectiveness of bundling depends on the extent to which demands are negatively correlated. In other words, it works best when consumers who have a high reservation price for good 1 have a low reservation price for good 2, and vice versa. Figure 11.15 shows two extremes. In part (a), each point represents the two reservation prices of a consumer. Note that the demands for the two goods are perfectly positively correlated-consumers with a high reservation price for good 1 also have a high reservation price for good 2 . If the firm bundles and charges a price $P_{B}=P_{1}+P_{2}$, it will make the same profit that it would make by selling the goods separately at prices P_{1} and P_{2}. In part (b), on the other hand, demands are perfectly negatively correlated-a higher reservation price for good 2 implies a proportionately lower one for good 1 . In this case, bundling is the ideal strategy. By charging the price P_{B} the firm can capture all the consumer surplus.

FIGURE 11.15 Reservation Prices
In (a), because demands are perfectly positively correlated the firm does not gain by bunding: It would eme the profit by selling the goods separately. In (b), demands are perfectly negatively correlated. Bundling is the ideal strategy all the consumer surplus can be extracted.

Figure 11.16, which shows the movie example that we introduced at the beginning of this section, illustrates how the demands of the two movie theaters are negatively correlated. (Theater A will pay relatively more for Gone with the Wind, but Theater B will pay relatively more for Getting Gertie's Garter.) This makes it more profitable to rent the films as a bundle priced at $\$ 14,000$.

FIGURE 11.16 Movie Example
Consumers A and B are two movie theaters. The diagram shows their reservation Consumers A and B are two movie theaters. The diagram shows their reservation
prices for the films Gone with the Wind and Getting Gertie's Garter. Because the demands are negatively correlated, bundling pays.

Mixed Bundling

mixed bundling Selling two or more goods both as
package and individually.
"pure bundling Selling

So far, we have assumed that the firm has two options: to sell the goods either separately or as a bundle. But there is a third option, called mixed bundling. As the name suggests, the firm offers its products both separately and as a bundle, with a package price below the sum of the individual prices. (We use the term pure bundling to refer to the strategy of selling the products only as a bundle.) Mixed bundling is often the ideal strategy when demands are only somewhat negatively correlated and/or when marginal production costs are significant. (Thus far, we have assumed that marginal production costs are zero.)
In Figure 11.17, mixed bundling is the most profitable strategy. Although demands are perfectly negatively correlated, there are significant marginal costs. (The marginal cost of producing good 1 is $\$ 20$, and the marginal cost of producing good 2 is $\$ 30$.) We have four consumers, labeled A through D. Now, let's compare three strategies:

1. Selling the goods separately at prices $P_{1}=\$ 50$ and $P_{2}=\$ 90$
2. Selling the goods only as a bundle at a price of $\$ 100$
3. Mixed bundling, whereby the goods are offered separately at prices $P_{1}=P_{2}=$ $\$ 89.95$, or as a bundle at a price of $\$ 100$.

FIGURE 11.17 Mixed versus Pure Bundling

With positive marginal costs, mixed bundling may be more profitable than pure bundling, Consumer A has a reservation price for good 1 that is below marginal cos c_{1}, and consumer D has a reservation price for good 2 that is below marginal cost c_{2}
With mixed bundling, consumer A is induced to buy only good 2 , and consumer D is induced to buy only good 1 , thus reducing the firm's cost.

TABLE 11.4 Bundling Example

	\mathbf{P}_{1}	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{B}}$	Profit
Sold separately	$\$ 50$	$\$ 90$	-	$\$ 150$
Pure bundling	-	-	$\$ 100$	$\$ 200$
Mixed bundling	$\$ 89.95$	$\$ 89.95$	$\$ 100$	$\$ 229.90$

Table 11.4 shows these three strategies and the resulting profits. (You can try other prices for P_{1}, P_{2}, and P_{B} to verify that those given in the table maximize profit for each strategy.) When the goods are sold separately, only consumers B , and D buy good 1, and only consumer A buys good 2 ; total profit is $3(\$ 50$ $520)+1(\$ 90-\$ 30)=\$ 150$. With pure bundling, all four consumers buy the bundle for $\$ 100$, so that total profit is $4(\$ 100-\$ 20-\$ 30)=\$ 200$. As we should expect, pure bundling is better than selling the goods separately because con sumers' demands are negatively correlated. But what about mixed bundling? Consumer D buys only good 1 for 58995 , consumer A buys only goed 2 for 589.95 , and consumers B and C buy the bundl for $\$ 100$ Tonl prood is $(589.95-\$ 20)+(\$ 89.95-\$ 30)+2(\$ 100-\$ 20-\$ 30)=\$ 229.90 .17$
In this case, mixed bundling is the most profitable strategy, even though demands are perfectly negatively correlated (i.e., all four consumers have reser vation prices on the line $r_{2}=100-r_{1}$). Why? For each good, marginal production enst exceeds the reservation price of one consumer. For example, consumer A ha reservation price of $\$ 90$ for good 2 but a reservation price of only $\$ 10$ for good Because the cost of producing a unit of good 1 is $\$ 20$, the firm would prefer that consumer A buy only good 2, not the bundle. It can achieve this goal by offering good 2 sepa. bre

Mire
Mixed bundling would not be the preferred strategy in this example if marginal costs were zero. In that case, there would be no benefit in excluding consumer A from buy Ito you to demonstrate this (see Exercise 12).
If marginal costs are zero, mixed bundling can still be more profitable than pure bundling if consumers' demands are not perfectly negatively correlated. (Recall that in Figure 11.17, the reservation prices of the four consumers are perfectly negatively correlated.) This is illustrated by Figure 11.18, in which we have modified the example of Figure 11.17. In Figure 11.18, marginal costs are zero, but the reservation prices for consumers B and C are now higher. Once again, let's compare three strategies: selling the two goods separately, pure bundling, and mixed bundling.
Table 11.5 shows the optimal prices and the resulting profits for each strategy. (Once again, you should try other prices for P_{1}, P_{2}, and P_{B} to verify that those given in the table maximize profit for each strategy.) When the goods are sold
${ }^{1 /}$ Note that in the mixed bundling strategy, goods 1 and 2 are priced at 589.95 rather than at 590 . 1 they were priced at 590 , consumers A and D would be indifferent between buying a single good and they were priced at 590 , consumers A and D would be indifferent between
buying the bundle, and if they buy the bundle, total profit will be lower.
${ }^{1}$ SSometimes a firm with monopoly power will find it profitable to bundle its product with the prod uct of another firm: see Richard L. Schmalensee, "Commodity Bundling by Single-Produc Monopolies," Iournal of Law and Econonnics 25 (April 1982): $67-71$. Bundling can also be profitable When the products are substitutes or complements. Sce Arthur Lewbel, "Bundling of Substitutes or
Complements," International lournal of Industrial Orsamisation 3 (1985): 101-7.

FIGURE 11.18 Mixed Bundling with Zero Marginal Costs
If marginal costs are zero, and if consumers' demands are not perfectly negatively correlated, mixed bundling is still more profitable than pure bundling. In this example, consumers B and C are willing to pay $\$ 20$ more for the bundle than are consumers A and D. With pure bundling, the price of the bundle is $\$ 100$. With mixed bundling, the price of the bundle can be increased to $\$ 120$ and consumers A and D can still be charged $\$ 90$ for a single good.
separately, only consumers C and D buy good 1 , and only consumers A and B buy good 2; total profit is thus $\$ 320$. With pure bundling, all four consumers buy the bundle for $\$ 100$, so that total profit is $\$ 400$. As expected, pure bundling is better than selling the goods separately because consumers' demands are nega tively correlated. But mixed bundling is better still. With mixed bundling, consumer A buys only good 2 , consumer D buys only good 1 , and consumers B and C buy the bundle at a price of $\$ 120$. Total profit is now $\$ 420$.
Why does mixed bundling give higher profits than pure bundling even hough marginal costs are zero? The reason is that demands are not perfectly negatively correlated: The two consumers who have high demands for both goods (B and C) are willing to pay more for the bundle than are consur A and D. With mixed bundling, therefore, we can increase the price of the bundle (from $\$ 100$ to $\$ 120$), sell this bundle to two consumers, and charge the remaining consumers $\$ 90$ for a single good.

