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Abstract—We propose a finite-state Markov chain framework
for tracking and forecasting the status of project portfolios.
This approach enables forecasts of portfolio composition over
time and the computation of long-run distributions of project
outcomes. It supports strategic planning by identifying project
success rates, average durations, and the balance of resource
allocation between active and idle projects. From a managerial
perspective, the model facilitates early detection of portfolio-level
risks and provides a data-driven basis for adjusting resource
deployment or re-prioritizing projects. We show that forecasts
remain robust under moderate errors in model identification,
enhancing the method’s practical applicability in environments
with noisy or incomplete data. This work lays the foundation for a
scalable, organization-wide mechanism to improve visibility into
project dynamics and support evidence-based decision-making.

Keywords—Project portfolio tracking, Markov chains, project
management, phase-gate approach.

I. INTRODUCTION

Managing long-term projects in industries such as phar-
maceuticals requires balancing strategic objectives with op-
erational realities. Large-scale IT and business transforma-
tion initiatives, in particular, involve multiple interdependent
projects with varying degrees of complexity, uncertainty, and
risk. Maintaining visibility into the evolving status of a project
portfolio is critical for decision-making, resource allocation,
and risk mitigation. Traditional qualitative assessments, such
as periodic reporting and expert judgment, while available,
are usually not aggregated for predictive purposes or for
evaluating portfolio performance across relevant dimensions,
such as success rate, project duration, or resource balance.
Such aggregate measures can also serve as benchmarks for
individual project performance, for example, by indicating
their positions relative to group averages.

Here, we propose a finite-state Markov chain approach
to project portfolio tracking. By modeling project states us-
ing a structured framework, this method enables quantitative
forecasting of future portfolio status over finite time hori-
zons and provides insights into the long-run distribution of
project outcomes. The structured transition dynamics offer
an objective foundation for tracking progress and adapting
strategies in response to evolving risks. Beyond forecasting, an
important concern in project management is the robustness of
model-based assessments. Misidentifying initial project states
or transition probabilities can introduce errors into portfolio
projections, potentially leading to suboptimal decisions. To

evaluate the impact of such errors, we analyze how identi-
fication inaccuracies propagate through the model.

The systematic management of projects dates back over
a century to the structured bar-chart and harmonogram ap-
proaches of Gantt [1] and Adamiecki [2], respectively. Man-
aging project portfolios as groups of projects originates in
Markowitz’s work on portfolio investment [3], [4]. Large-scale
industrial and public projects in the 1950s and 1960s, includ-
ing NASA initiatives, necessitated phased project planning,
leading to the phase-gate approach popularized by Cooper [5],
[6], followed by Agile frameworks that allow for dynamic
adjustments instead of frontloading [7]. The persistent moni-
toring of projects remains an ongoing concern in most large
organizations [8].1

The motivation for this research stems from various industry
projects in the pharmaceutical sector, where companies have
struggled to forecast the state of their project portfolios,
particularly those involving IT projects [10]. The core idea
is to implement a uniform classification system across the
organization so as to leverage past experience from observed
state transitions, thus enabling data-driven forecasts based
on Markov chains; see, e.g., Feller [11, Ch. XV]. Thus far,
Markov chains have been applied primarily to individual
projects—for example, in the context of Markov PERT net-
works to estimate the duration of a single project [12], [13].2
Our contribution lies in adapting Markov chain modeling to the
dynamic tracking of project portfolios, providing a structured,
data-driven methodology for anticipating portfolio evolution,
evaluating its performance, and mitigating risks.

II. MODEL

Consider a firm with a portfolio of projects. Each project
is either active or passive. As long as a project is active, it
is assessed at regularly spaced (integer-valued) times ¢ for its
current state, which is an element of the (nonempty) finite
state space S. While our framework applies to any finite state
space, in order to fix ideas, we assume that the firm uses a
“traffic-light approach” to assess active projects, so

S = {Green (G), Yellow (Y),Red (R)}.

The key performance indicators (KPIs) used for the periodic
evaluation of active projects and their aggregation into scores

IFor a survey of project portfolio management since 1950, see [9].
2PERT: Program Evaluation and Review Technique [14].



with classification thresholds may vary from one organization
to another. The methods could also vary with the nature of the
projects, such as whether they deal primarily with cost effec-
tiveness, human resources, information technology, innovation,
marketing, or another particular field (or combination thereof).
Important for the use of our proposed method is not necessarily
that projects all have to come from the same domain or be very
similar to each other (e.g., in size or duration), but rather that
the assessment methods are deemed comparable.

Example 1. In the traffic-light approach, the project status
may be assessed as follows:

o Green: On track, within budget and timeline.
o Yellow: At risk, some issues emerging.
« Red: Critical, major delays or budget overruns.

A passive (or inactive) project can be in one of three service
states: New (/NV), Completed (C'), or Discontinued (D). Before
becoming an active project it passes through a planning and
preparation phase which coincides with the service state N.
Upon exiting this preparation phase, the project becomes active
until it is either completed (entering the service state C) or
discontinued (i.e., passing into the service state D).

Remark 1. The total number of states any (active or passive)
project can be in is n = |S| 4+ 3 > 4. Under the traffic-light
approach, it is n = 6.

A. Project Portfolio Markov Chain

The current portfolio distribution is captured by a vector
p = (p1,.-.,pn) that contains the proportions of projects in
each of n possible states si,...,s, (either in S for active
projects, or in one of the three service states). Thus, it is
an element of the (n — 1)-dimensional domain of discrete
probability distributions,

An = {(wl,..

From one time period to the next, the state of any given project
transitions from its current state s; to another state s; with
probability p;; € [0,1], where 7,57 € N ={1,...,n}.

Swp) ERY twy 4wy, = 1)

Example 2. In the traffic-light approach, we set
(N,G,Y,R,C,D) = (1,2,3,4,5,6) to denote each
state interchangeably by its index (in A) or by its letter
specification (in {N,G,Y,R,C,D} = N). For example,
SN — 81, O SR = S4.

The matrix of transition probabilities P = [p;;] € R"*" is
stochastic, that is, it has the ‘Markov property’ in the sense
that each of its rows sums to one,

n
Zpijzl’ iGN,
j=1

as any given project must transition from one of the n feasible
states to another one of those states with probability 1. Fig. 1
shows the Project Portfolio Markov Chain with its primitives
(set of states and transition probabilities) under the traffic-light
approach.

Example 3. A possible transition matrix for this six-state
system in Ex. 2 is given by:

pNN PN O 0 0 »pND
0  pee pPey PGR PGC PGD
p— 0 pve pPyy DPyrR Pyc PYD
0 Pre PRY DPRR PRC PRD
pcy 0 0 0 pcc O
pon O 0 0 0  ppp

The first and the last two rows of P correspond to the
service states, while the other rows capture transitions from
active project states in S. If poy = ppny = 0, then project
completion (C) and discontinuation (D) become absorbing
states,? for any project to remain there permanently.

pyc

Fig. 1. Project portfolio Markov chain with traffic-light states and service
states, with index set N' = {N,G,Y, R,C, D}, as in Exs. 2 and 3.

B. Model Identification

To estimate the transition probabilities involving states in
S U{C, D}, the firm needs to analyze historical project data,
based on review reports, answering questions such as:

o What is the probability that a Green project turns Yellow
in the next review period?
o How likely is a Red project to recover to Yellow?
o What percentage of Yellow projects move to Green versus
escalating to Red?
To determine the transition frequencies, it is necessary to:

o Count the number of transitions from one state to another;
« Normalize by the total occurrences of each initial state.

The transitions to and from state N involve the redeployment
of project resources from completed or discontinued projects
(via pon or ppn, respectively), followed by continued plan-
ning (via pyy), and subsequent release (via pyg) of new
projects into the active project pool. These transition prob-
abilities can be estimated using longitudinal observations as
explained in the following example.

Example 4. To identify p;; when ¢ = N or j = IV (or both)
in the transition matrix P of Ex. 3, one first observes the

3A state s;; is called absorbing if py; = 1.



average residence time 7y of projects at the planning stage.
For p = pnn, this implies:

th =1-p ptht !
o0

p%Zpt:

t=1

Tn=>01-p

by virtue of the geometric-series formula in the last step.
Hence, one can identify

PNN = and pyg+pnp =1-—pNN.