TABLE 11.5	Mixed Bundling with Zero Marginal Costs			
$\mathbf{P}_{\mathbf{1}}$	$\mathrm{P}_{\mathbf{2}}$	$\mathrm{P}_{\mathbf{B}}$	Profit	
Sell separately	$\$ 80$	$\$ 80$	-	$\$ 320$
Pure bundling	-	-	$\$ 100$	$\$ 400$
Mixed bundling	$\$ 90$	$\$ 90$	$\$ 120$	$\$ 420$

Bundling in Practice
Bundling is a widely used pricing strategy. When you buy a new car, for example you can purchase such options as power windows, power seats, or a sunroof separately, or you can purchase a "luxury package" in which these options are bundled. Manufacturers of luxury cars (such as Lexus, BMW, or Infiniti) tend to include such "options" as standard equipment; this practice is pure bundling. For more moderately priced cars, however, these items are optional, but are usually offered as part of a bundle. Automobile companies must decide which items to include in such bundles and how to price them
Another example is vacation travel. If you plan a vacation to Europe, you might make your own hotel reservations, buy an airplane ticket, and order a rental car. Alternatively, you might buy a vacation package in which airfare, land arrangements, hotels, and even meals are all bundled together.
Still another example is cable television. Cable operators typically offer a basic service for a low monthly fee, plus individual "premium" channels, such as Cinemax Home Box Office, and the Disney Channel, on an individual basis for additiona monthly fees. However, they also offer packages in which two or more premium channels are sold as a bundle. Bundling cable channels is profitable because demands are negatively correlated. How do we know that? Given that there are nily 24 hours in a day, the time that a consumer spends watching HBO is time that cannot be spent watching the Disney Channel. Thus consumers with high reservation prices for some channels will have relatively low reservation prices for others.

FIGURE 11.19 Mixed Bundling in Practice
The dots in this figure are estimates of reservation prices for a representative sample of consumers. A company could first choose a price for the bundle, $P_{\text {, }}$ such that a diagonal line connecting these prices passes roughly midway through the dots. The company could then try individual prices P_{1} and P_{2}. Given P_{1}, P_{2}, and P_{B}, profits can be calculated for this sample of consumers. Managers can then raise or lower P_{1}, P_{2} and P_{B} and see whether the new pricing leads to higher profits. This procedure is repeated until total profit is roughly maximized.

How can a company decide whether to bundle its products, and determine the profit-maximizing prices? Most companies do not know their customers' the profit-maximizing prices? Most companies do not know their customers'
reservation prices. However, by conducting market surveys, they may be able to reservation prices. However, by conducting market surveys, this may be abie to
estimate the distribution of reservation prices, and then use this information to design a pricing strategy.
This is illustrated in Figure 11.19. The dots are estimates of reservation prices or a representative sample of consumers (obtained, say, from a market survey). The company might first choose a price for the bundle, P_{B}, such that a diagonal line connecting these prices passes roughly midway through the dots in the figure. It could then try individual prices P_{1} and P_{2}. Given P_{1}, P_{2}, and P_{B}, we can separate consumers into four regions, as shown in the figure. Consumers in Region I buy nothing (because $r_{1}<P_{1}, r_{2}<P_{2}$, and $r_{1}+r_{2}<P_{B}$). Consumers in Region II buy the bundle (because $r_{1}+r_{2}>P_{B}$). Consumers in Region III buy only good 2 (because $r_{2}>P_{2}$ but $r_{1}<P_{B}-P_{2}$). Likewise, consumers in Region IV buy only good 1. Given this distribution, we can calculate the resulting profits. We can then raise or lower P_{1}, P_{2} r and P_{B} and see whether doing so leads to higher profits. This can be done repeatedly (on a computer) until prices are found that roughly maximize total profit.

XAMPLE 11.6

The Complete Dinner versus à la Carte: A Restaurant's Pricing Problem

Many restaurants offer both complete dinners and à la carte menus. Why? Most customers go and a la carte menus. Why? Most customers go out to eat knowing roughly how much they
are willing to spend for dinner (and choose are willing to spend for dinner (and choose
the restaurant accordingly). Diners, however, the restaurant accordingly). Diners, however,
have different preferences. For example, some have different preferences. For example, some value appetizers highly but could happily
skip dessert. Others attach little value to the appetizer but regard dessert as essential. And some customers attach moderate valappetizer but regard dessert as essential. And some customers ach moderate values to both appetizers and desserts. What pricing strategy lets the restaurant capture as much consumer surplus as possi

For a restaurant, mixed bundling means offering both complete dinners (the appetizer, main course, and dessert come as a package) and an à la carte menu (the customer buys the appetizer, main course, and dessert separately). This strategy allows the à la carte menu to be priced to capture consumer surplus from customers who value some dishes much more highly than others. (Such customers would correspond to consumers A and D in Figure 11.17 (page 418).) At the same time, the complete dinner retains those customers who have lower variations in their reservation prices for different dishes (e.g., customers who attach moderate values to both appetizers and desserts)
For example, if the restaurant expects to attract customers willing to spend about $\$ 20$ for dinner, it might charge about $\$ 5$ for appetizers, $\$ 14$ for a typical main dish, and $\$ 4$ for dessert. It could also offer a complete dinner, which includes an appetizer, main course, and dessert, for $\$ 20$. Then, the customer who loves dessert but couldn't care less about an appetizer will order only the main dish and dessert, and spend $\$ 18$ (saving the restaurant the cost of preparing an appetizer). At the same time, another customer who attaches a moderate value (say, $\$ 3$ or $\$ 3.50$) to both the appetizer and dessert will buy the complete dinner.

TABLE 11.6 Mixed Bundling at McDonald's (2007)

Individual Item	Price	Meal (Includes Soda and Fries)	Unbundled Price	Price of Bundle	Savings
Chicken Sandwich	$\$ 3.49$	Chicken Sandwich	$\$ 7.77$	$\$ 5.89$	$\$ 1.88$
Filet-O-Fish	$\$ 2.59$	Filet-O-Fish	$\$ 6.87$	$\$ 4.89$	$\$ 1.98$
Big Mac	$\$ 2.99$	Big Mac	$\$ 7.27$	$\$ 5.29$	$\$ 1.98$
Ouarter Pounder	$\$ 3.09$	Quarter Pounder	$\$ 7.37$	$\$ 5.39$	$\$ 1.98$
Double Quarter Pounder	$\$ 3.69$	Double Quarter Pounder	$\$ 7.97$	$\$ 5.99$	$\$ 1.98$
10-piece Chicken McNuggets	$\$ 3.89$	10-piece Chicken McNuggets	$\$ 8.17$	$\$ 6.19$	$\$ 1.98$
Large French Fries	$\$ 2.29$				
Large Soda	$\$ 1.99$				

You don't have to go to an expensive French restaurant to experience mixed bundling. Table 11.6 shows the prices of some individual items at a Boston-area McDonald's, as well as the prices of "super meals" that include meat or fish items along with a large order of French fries and a large soda. Note that you can buy a Big Mac, a large fries, and a large soda separately for a total of $\$ 7.27$, or you can buy them as a bundle for $\$ 5.29$. You say you don't care for fries? Then just buy the Big Mac and large soda separately, for a total of $\$ 4.98$, which is $\$ 0.31$ less than the price of the bundle.
Unfortunately for consumers, perhaps, creative pricing is sometimes more important than creative cooking for the financial success of a restaurant. Successful restaurateurs know their customers' demand characteristics and use that knowledge to design a pricing strategy that extracts as much consumer surplus as possible.

Tying

Tying is a general term that refers to any requirement that products be bought or sold in some combination. Pure bundling is a common form of tying, but yying can also take other forms. For example, suppose a firm sells a product such as a copying machine) that requires the consumption of a secondary product (such as paper). The consumer who buys the first product is also required to buy the secondary product from the same company. This requirement is usually imposed through a contract. Note that this is different from the examples of bundling discussed earlier. In those examples, the consumer might have been happy to buy just one of the products. In this case, however, the first product is useless without access to the secondary product.
Why might firms use this kind of pricing practice? One of the main benefits of tying is that it often allows a firm to meter demand and thereby practice price discrimination more effectively. During the 1950s, for example, when Xerox had a monopoly on copying machines but not on paper, customers who leased Xerox copiers also had to buy Xerox paper. This allowed Xerox to meter consumption (customers who used a machine intensively bought more paper), and thereby apply a two-part tariff to the pricing of its machines. Also during the 1950s, IBM required customers who leased its mainframe computers to us paper computer cards made only by IBM. By pricing cards well above marginal

- tying Practice of requiring a customer to purchase one

 anothecost, IBM was effectively charging higher prices for computer usage to cusomers with larger demands. ${ }^{19}$
Tying can also be used to extend a firm's market power. As we discussed in Example 10.6 (page 385), in 1998 the Department of Justice brought suit against Microsoft, claiming that the company had tied its Internet Explorer Web browser to its Windows 98 operating system in order to maintain its monopoly power in the market for PC operating systems.
Tying can have other uses. An important one is to protect customer goodwill connected with a brand name. This is why franchises are often required to purchase inputs from the franchiser. For example, Mobil Oil requires its service stations to sell only Mobil motor oil, Mobil batteries, and so on. Similarly, until recently, a McDonald's franchisee had to purchase all materials and suppliesfrom the hamburgers to the paper cups-from McDonald's, thus ensuring product uniformity and protecting the brand name. ${ }^{20}$

*11.6 ADVERTISING

We have seen how firms can utilize their market power when making pricing decisions. Pricing is important for a firm, but most firms with market power have another important decision to make: how much to advertise. In this sec tion, we will see how firms with market power can make profit-maximizing advertising decisions, and how those decisions depend on the characteristics of demand for the firm's product. ${ }^{21}$
For simplicity, we will assume that the firm sets only one price for its product We will also assume that having done sufficient market research, it knows how its quantity demanded depends on both its price P and its advertising expendi tures in dollars A; that is, it knows $Q(P, A)$. Figure 11.20 shows the firm's demand and costcurves with and without advertising. AR and MR are the firm 's average average and merinel cost when It pros not advertise, and $A C$ and $M C$ are its average and marginal cost curves. It produces a quantity Q_{0}, where $M R=M C$ and receives a price P_{0}. Its profit per unit is the difference between P_{0} and average cost, so its total profit π_{0} is given by the gray-shaded rectangle.
Now suppose the firm advertises. This causes its demand curve to shift out and to the right; the new average and marginal revenue curves are given by $A R^{\prime}$ and MR'. Advertising is a fixed cost, so the firm's average cost curve rises (to AC). Marginal cost, however, remains the same. With advertising, the firm produces Q_{1} (where $\mathrm{MR}^{\prime}=\mathrm{MC}$) and receives a price P_{1}. Its total profit π_{1}, given by the purple-shaded rectangle, is now much larger.
Although the firm in Figure 11.20 is clearly better off when it advertises, the fig. ure does not help us determine how much advertising it should do. It must choose its price P and advertising expenditure A to maximize profit, which is now given by:

$$
\pi=P Q(P, A)-C(Q)-A
$$

${ }^{19}$ Antitrust actions ultimately forced IBM to discontinue this pricing practice.
${ }^{2}$ In some cases, the courts have ruled that tying is not necessary to protect customer goodwill and is
anticompetitive. Today, a McDonald's franchisee can buy supplies from any McDond' anticompetitive Today, a McDonald's franchisee can buy supplies from any McDonald's-approved
source. For a discussion of some of the antitrust issues involved in franchise tying, see Benjamin Klein and
and Lester E. Saft, "The Law and Economics of Franchise Tying Contracts,", Iournal of Law and
Economics 28 (May 1985). $345-6$. Econontics 28 (May 1985): 345-61.
${ }^{{ }^{21}}{ }^{1}$ A perfectly competitive firm has little reason to advertise: By definition it can sell as much as it produces at a market price that it takes as given. That is why it would be unusual to see a producer

FIGURE 11.20 Effects of Advertising

AR and MR are average and marginal revenue when the firm doesn't advertise, and $A C$ and MC are average and marginal cost. The firm produces Q_{0} and receives a price P_{0}. Its total profit π_{0} is given by the gray-shaded rectangle If the dvertises, its average and marginal revenue curves shift to the right. Average cost rises (to AC^{\prime}) but marginal cost remains the same. The firm now produces Q_{1} (where $\mathrm{MR}^{\prime}=\mathrm{MC}$), and receives a price $P_{1} . \mathrm{It}$ total profit, π_{1}, is now larger

Given a price, more advertising will result in more sales and thus more revenue. But what is the firm's profit-maximizing advertising expenditure? You might be tempted to say that the firm should increase its advertising expenditures until the last dollar of advertising just brings forth an additional dollar of revenuethat is, until the marginal revenue from advertising, $\Delta(P, Q) / \Delta A$, is just equal to 1 . But as Figure 11,20 shows, this reasoning omits an important element. Remember that advertising leads to increased output (in the figure, output increased from Q_{0} to Q_{1}). But increased output in turn means increased production costs, and this must be taken into account when comparing the costs and benefits of an extra dollar of advertising
The correct decision is to increase advertising until the marginal revenue from an additional dollar of advertising, $\mathrm{MR}_{\text {des }}$ just equals the full marginal cost of that advertising. That full marginal cost is the sum of the dollar spent directly on the advertising and the marginal production cost resulting from the increased sales that advertising brings about. Thus the firm should advertise up to the point that

$$
\mathrm{MR}_{\mathrm{Ads}}=P \frac{\Delta \mathrm{Q}}{\Delta A}=1+\mathrm{MC} \frac{\Delta Q}{\Delta A}
$$

$$
=\text { full marginal cost of advertising }
$$

This rule is often ignored by managers, who justify advertising budgets by comparing the expected benefits (i.e., added sales) only with the cost of the advertising. But additional sales mean increased production costs that must also be taken into account. ${ }^{22}$

A Rule of Thumb for Advertising
Like the rule $M R=M C$, equation (11.3) is sometimes difficult to apply in prac tice. In Chapter 10, we saw that $\mathrm{MR}=\mathrm{MC}$ implies the following rule of thumb for pricing: $(P-M C) / P=-1 / E_{D}$, where E_{D} is the firm's price elasticity of demand. We can combine this rule of thumb for pricing with equation (11.3) to obtain a rule of thumb for advertising

First, rewrite equation (11.3) as follows:

$$
(P-\mathrm{MC}) \frac{\Delta Q}{\Delta A}=1
$$

Now multiply both sides of this equation by $A / P Q$, the advertising-to-sales ratio:

$$
\frac{P-\mathrm{MC}}{P}\left[\frac{A}{Q} \frac{\Delta Q}{\Delta A}\right]=\frac{A}{P Q}
$$

The term in brackets, $(A / Q)(\Delta Q / \Delta A)$, is the advertising elasticity of demand, the percentage change in the quantity demanded that results from a 1 -percent increase in advertising expenditures. We will denote this elasticity by E_{A}. Because $(P-\mathrm{MC}) / P$ must equal $-1 / E_{p}$, we can rewrite this equation as follows:
$A / P Q=-\left(E_{A} / E_{P}\right)$
Equation (11.4) is a rule of thumb for advertising. It says that to maximize profit, the firm's advertising-to-sales ratio should be equal to minus the ratio of the advertising and price elasticities of demand. Given information (from, say, market research studies) on these two elasticities, the firm can use this rule to check that its advertising budget is not too small or too large
To put this rule into perspective, assume that a firm is generating sales revenue of $\$ 1$ million per year while allocating only $\$ 10,000$ (1 percent of its demand is 2 so the lim knows that its advertising elasticity of should increase sales by 20 pref adverising budget from $\$ 10,00$ to $\$ 20,000$ of demand for its product is 4 Should it of demand for its product is 4 . Shourd it increase its advertising budget, knowcost is substantial? The cost substantial? The answer is yes; equation (11.4) tells us that the firm's advertising-to-sales ratio shourd be $-(.2 /-4)=5$ percent, so the firm should ncrease its advertising buaget from $\$ 10,000$ to $\$ 50,000$.
This rule makes intuitive sense. It says firms should advertise a lot if (i) demand is very sensitive to advertising (E_{A} is large), or if (ii) demand is not
very price elastic $\left(E_{P}\right.$ is small). Although (i) is very price elastic (E_{p} is small). Although (i) is obvious, why should firms advertise more when the price elasticity of demand is small? A small elasticity of demand
${ }^{22}$ To derive this result using calculus, differentiate $\pi(Q, A)$ with respect to A, and set the derivative
equal to zero: equal to zero:
mplies a large markup of price over marginal cost. Therefore, the marginal profit from each extra unit sold is high. In this case, if advertising can help sell a few more units, it will be worth its cost. ${ }^{23}$