N
1+Tn
For instance, if project planning and preparation (in a regime
with a monthly project review) take on average one quarter
of a year, then one would set Ty = 3 and therefore find
that pyy = 0.75. To disentangle pyg and pyp, let M
be the number of projects that have passed through the
planning stage over a sufficiently long time interval (greater
than T'), and of these it has been observed that only Mg
have been successfully launched, with the remaining M — Mg
not launched, then pyp/png = (M — Mg)/Mg. Thus, in
combination with the earlier relation one can conclude that

Mg M — Mg
1+Tv)M (1+Tn) M’
Similarly, if T and Tp denote the respective average times
until resources from completed and discontinued projects are
redeployed, then by the same derivation as before, one finds
that

PNG = and pnp =

c Tp
1+Te 1+Tp°
and consequently, poxy =1 —pcc and ppy =1 —ppp. An
example of a transition probability matrix for this six-state
system is given by:

pcc = and ppp =

0.7 015 0 0 0 0.10
0 079 010 0.02 0.08 0.01
p_ 0 020 0.55 0.20 0.03 0.02
0 025 0.20 038 0.05 0.12
0.10 0 0 0 09 0
0.06 0 0 0 0 095

The individual entries p;; in P mean, for example, that projects
in the New state remain there with 75% probability, transition
to Green with 15% probability, or get Discontinued (10% of
the time). Projects in the Green state stay in this state with
79% probability, transition to Yellow with 10% probability, to
Red with 2% probability, get Completed (8%) or possibly also
Discontinued (1%), and so forth.

III. PORTFOLIO EVOLUTION

The Project Portfolio Markov Chain (PPMC) discussed in
Sec. II allows us to describe the evolution of project portfolio
distributions, both forwards and backwards in time. We also
establish the attenuation of errors in the project distribution
data over time, providing for added extrapolation robustness,
as a “regular” system (cf. Remark-2 below) evolves towards
a steady-state distribution in the long run.

A. Law of Motion

Given a portfolio state ¢ = (q1,...,q9n) € A, at time
zero, the evolution of the portfolio state from g to ¢ =
(qgt), . 7qg)) after ¢ periods proceeds according to the law
of motion,*

q® — P! tc{01,..). (1)

Equivalently, the probability of landing in state k after ¢
periods starting from the portfolio distribution q is

qupj

(k,t) e N x{0,1,...},

where the probability pgtk) of transitioning from s; to s in

exactly ¢ periods can be computed as follows:

t— 1
p]k = ijup( s p;k = 5]k7 t>1,

for all j,k € N, where 0;, = 1y—k is the standard

Kronecker symbol. In particular, it is pﬁ) = pji, and

Pt =[p\)], t>0.

Example 5. Given an estimated initial distribution q =
(20%, 30%, 0%, 10%, 20%, 20%) and monthly review, the law
of motion in Eq. (1) produces the 6-month forecast distribution
q® = qP% ~ (14.9%,24.0%,7.0%, 3.1%, 22.6%, 28.4%),
where P is specified in Ex. 4.

Remark 2. Given i € N, a state s; is absorbing if p; = 1.
The PPMC is irreducible if every state can be reached (with
positive probability) from every other state. If the PPMC
has absorbing states (e.g., the states C' and D can become
absorbing if pcc = ppp = 1), it cannot be irreducible.

Let f](,? be the probability that starting from the state s; a
project transitions for the first time to state sj after exactly
t > 1 steps. Then

ng—ij(kpkk )7 j,kEN, t> 1
=1

(0)

If we recall that p;,; = 1, then f;;) = pﬁ), and more
generally,

t t T t—1

TR W e
Thus, fix = > oy f](]? is the probability that the project

currently in state s; will ever reach state s;. As long as the
PPMC is irreducible, it is f;, = 1 for all j, k € N with i # 7,
and (f (,?)tzl describes the first-passage distribution for the

j
state s, conditional on the starting state s;.