EXAMPLE 11.7

Advertising in Practice

In Example 10.2 (page 364), we looked a the use of markup pricing by supermarkets, convenience stores, and makers of designe jeans. We saw in each case how the markup of price over marginal cost depended on the fin's price elasticity of demand. Now let ee why these firms, as well as producers of sthey do
First, supermarkets. We said that the price elasticity of demand for a typical supermarket is around -10 . To determine the advertising-to-sales ratio, we also need to know the advertising elasticity of demand. This number can vary consider ably depending on what part of the country the supermarket is located in and whether it is in a city, suburb, or rural area. A reasonable range, however, would be 0.1 to 0.3 . Substituting these numbers into equation (11.4), we find that the manager of a typical supermarket should have an advertising budget of around 1 to 3 percent of sales-which is indeed what many supermarkets spend on advertising
Convenience stores have lower price elasticities of demand (around -5), but their advertising-to-sales ratios are usually less than those for supermarkets (and are often zero). Why? Because convenience stores mostly serve customers who live nearby; they may need a few items late at night or may simply not want to drive to the supermarket. These customers already know about the convenience store and are unlikely to change their buying habits if the store advertises. Thus E_{A} is very small, and advertising is not worthwhile.
Advertising is quite important for makers of designer jeans, who will have advertising-to-sales ratios as high as 10 or 20 percent. Advertising helps to make consumers aware of the label and gives it an aura and image. We said that price elasticities of demand in the range of -3 to -4 are typical for the major labels, and advertising elasticities of demand can range from .3 to as high as 1.50 , these levels of advertising would seem to make sense
Laundry detergents have among the highest advertising-to-sales ratios of all products, sometimes exceeding 30 percent, even though demand for any one brand is at least as price elastic as it is for designer jeans. What justifies all the advertising? A very large advertising elasticity. The demand for any one brand of laundry detergent depends crucially on advertising. without it, consumer would have little basis for selecting that particular brand. ${ }^{24}$

[^5]| TABLE 11.7 | Sales and Advertising Expenditures for Leading Brands of Over-the-Counter Drugs (in millions of dollars) | | |
| :---: | :---: | :---: | :---: |
| | Sales | Advertising | Ratio (\%) |
| Pain Medications | | | |
| Tylenol | 855 | 143.8 | 17 |
| Advil | 360 | 91.7 | 26 |
| Bayer | 170 | 43.8 | 26 |
| Excedrin | 130 | 26.7 | 21 |
| Antacids | | | |
| Alka-Seltzer | 160 | 52.2 | 33 |
| Mylanta | 135 | 32.8 | 24 |
| Tums | 135 | 27.6 | 20 |
| Cold Remedies (decongestants) | | | |
| Benadryl | 130 | 30.9 | 24 |
| Sudafed | 115 | 28.6 | 25 |
| Cough Medicine | | | |
| Vicks | 350 | 26.6 | 8 |
| Robitussin | 205 | 37.7 | 19 |
| Halls | 130 | 17.4 | 13 |
| Source: New York Times, September 27, 1994. | | | |

Finally, Table 11.7 shows sales, advertising expenditures, and the ratio of the two for leading brands of over-the-counter drugs. Observe that overall, the ratios are quite high. As with laundry detergents, the advertising elasticity for namebrand drugs is very high. Alka-Seltzer, Mylanta, and Tums, for instance, are all antacids that do much the same thing. Sales depend on consumer identification with a particular brand, which requires advertising.

SUMMARY

1. Firms with market power are in an enviable position because they have the potential to earn large profits. Realizing that potential, however, may depend critically on pricing strategy. Even if the firm sets a single price, it needs an estimate of the elasticity of demand for its output. More complicated strategies, which can involve setting several different prices, require even
A pricing or birn
2. A pricing strategy aims to enlarge the customer base surplus as possible. There are a number consumer do this, and they usually involve setting more than a single price.
3. Ideally, the firm would like to price discriminate perfectly-i.e, to charge each customer his or her rest vation price. In practice, this is almost always impossible. On the other hand, various forms of imperfect price discrimination are often used to increase profits.
4. The two-part tariff is another means of capturing consumer surplus. Customers must pay an "entry" fee that allows them to buy the good at a per-unit price The two-part tarifis
5. When demands are heterogeneous
6. When demands are heterogeneous and negatively bundling two or more different gors.
package. With mixed bundling, the customer can buy the goods individually or as a package. Mixed undling can be more profitable than pure bundling if marginal costs are significant or if demands are no Bundling is special case of tying Bunding is a special case of tying, a requirement that products be bought or sold in some combination.

Tying can be used to meter demand or to protect cus tomer goodwill associated with a brand name.
Advertising can further increase profits. The profit maximizing advertising-to-sales ratio is equal in magnifude to the ratio of the advertising and price elasticitie of demand.

QUESTIONS FOR REVIEW

1. Suppose a firm can practice perfect, first-degree price discrimination. What is the lowest price it will charge and what will its total output be?
2. How does a car salesperson practice price discrimina on? How does the ability to discriminate correctly Electric utilities often prati
3. Electric utilities often practice second-degree price discrimination. Why might this improve consume velfare?
4. Give some examples of third-degree price discrimination. Can third-degree price discrimination be effective the different groups of consumers have different lev els of demand but the same price elasticities?
5. Show why optimal, third-degree price discrimination requires that marginal revenue for each group of conumers equals marginal cost. Use this condition to explain how a firm should change its prices and total output if the demand curve for one group of conumers shifts outward, causing marginal revenue for that group to increase.
6. When pricing automobiles, American car companies typically charge a much higher percentage markup
over cost for "luxury option" items (such as leather trim, etc.) than for the car itself or for more "basic" options such as power steering and automatic transmission. Explain why.
. How is peak-load pricing a form of price discrimination? Can it make consumers better off? Give an example.
7. How can a firm determine an optimal two-part tariff has two customers with different demand curves? (Assume that it knows the demand curves.)
8. Why is the pricing of a Gillette safety razor a form of two-part tariff? Must Gillette be a monopoly produce of its blades as well as its razors? Suppose you wer advising Gillette on how to determine the two parts of the tariff. What procedure would you suggest?
9. In the town of Woodland, California, there are man more likely to be offered discount prices for denta exams or for eye exams? Why?
10. Why did MGM bundle Gone Gertie's Garter? What characteristic of demands is needed for bundling to increase profits?
11. How does mixed bundling differ from pure bundling? Under what conditions is mixed bundling preferable to pure bundling? Why do many restaurants practice mixed bundling (by offering a complete dinner as wel as an à la carte menu) instead of pure bundling?
12. How does tying differ from bundling? Why might firm want to practice tying?
13. Why it incorrect to advertise up to the point that the last dollar of advertising expenditures generates nother dollar of sales? What is the correct rule for the marginal advertising dollar?
14. How can a firm check that its advertising-to-sales ratio is not too high or too low? What information does it need?

EXERCISES

1. Price discrimination requires the ability to sort customers and the ability to prevent arbitrage Explain how the following can function as price discrimination schemes and discuss both sorting and arbitrage:
a. Requiring airline travelers to spend at least one Saturb. b. Insisting on delivering cement to buyers and basing prices on buyers' locations.
. Selling food processors along with coupons that can be sent to the manufacturer for a $\$ 10$ rebate.
d. Offering temporary price cuts on bathroom tissue. income patients for plastic surgery.
2. If the demand for drive-in movies is more elastic for couples than for singe-in movies is more elastic for or theaters to charge one admission fee for the driver of the car and an extra fee for passengers. True or false? Explain.
3. In Example 11.1 (page 400), we saw how producers of processed foods and related consumer goods use coupons as a means of price discrimination. Although coupons are widely used in the United States, that is are illegal in other countries. In Germany, coupons are illegal.
a. Does prohibiting the use of coupons in Germany make German consumers better off or worse off?
b. Does prohibiting the use of coupons make German producers better off or worse off?
4. Suppose that BMW can produce any quantity of cars at a constant marginal cost equal to $\$ 20,000$ and a fixed cost of $\$ 10$ billion. You are asked to advise the CEO as to what prices and quantities BMW should set for sales in Europe and in the United States. The demand for BMWs in each market is given by

$$
Q_{E}=4,000,000-100 P_{E}
$$

and
$Q_{U}=1,000,000-20 P_{U}$
where the subscript E denotes Europe, the subscript L denotes the United States. Assume that BMW can restrict U.S. sales to authorized BMW dealers only.
a. What quantity of BMWs should the firm sell in each market, and what should the price ket? What should the total profit be?
b. If BMW were forced to charge the same price in each market, what would be the quantity sold in each market, the equilibrium price, and the company's profit?
5. A monopolist is deciding how to allocate output between two geographically separated markets (Eas Coast and Midwest). Demand and marginal revenue for the two markets are

$$
\begin{array}{ll}
P_{1}=15-Q_{1} & \mathrm{MR}_{1}=15-2 Q_{1} \\
P_{2}=25-2 Q_{2} & \mathrm{MR}_{2}=25-4 Q_{2}
\end{array}
$$

The monopolist's total cost is $C=5+3\left(Q_{1}+Q_{2}\right)$. What are price, output, profits, marginal revenues, and deadweight loss (i) if the monopolist can price dis criminate? (ii) if the law prohibits charging different prices in the two regions?
*6. Elizabeth Airlines (EA) flies only one route: ChicagoHonolulu. The demand for each flight is $Q=500-P$.
per passenger. charge? How many people will be on each flight? What is EA's profit for each flight?
b. EA learns that the fixed costs per flight are in fact $\$ 41,000$ instead of $\$ 30,000$. Will the airline stay in business for long? Illustrate your answer using a graph of the demand curve that EA faces, EA's average cost curve when fixed costs are $\$ 30,000$ nd1,000 41,000 .
c. Wait! EA finds out that two different types of peo-
ple fly to Honolulu. Type A consists of business people with a demand of $Q_{A}=260-0.4 P$. Type B people with a demand of $Q_{A}=260-0.4 P$. Type B
consists of students whose total demand is $Q_{8}=240-$ $0.6 P$. Because the students are easy to spot, EA decides to charge them different prices. Graph each of these demand curves and their horizontal sum. What price does EA charge the students? What

price does it charge other cu

d. What would EA's profit be for each flight? Would the airline stay in business? Calculate the consumer surplus of each consumer group. What is the tota consumer surplus?
e. Before EA started price discriminating, how much consumer surplus was the Type A demand getting rom air travel to Honolulu? Type B? Why did total consumer surplus decline with price discriminaion, even though
Many retail vid
Many retail video stores offer two alternative plans for enting films:

- A two-part tariff: Pay an annual membership fee (e.g., $\$ 40$) and then pay a small fee for the daily rental of each film (e.g., $\$ 2$ per film per day).
A higher daily rental fee (e. 54 per film per doy pay
a higher daily rental fee (e.g., 54 per film per day).
What is the logic behind the two-part tariff in this case? Why offer the customer a choice of two plans rather than simply a two-part tariff?

8. Sal's satellite company broadcasts TV to subscribers in os Angeles and New York. The demand functions for each of these two groups are

$$
\begin{aligned}
& Q_{N Y}=60-0.25 P_{N r} \\
& Q_{L A}=100-0.50 P_{L A}
\end{aligned}
$$

where Q is in thousands of subscriptions per year and P is the subscription price per year. The cost of provid ing Q units of service is given by

$$
C=1000+40 Q
$$

where $Q=Q_{N Y}+Q_{L}$
What are the profit-maximizing prices and quantities for the New York and Los Angeles markets?
b. As a consequence of a new satellite that the
Pentagon recently deployed, people in Los Angeles receive Sal's New York broadcasts and people in New York receive Sal's Los Angeles broadcasts. As a result, anyone in New York or Los Angeles can receive Sal's broadcasts by subscribing in either city. Thus Sal can charge only a single price. What price should he charge, and what quantities will he sell in New York and Los Angeles?
c. In which of the above situations, (a) or (b), is Sal better off? In terms of consumer surplus, which situation do people in New York prefer
people in Los Angeles prefer? Why?
${ }^{*}$. You are an executive for Super Computer, Inc. (SC) which rents out super computers. SC receives a fixed rental payment per time period in exchange for the right to unlimited computing at a rate of P cents per second. SC has two types of potential customers of equal number- 10 businesses and 10 academic institutions. Each business customer has the demand
function $Q=10-P$, where Q is in millions of seconds
function $Q=10-P$, where Q is in millions of seconds $Q=8-P$. The marginal cost to SC of additional computing is 2 cents per second, regardless of volume.
a. Suppose that you could separate business and academic customers. What rental fee and usage fee would you charge each group? What would be your profits?
b. Suppose you were unable to keep the two types of customers separate and charged a zero rental fee. What usage fee would maximize your profits? What would be your profits?
c. Suppose you set up one two-part tariff-that is, you set one rental and one usage fee that both business fees would you set? What would be your profits? Explain why price would not be equal to marginal cost.
10. As the owner of the only tennis club in an isolated wealthy community, you must decide on membership dues and fees for court time. There are two types of tennis players. "Serious" players have demand

$$
Q_{1}=10-P
$$

where Q_{1} is court hours per week and P is the fee per hour for each individual player. There are also "occasional" players with demand

$$
Q_{2}=4-0.25 P
$$

Assume that there are 1000 players of each type Because you have plenty of courts, the marginal cost of court time is zero. You have fixed costs of $\$ 10,000$ per week. Serisus and occasional players look alike, so
Suppose that to maintin "prof
phere, you want to limit membersional" atmos players. How should you set the annual member ship dues and court fees (assume 52 weeks per year) to maximize profits, keeping in mind the con straint that only serious players choose to join? What would profits be (per week)?
b. A friend tells you that you could make greater prof its by encouraging both types of players to join. your friend right? What annual dues and court fees would maximize weekly profits? What would these profits be?
Suppose that over the years, young, upwardly mobile are serious players. You believe there are now 3000 serious players and 1000 occasional players. Would it still be profitable to cater to the occasional player? What would be the profit-maximizing annual dues and court fees? What would profits be per week?
I1. Look again at Figure 11.12 (p. 415), which shows the reservation prices of three consumers for two goods. Assuming that marginal production cost is zero for both goods, can the producer make the most money by selling

CHAPTER 11 - Pricing with Market Power 431
the goods separately, by using pure bundling, or by
using mixed bundlin, What prices
12. Look again at Figure $1117(p, 418)$ Suppocharged? marginal costs c_{1} and c_{2} were zero. Show that in this case, pure bundling, not mixed bundling, is the most profitable pricing strategy. What price should be harged for the bundle? What will the firm's profit be?
13. Some years ago, an article appeared in the New York Iimes about IBM's pricing policy. The previous day, mad announced major price cuts on most of its article said: BM probably has no choice but to cut prices periodically to get its customers to purchase more and lease less. If they succeed, this could make life more difficult for IBM's major competitors. Outright purchases of computers are needed for ever larger IBM revenues and profits, says Morgan Stanley's Ulric Well in his new book, Information Systems in the hat IBM cannot revert to an emphasis on leasing
a. Provide a brief but clear argument in support of the claim that IBM should try "to get its customers to purchase more and lease less.
b. Provide a brief but clear argument against this c. What
preferable fors determine whether leasing or selling is 4. You are selling two goods, 1 and 2 , to a market con sisting of three consumers with reservation prices as follows:

Reservation Price (\$)

Consumer	For 1	For 2
A	20	100
B	60	60
C	100	20

The unit cost of each product is $\$ 30$
a. Compute the optimal prices and profits for (i) selling the goods separately, (ii) pure bundling, and (iii) mixed bundling. Your firm produces two products, the demands for which are independent. Both products are produced at zero marginal cost. You face four consumers (or groups of consumers) with the following reservation prices:

Consumer	Good 1(\$)	Good 2(\$)
A	25	100
B	40	80
C	80	40
D	100	25

Consider three alternative pricing strategies: (i) sell ing the goods separately; (ii) pure bundling

FIGURE 11.21 Figure for Exercise 16
(iii) mixed bundling. For each strategy, determine the optimal prices to be charged and the resulting profits. Which strategy would be best?
b. Now suppose that the production of each good entails a marginal cost of $\$ 30$. How does this information change your answers to (a)? Why is the
optimal strategy now different? optimal strategy now different?
16. A cable TV company offers, in addition to its basic service, two products: a Sports Channel (Product 1) and a service can subscribe to these additional services individually at the monthly prices P_{1} and P_{2} respectivel y_{y} vidually at the monthly prices P_{1} and P_{2}, respectively,
or they can buy the two as a bundle for the price P or they can buy the two as a bundle for the price P_{B}
where $P_{B}<P_{1}+P_{2}$. They can also forgo the additional services and simply buy the basic service. The company's marginal cost for these additional services is zero. Through market research, the cable company has estimated the reservation prices for these two services for a representative group of consumers in the company's service area. These reservation prices are plotted (as $\mathrm{x}^{\prime} \mathrm{s}$) in Figure 11.21, as are the prices P_{1}, P_{2}, and P_{B} that the cable company is currently charging. The Which products, if any will be purchase consumers in region I? In region Wurchased by the region IV? Explain briefly.
b. Note that as drawn in the figure, the reservation prices for the Sports Channel and the Movie Channel
are negatively correlated. Why would you, or why would you not, expect consumers' reservation prices for cable TV channels to be negatively correlated? c. The company's vice president has said: "Because the marginal cost of providing an additional channel is zero, mixed bundling offers no advantage over pure bundling. Our profits would be just as high if we offered the Sports Channel and the Movie Channel together as a bundle, and only as a bundle." Do you agree or disagree? Explain why. d. Suppose the cable company continues to use mixed tribution of reservation prices shown in Figure 1121 do you think the cable company should alter any of the prices that it is now charging? If so, how?
${ }^{\text {17. }}$ Consider a firm with monopoly power that faces the demand curve

$$
P=100-3 Q+4 A^{1 / 2}
$$

and has the total cost function

$$
C=4 Q^{2}+10 Q+A
$$

where A is the level of advertising expenditures, and P and Q are price and output
a. Find the values of A, Q, and P that maximize the firm's profit.
b. Calculate the Lerner index, $L=(P-\mathrm{MC}) / P$, for this firm at its profit-maximizing levels of A, Q, and P.