Ttis qO = q.



B. Steady-State Distribution

The steady-state (or invariant) distribution 7« =
(m1,...,m,) in A, of an irreducible PPMC describes
the long-run probabilities of a project being in each of its n
possible states. Stationarity (so (") = 7r) requires by Eq. (1)
that?

7P =m, 2)

together with the normalization condition,

Som—L 3)

This distribution provides insights into the expected steady-
state proportions of projects in each phase, enabling better
resource allocation and strategic planning.

Remark 3. A regular PPMC is such that it is irreducible
and aperiodic,® which is equivalent to P* having only positive
entries for some finite ¢ [15, Thm. 4.1.2]. For example, given
P as in Ex. 4 this is satisfied for ¢ > 3. Any regular PPMC has
a steady-state distribution which assigns positive weight on all
states, so m; > 0 for all j € N. When the PPMC contains
absorbing states (so it is no longer regular), then the steady-
state distribution assigns zero probability on all nonabsorbing
states. For example, the states C' and D can become absorbing
if pcc = ppp = 1, in which case the invariant distribution 7
is such that 7y = --- = m4 = 0 (provided there are no other
absorbing states).

The invariant distribution gives insight into the project
portfolio status that is approached after many transitions, since

lim q(t) =qP' =,

t—o0

where g € A, is the initial project portfolio status.
Example 6. The invariant distribution of P in Ex. 4 is
7 = (0.1527,0.1841,0.0508,0.0223,0.1737,0.4162);

cf. footnote 5. This means that, for example, in the long run
15.27% of projects will be in the New state, 18.41% will be
actively progressing in Green, and so on.

C. Error Propagation

Since the time-t distribution ¢(*) in Eq. (1), which tends
towards the invariant distribution 7r, depends less and less
on the initial distribution g, estimation errors in the initial
distribution tend to taper out over time, contrary to the

SEgs. (2) and (3) yield the invariant distribution 7 = (0,...,0,1) TI~1,
where
p11—1 P12 Pln—1 1
o= P21 p22 —1 p23 p2n-1 1
Pnl Pnn—1 1

is obtained by replacing the last column in P — I with ones, where I denotes
the (n x n)-identity matrix. Indeed, 7 corresponds to the last line of TI 1.

The transition matrix P is aperiodic if there is no 7 > 0 and no i € N’
such that p'*) = 0 & t £ vr, v € {1,2,.. .} cf. [11, p. 387].

11

standard intuition of error propagation in systems. To see this,
consider a decomposition of the transition matrix, in the form
P = V7 'AV, where A = diag(1,)s,...,)\,) is a diagonal
matrix containing all eigenvalues of P,” and where

™

V2

V: e CTLX7L7

Un

with ve, . .., v, the (possibly complex-valued) eigenvectors of
P (in addition to 7). Then for any g € A,,:

n
q(t) = th = qV_lAtV =T + Zci)\ﬁvh t>0,
i=2
where (1,¢2,...,¢,) = gV 1. Thus, considering an erro-
neous estimate g of the initial distribution q, their difference
evolves according to
n
q" —q" = Z(Cz —&)Ajvi, >0,
=2

where (1,¢éz,...,é,) = gV 1. More importantly,

lg—alle <& = 49—V <& max |N|' <,
1€{2,...,n}

for any q,g € A,, t € {1,2,...}, and € € (0, 1). This means

that errors in the project portfolio state decrease exponentially.

Example 7. For ¢ = (256%, 25%, 5%, 10%,17%, 18%) € A,
and g as in Ex. 5, it is € = ||g—@||cc = 5%. Under P given in
Ex. 4, the maximum error in a 6-month-ahead forecast based
on q instead of q is ||(q — §)P%||oc =~ 1.53% < £f® ~ 3.46%,
where £ = max;c a6} |Ai| = 0.9403. Thus, an identification
error of 5% in each entry of the initial portfolio distribution
provides a better-than-3.5% error guarantee in the entries of
the 6-month forecast distribution.