Appendix to Chapter 11

TRANSFER PRICING IN THE INTEGRATED FIRM
So far, we have studied the firm's pricing decision assuming that it sells its output in an outside market, i.e., to consumers or to other firms. Many firms, however, are vertically integrated-they contain several divisions, with some divisions producing parts and components that other divisions use to produce the finished product. ${ }^{1}$ For example, automobile companies have "upstream" divisions that produce engines, brakes, radiators, and other components that the "downstream" divisions use to produce the finished cars. Transfer pricing refers to the valuation of these parts and components within the firm. Transfer prices are internal prices at which the parts and components from upstream divisions are "sold" to downstream divisions. Transfer prices must be chosen correctly because hey are the signals that divisional managers use to determine output levels.
This appendix shows how a profit-maximizing firm chooses its transfer prices and divisional output levels. We will also examine other issues raised by vertical integration. For example, suppose a computer firm's upstream division produces memory chips used by a downstream division to produce the final prod uct. If other firms also produce these chips, should our firm obtain all its chips from the upstream division, or should it also buy some on the outside market? Should the upstream division produce more chips than the downstream division needs and sell the excess in the market? How should the firm coordinate its upstream and downstream divisions? In particular, can we design incentives for the divisions that help the firm to maximize its profits?
We begin with the simplest case: There is no outside market for the output neither produced nor used by, the upstream division produces a good that is when there is an when there is an outside market for the upstream division's output.
Transfer Pricing When There is No Outside Market
Consider a firm with three divisions: Two upstream divisions produce inputs to a downstream processing division. The two upstream divisions produce quantities Q_{1} and Q_{2} and have total costs $C_{1}\left(Q_{1}\right)$ and $C_{2}\left(Q_{2}\right)$. The downstream division produces a quantity Q using the production function

$$
Q=f\left(K, L, Q_{1}, Q_{2}\right)
$$

where K and L are capital and labor inputs, and Q_{1} and Q_{2} are the intermediate inputs from the upstream divisions. Excluding the costs of the inputs Q_{1} and Q_{2} the downstream division has a total production $\operatorname{cost} C_{d}(Q)$. Total revenue from sales of the final product is $R(Q)$.
We assume there are no outside markets for the intermediate inputs Q_{1} and Q_{2}; they can be used only by the downstream division. Then the firm has two problems:

1. What quantities Q_{1}, Q_{2}, and Q will maximize its profit?
2. Is there an incentive scheme that will decentralize the firm's management? In particular, is there a set of transfer prices P_{1} and P_{2}, so that if each division

- transfer prices Interna prices at which parts and
components from upstream divisions are "sold" to downstream divisions downstream within a firm.
maximizes its own divisional profit, the profit of the overall firm will also be maximized?
To solve these problems, we note that the firm's total profit is

$$
\pi(Q)=R(Q)-C_{d}(Q)-C_{1}\left(Q_{1}\right)-C_{2}\left(Q_{2}\right)
$$

(A11.1)
What is the level of Q_{1} that maximizes this profit? It is the level at which the cost of the last unit of Q_{1} is just equal to the additional revenue it brings to the firm. The cost of producing one extra unit of Q_{1} is the marginal cost $\Delta C_{1} / \Delta Q_{1}=M C_{1}$. How much extra revenue results from that one extra unit? An extra unit of Q_{1} allows the firm to produce more final output Q of an amount $\Delta Q / \Delta Q_{1}=M P_{1}$, the marginal product of Q_{1}. An extra unit of final output results in additional revenue $\Delta R / \Delta Q=M R$, but it also results in additional cost to the downstream division of an amount $\Delta C_{d} / \Delta Q=M C_{d}$. Thus the net marginal revenue NMR_{1} that the firm earns from an extra unit of Q_{1} is $\left(M R-M C_{j}\right) M P_{1}$. Setting this equal to the marginal cost of the unit, we obtain the following rule for profit maximization ${ }^{2}$:

$$
\mathrm{NMR}_{1}=\left(\mathrm{MR}-\mathrm{MC}_{d}\right) \mathrm{MP}_{1}=\mathrm{MC}_{1}
$$

Going through the same steps for the second intermediate input gives

$$
\mathrm{NMR}_{2}=\left(\mathrm{MR}-\mathrm{MC}_{d}\right) \mathrm{MP}_{2}=\mathrm{MC}_{2}
$$

Note from equations (A11.2) and (A11.3) that it is incorrect to determine the firm's final output level Q by setting marginal revenue equal to marginal cost for the downstream division-i.e., by setting MR $=\mathrm{MC}_{d}$. Doing so ignores the cost of producing the intermediate input. (MR exceeds MC_{d} because this cost is positive.) Also, note that equations (A11.2) and (A11.3) are standard conditions of marginal analysis: The output of each upstream division should be such that its marginal cost is equal to its marginal contribution to the profit of the overall firm.

Now, what transfer prices P_{1} and P_{2} should be "charged" to the downstream division for its use of the intermediate inputs? Remember that if each of the three divisions uses these transfer prices to maximize its own divisional profit, the profit of the overall firm should be maximized. The two upstream divisions will maximize their divisional profits, π_{1} and π_{2}, which are given by
and

$$
\begin{aligned}
& \pi_{1}=P_{1} Q_{1}-C_{1}\left(Q_{1}\right) \\
& \pi_{2}=P_{2} Q_{2}-C_{2}\left(Q_{2}\right)
\end{aligned}
$$

Because the upstream divisions take P_{1} and P_{2} as given, they will choose Q_{1} and Q_{2} so that $P_{1}=\mathrm{MC}_{1}$ and $P_{2}=\mathrm{MC} C_{2}$. Similarly, the downstream division will maximize

$$
\pi(Q)=R(Q)-C_{d}(Q)-P_{1} Q_{1}-P_{2} Q_{2}
$$

Because the downstream division also takes P_{1} and P_{2} as given, it will choose Q_{1} and Q_{2} so that

$\left(\mathrm{MR}-\mathrm{MC}_{d}\right) \mathrm{MP}_{1}=\mathrm{NMR}_{1}=P_{1}$

(A11.4)
${ }^{2}$ Using calculus, we can obtain this rule by differentiating equation (A11.1) with respect to Q_{1} :

$$
\begin{aligned}
\mathrm{d} \pi / \mathrm{d} \mathrm{Q}_{1} & =\left(\mathrm{d} R / \mathrm{dQ} O \partial \mathrm{OQ} / \partial \mathrm{Q}_{1}\right)-\left(\mathrm{dC}_{d} / \mathrm{dQX} \partial \mathrm{Q} / \partial \mathrm{Q}_{4}\right)-\mathrm{dC}_{1} / \mathrm{d} Q_{1} \\
& =\left(\mathrm{MR}-\mathrm{MC}_{d}\right) \mathrm{MP}_{1}-\mathrm{MC}_{1}
\end{aligned}
$$

Setting $\mathrm{d} \pi / \mathrm{dQ}=0$ to maximize profit gives equation (All.2)

Note that by setting the transfer prices equal to the respective marginal costs $\left(P_{1}=\mathrm{MC}_{1}\right.$ and $\left.P_{2}=\mathrm{MC}\right)$, the profit-maximizing conditions given by equations (A11.2) and (A11.3) will be satisfied. We therefore have a simple solution to the transfer pricing problem: Set each transfer price equal to the marginal cost of the respective upstream division. Then when each division is required to maximize its own profit, the quantities Q_{1} and Q_{2} that the upstream divisions will want to produce will be the same quantities that the downstream division will want to "buy," and they will maximize the firm's total profit.
To illustrate this graphically, suppose Race Car Motors, Inc., has two divisions. The upstream Engine Division produces engines, and the downstream Assembly Division puts together automobiles, using one engine (and a few other parts) in each car. In Figure A111, the average revenue curve AR is Race Car Motors' demand curve for cars. (Note that the firm has monopoly power in the automobile market.) MC_{4} is the marginal cost of assembling automobiles, given the engines (i.e., it does not include the cost of the engines). Becuse the car requires one engine the marginal product of the engines is one. Thu the ear labeled $\mathrm{MR}-\mathrm{MC}_{A}$ is also the net marginal revenue curve for engines:

$$
\mathrm{NMR}_{E}=\left(\mathrm{MR}-\mathrm{MC}_{A}\right) \mathrm{MP}_{E}=\mathrm{MR}-\mathrm{MC}_{A}
$$

FIGURE A 11.1 Race Car Motors, Inc.
The firm's upstream division should produce a quantity of engines Q_{E} that equates its marginal cost of engine production MC_{E} with the downstream division's net marginal revenue of engines NMR_{E}. Because the firm uses one engine in every car, NMR_{E} is the
difference between the marginal revenue from selling cars and the marginal difference between the marginal revenue from selling cars and the marginal cost of
assembling them, i.e., MR - MC . The optimal transfer price for engines P_{p} equals the marginal cost of producing them. Finished cars are sold at price P_{A}.

The profit-maximizing number of engines (and number of cars) is given by the intersection of the net marginal revenue curve NMR_{E} with the marginal cost curve for engines MC_{E}. Having determined the number of cars that it will produce, and knowing its divisional cost functions, the management of Race Car Motors can now set the transfer price P_{E} that correctly values the engines used
to produce its cars. This is the transfer price that should be used to calcult to produce its cars. This is the transfer price that should be used to calculate divisional profit (and year-end bonuses for divisional managers).
Transfer Pricing with a Competitive Outside Market
Now suppose there is a competitive outside market for the intermediate good produced by an upstream division. Because the outside market is competitive, there is a single market price at which one can buy or sell the good. Therefore, the marginal cost of the intermediate good is simply the market price. Because the optimal transfer price must equal marginal cost, it must also equal the competitive market price.
To see this, suppose there is a competitive market for the engines that Race Car Motors produces. If the market price is low, Race Car Motors may want to buy some or alr or its engines in the market; if it is high, it may want to sell $Q_{E, l}$, the upstream division's marginal cost of producing engines MC_{E} is below the market price $P_{E, M}$; for quantities above $Q_{E, 1}$, it is above the market price. The

FIGURE A11.2 Buying Engines in a Competitive Outside Market
Race Car Motors' marginal cost of engines MC^{7} is the upstream division's marginal cost for quantities up to $Q_{L, 1}$ and the market price $P_{E M}$ for quantities above Q_{E}. The downstream division should use a total of $Q_{E, 2}$ engines to produce an equal number of cars; in that case, the marginal cost of engines equals net marginal revenue. $Q_{E 2^{2}}-$

firm should obtain engines at the least cost, so the marginal cost of engines MC_{E}^{*} will be the upstream division's marginal cost for quantities up to Q_{E} and the market price for quantities above $Q_{E, 1}$. Note that Race Car Motors uses more engines and produces more cars than it would have had there been no outside engme market. The downstream division now buys $Q_{E, 2}$ engines and produces an equal number of automobiles. However, it "buys" only $Q_{E, 1}$ of these engines from the upstream division and the rest on the open market.
It might seem strange that Race Car Motors must go into the open market to buy engines that it can make itself. If it made all of its own engines, however, its marginal cost of producing them would exceed the competitive market price. Although the profit of the upstream division would be higher, the total profit of the firm would be lower.
Figure A11.3 shows the case where Race Car Motors sells engines in the outside market. Now the competitive market price $P_{E, M}$ is above the transfer price that the firm would have set had there been no outside market. In this case, although the upstream Engine Division produces $Q_{E_{1}}$ engines, only $Q_{E 2}$ ngines are used by the downstream division to produce automobiles. The rest are sold in the outside market at the price $P_{E M}$
Note that compared with a situation in which there is no outside engine market, Race Car Motors is producing more engines but fewer cars. Why not produce this larger number of engines but use all of them to produce more cars?

FIGURE A11.3 Selling Engines in a Competitive Outside Market

The optimal transfer price for Race Car Motors is again the market price $P_{E, M}$. This price is above the point at which MC_{E} intersects NMR_{E}, so the upstream division sells some of its engines in the outside market. The upstream division produces Q_{F} engines, the quantity at which MC_{E} equals $P_{E M}$. The downstream division uses only $Q_{E, 2}$ of these engines, the quantity at which $N M R_{E}$ equals $P_{E M}$. Compared with Figure, A11.1, in
which there is no outside market, more engines but fewer cars are produced.

Because the engines are too valuable. On the margin, the net revenue that can be earned from selling them in the outside market is higher than the net revenue from using them to build additional cars.

Transfer Pricing with a Noncompetitive Outside Market
Now suppose there is an outside market for the output of the upstream division, but that market is not competitive-the firm has monopoly power. The same principles apply, but we must be careful when measuring net marginal revenue. Suppose the engine produced by the upstream Engine Division is a special one that only Race Car Motors can make. There is, however, an outside market for this engine. Race Car Motors, therefore, can be a monopoly supplier to that market while also producing engines for its own use. What is the optimal transfer price for use of the engines by the downstream division, and at what price (if any) should engines be sold in the outside market?

We must find the firm's net marginal revenue from the sale of engines. In Figure A11.4, $D_{E M}$ is the outside market demand curve for engines and $\mathrm{MR}_{E M}$

FIGURE A11.4 Race Car Motors-A Monopoly Supplier of Engines to an Outside Market
$\mathcal{D}_{E M}$ is the outside market demand curve for engines; $M R_{E M}$ is the corresponding
marginal revenue curve; (MR - MC) is the net marginal revenue from the use of marginal revenue curve; (MR $-M C_{A}$, is the net marginal revenue from the use e
engines by the downstream division. The fotal net marginal revenue curve for ensine NMR $_{E}$ is the horizontal sum of these two marginal revenues. The optimal transfer price P_{E}^{*} and the quantity of engines that the upstream division produces, $Q_{E \text {, }}$, are found where $M C_{E}=N M R_{E}$. $Q_{E 2}$ of these engines are used by the downstream
division, the quantity at which the downstream division's net marginal revenue, MR MC_{A}, is equal to the transfer price P_{E}^{P} The remaining engines, $Q_{E, 3}$, are sold in the outside market at the price $P_{\text {FM }}$.
is the corresponding marginal revenue curve. Race Car Motors thus has two sources of marginal revenue from the production and sale of an additional engine: marginal revenue $\mathrm{MR}^{\text {m }}$ from sales in the ginal revenue ($M R-M C$) from the use of the engines by market and net mar sion. By summing these two curves horizontally, reternue curve for engines; it is the green line labeled wMR The intersection of the marginal cost and total net mar
the quantity of engines Q that the upstream total net marginal revenue curves gives the quantity of engines $Q_{E_{1}}$ that the upstream division should produce and the optimal transfer price P_{E}^{*}. Again, the optimal transfer price is equal to marginal cost. But cars. This is the quantity at which the are used by the downstream division to make MR - MC is equal to the transfer downstream division's net marginal revenue, in the outside market the transfer price P_{E}. The remaining engines $Q_{E 3}$ are sold in the firm exercises iets. However, they are not sold at the transfer price P_{E}^{*}. Instead Why pay the
Why pay the upstream division only P_{E}^{*} per engine when the firm is selling engines in the outside market at the higher price $P_{E, M}$? Because if the upstream the the marginal cost of engines will rise and exceed the net marginal revenue from their use by dhe price charged in the outside market were lowered, the marginal revenue from sales in that market would fall below marginal cost. At the prices P_{E}^{*} and $P_{E M}$, marginal revenues and marginal cost are equal:

$$
\mathrm{MR}_{E, M}=\left(\mathrm{MR}-\mathrm{MC}_{A}\right)=\mathrm{MC}_{E}
$$

Sometimes a vertically integrated firm can buy components in an outside market in which it has monopsony power. Suppose, for example, that Race Car Motors can obtain engines from its upstream Engine Division, or can purchase them as a monopsonis should be Division will bere the transfer price paid to the Engine Why "p w" the upse the price at which engines are bought in the outside market. Why pay the upstream division a price that is higher than that paid in the outside market in a paid in the actual price per engine paid in that market. The marginal expenditure is higher because purchasing an side market. side market.

A Numerical Example
Suppose Race Car Motors has the following demand for its automobiles:

$$
P=20,000-Q
$$

Its marginal revenue is thus

$M R=20,000-2 Q$
The downstream division's cost of assembling cars is

$$
C_{A}(Q)=8000 Q
$$

so that the division's marginal cost is $\mathrm{MC}_{\Lambda}=8000$. The upstream division's cost of producing engines is

$$
C_{E}\left(Q_{E}\right)=2 Q_{E}^{2}
$$

The division's marginal cost is thus $\mathrm{MC}_{F}\left(Q_{E}\right)=4 Q_{E}$
First, suppose there is no outside market for the engines. How many engines and cars should the firm produce? What should be the transfer price for

In 510.5 , we explain that when a buyer has monop expenditure, curve lies a its average expenditure curve because the decision to buy an extra unit of the ood raises the price that must be paid on all units.

engines? To solve this problem, we set the net marginal revenue for engines equal to the marginal cost of producing engines. Because each car has one engine, $Q_{E}=Q$. The net marginal revenue of engines is thus

$$
\mathrm{NMR}_{E}=\mathrm{MR}-\mathrm{MC}_{A}=12,000-2 Q_{E}
$$

Now set NMR_{E} equal to MC_{E} :

$$
12,000-2 Q_{E}=4 Q_{E}
$$

Thus $6 Q_{F}=12,000$ and $Q_{E}=2000$. The firm should therefore produce 2000 engines and 2000 cars. The optimal transfer price is the marginal cost of these 2000 engines

$$
P_{E}=4 Q_{E}=\$ 8000
$$

Second, suppose that engines can be bought or sold for $\$ 6000$ in an outside competitive market. This is below the $\$ 8000$ transfer price that is optimal when there is no outside market, so the firm should buy some engines outside. Its marginal cost of engines, and the optimal transfer price, is now $\$ 6000$. Set this $\$ 6000$ marginal cost equal to the net marginal revenue of engines:

$$
6000=\mathrm{NMR}_{E}=12,000-2 Q_{E}
$$

Thus the total quantity of engines and cars is now 3000 . The company now produces more cars (and sells them at a lower price) because its cost of engines is lower. Also, since the transfer price for the engines is now $\$ 6000$, the upstream Engine Division supplies only 1500 engines (because $\mathrm{MC}_{\mathrm{E}}(1500)=\$ 6000$). The remaining 1500 engines are bought in the outside market.
Finally, suppose Race Car Motors is the only producer of these engines but can sell them in an outside market. Demand in the outside market is

$$
P_{E, M}=10,000-Q_{E}
$$

The marginal revenue from sales in the market is therefore

$$
\mathrm{MR}_{E, M}=10,000-2 \mathrm{Q}_{E}
$$

To determine the optimal transfer price, we find the total net marginal revenue by horizontally summing $M R_{E, M}$ with the net marginal revenue from "sales" to the downstream division, $12,000-2 Q_{E}$, as in Figure A11.4. For outputs Q_{E} greater than 1000 , this is

$$
\mathrm{NMR}_{E, \text { Total }}=11,000-Q_{E}
$$

Now set this equal to the marginal cost of producing engines:

$$
11,000-Q_{E}=4 Q_{E}
$$

The total quantity of engines produced should therefore be $Q_{E}=2200$.
How many of these engines should go to the downstream division and how many to the outside market? Note that the marginal cost of producing these 2200 engines-and therefore the optimal transfer price-is $4 Q_{E}=\$ 8800$. Set this price equal to the marginal revenue from sales in the outside market:

$$
8800=10,000-2 Q_{E}
$$

or $Q_{E}=600$. Therefore, 600 engines should be sold in the outside market. Finally, set this $\$ 8800$ transfer price equal to the net marginal revenue from "sales" to the downstream division:

$$
8800=12,000-2 Q_{E}
$$

or $Q_{E}=1600$. Thus 1600 engines should be supplied to the downstream division for use in the production of 1600 cars.

EXERCISES

1. Review the numerical example about Race Car Motors. Calculate the profit earned by the upstream division, the downstream division, and the firm as a whole in each of the three cases examined: (a) there is no outside market for engines; (b) there is a competitive market for engines in which the market price is $\$ 6000$; and
(c) the firm is a monopoly supplier side market. In which case does Race Car Motors earn the most profit? In which case does the upstream division earn the most? The downstream division?
2. Ajax Computer makes a computer for climate control in office buildings. The company uses a microprocessor produced by its upstream division, along with other parts bought in outside competitive markets. The microprocessor is produced at a constant marginal cost of $\$ 500$, and the marginal cost of assembling the computer (including the cost of the other parts) by the downstream division is a constant $\$ 700$. The firm has been selling the computer for $\$ 2000$, and until now there has been no outside market for the microprocessor.
a. Supplops and that Ajax has monopoly poroprocessor market, selling microprocessors for $\$ 1000$ each Assuming that demand for the microprocessor is unrelated to the demand for the Ajax computer, what transfer price should Ajax apply to the microprocessor for its use by the downstream computer division? Should production of computers be increased, decreased, or left unchanged? Explain briefly.
b. How would your answer to (a) change if the demands for the computer and the microprocessors were competitive; i.e., if some of the people who buy the microprocessors use them to make climate ebok produces and sells ru?
3. Reebok produces and sells running shoes. It faces a market demand schedule $P=11-1.5 Q_{s^{\prime}}$, where Q_{5} is dollars per pair of shoes. Production of each pair of shoes requires 1 square yard of leather. The leather is shaped and cut by the Form Division of Reebok. The cost function for leather is

$$
T C_{L}=1+Q_{L}+0.5 Q_{L}^{2}
$$

where Q_{L} is the quantity of leather (in square yards produced. Excluding leather, the cost function for run ning shoes is
$T C_{s}=2 Q_{s}$
a. What is the optimal transfer price?
b. Leather can be bought and sold in a competitive market at the price of $P_{F}=1.5$. In this case, how much leather should the Form Division supply internally? How much should it supply to the outside market? Will Reebok buy any leather in the outside market? Find the optimal transfer price.
c. Now suppose the leather is unique and of extremely high quality. Therefore, the Form Division may act as a supplier to the downstream dide market as well as outside demand for leather is given by $p=32-Q$ What is the optimal transfer price for the use of leather by the downstream division? At what price if any, should leather be sold to the outside market? What quantity, if any, will be sold to the outside market?
4. The House Products Division of Acme Corporation manufactures and sells digital clock radios. A major component is supplied by the electronics division of Acme. The cost functions for the radio and the electronic component divisions are, respectively,

$$
\begin{gathered}
T C_{r}=30+2 Q_{r} \\
T C_{c}=70+6 Q_{c}+Q_{c}^{2}
\end{gathered}
$$

Note that $T C_{r}$ does not include the cost of the component. Manufacture of one radio set requires the use of one electronic component. Market studies show that the firm's demand curve for the digital clock radio is given by

$$
P_{r}=108-Q_{r}
$$

a. If there is no outside market for the components, how many of them should be produced to maximize profits for Acme as a whole? What is the optiIf other firms are
b. If other firms are willing to purchase in the outside market the component manufactured by the elecproduct), what is the optimal transfer price? Why? What price should be charged in the outside market? Why? How many units will the electronics division supply internally and to the outside market? Why? (Note: The demand for components in the outside market is $P_{c}=72-1.5 Q_{c}$.)

[^0]: A firm with two plants maximizes profits by choosing output levels Q_{1} and Q_{2} so thal narginal revenue MR (which depends on total output) equals marginal costs for each plant, MC_{1} and MC_{2}

[^1]: A statistic called the
 Say, the four largest firme is it often ratio, which measures the percentage of sales accounted for by, one, but mot the only, deterninant of market power the concentration of a market. Concentration is

[^2]: We are simplifying here. In fact, some consumers obtain utility just from owning the camera, even toys and can obtain pleasure from

[^3]: 4 Setting prices for a product such as a Polaroid camera is clearly not a simple matter. We have ignored it learning cehavior of cost and demand: namely, how production costs fall as the firm moves down

[^4]: ${ }^{15}$ Adjusted for inflation, Gone with the Wind was also the largest grossing film of all time. Titanic,
 released in 1997 , made $\$ 601$ million. Gone with the Wind grossed $\$ 81.5$ million in 1939 dollars, which is equivalent to $\$ 941$ million in 1997 dollars.
 16For those readers who claim to know all this, our final trivia question is: Who played the role of
 Gertie in Getting Gertie's Garter?

[^5]: ${ }^{2}$ Advertising often affects the price elasticity of demand, and this fact must be taken into account For some products, advertising brodens the market by attrating a lorge range of customercoum creating a bandwagon effect. This is likely to make demand more price elastic than it would have been otherwise (But $E_{\text {, }}$ is likely to be large, so that advertising will still be worthwhile). Sometime advertising is used to differentiate a product from others (by creating an image, allure, or brand
 identification), making the product's demand lesp price elastic than it would otherwise be ${ }^{24}$ For an overview of statistical approaches to estimating the advertising elasticity of demand, see
 Erist R. Berndt, The Practice of Econometrics (Reading. MA: Addison-Wesley, 1991), ch. 8.