D. Backcasting

Assume that the invariant distribution has full support (i.e.,
7t > 0) and that the current time-zero distribution is 7. If
the current state is s;, then the probability that at time —¢ the
project was in state s; is
-0
r) = 2L G jeN, te{l2,...}).

Ty
If we set R = [r;;] with r;; = TS ), then the backward analysis

corresponds exactly to the forward analysis. As before,

lim 79 = 17T i,jEN.

= T,
t—oo 5 7

Let g§2) be the probability that when currently in state s; a
project came from state s; without recurrence in exactly ¢ > 1
steps. Then, analogous to the forward analysis in Sec. III-A,

t—1
g =W STt te {2, @
T=1

7Exactly one eigenvalue of P is equal to 1, by Eq. (2), and the other n — 1
eigenvalues Az, ..., An € C are such that max;c (2 ... n} il < 1.



so, for example, gj(.i) = rﬁ) = (mi/7;) pij, for all j,k € N.

IV. PORTFOLIO PERFORMANCE

The analysis performed thus far to characterize the evolution
of a PPMC can be used to determine important KPIs of the
firm’s project portfolio, such as success rate, project duration,
failure time, the effectiveness of flagging projects, expected
transition times, and the overall project-resource use both in
terms of the cyclicality of project resources and the balance
of a random project unit compared to its line duties elsewhere
in the organization.

A. Long-Term Success Rate

The (long-term) success rate for projects is arguably dif-
ferent from the project-completion rate (7, 1) of the steady-
state distribution 7r introduced in Sec. III-B. The reason is
that at any given time the transitory (or stationary) project
portfolio may contain numerous ongoing projects (with states
in &) or projects in the planning phase (i.e., in the service state
sn). Hence, it is necessary to disable the resource feedback
loop in P by setting (pcn,pec) = (ponspop) = (0,1).
This converts the service states Completed and Discontinued
into absorbing states; cf. footnote 3. Computing the limiting
distribution,

») = lim g P!,

o= (.o ftn) = Jim

for the initial distribution ¢ = (1,0, ...,0) yields the success
rate wc (together with the failure rate 7p = 1 — 7o),
where P is the modified transition matrix which contains the
aforementioned adjustments to the last two rows of P.

Example 8. Based on P in Ex. 4, converting s¢ and sp into
absorbing states leads to the modified transition matrix,

0.7 015 0 0 0 0.10
0 079 010 0.02 0.08 0.01

0 020 0.55 0.20 0.03 0.02

0 025 020 038 0.05 0.12 |’

0 0 0 0 1 0

0 0 0 0 0 1

o>
Il

with limiting distribution « =~ (0,...,0,45.49%,54.51%),
implying an overall success rate 7o of just over 45%.%

B. Project Duration

The project duration T of successful (i.e., eventually com-
pleted) projects is the expected time it takes to go from state
Sq to state s¢ for the first time; similarly, the project duration
of unsuccessful (i.e., discontinued) projects is the expected
time to go from s to sp for the first time, without passing
via any other service state. That is using the same modified
transition matrix P as in Sec. IV-A with the corresponding

8This success rate is biased downward by the fact that some projects get
discontinued at the planning stage. To eliminate this effect, one can consider
the limiting distribution for projects conditionally on having been launched (in
the state sg), lim¢— o0 (0,1,0,0,0,0) Pt = (0,0,0,0,75.82%, 24.18%),
which then yields a much higher success rate, in excess of 75%.

first-passage distributions as introduced in Sec. III-A, it is
¢ = pce and Tp = pen, Where

Njkfzt

is the mean transition time between two states s; and s,
conditionally on eventually arriving in state s,.° Hence, the
overall project duration (no matter if unsuccessful or not) is

L/fk), gk EN, o)

Z (f(t) + 5D ) = fectc + (1 = fac) D,

t=1
amounting to a weighted average of the conditional project
durations.

Example 9. For the modified transition matrix P (without
resource feedback) in Ex. 8, we find 7¢ = uge =~ 10.8
periods and 7p = pugp ~ 12.7 periods, meaning that
discontinued projects linger in the organization for just over 12
months, longer than successfully completed projects (7 ~ 11.2
periods). Naturally, fac = 7ic ~ 75.82% and fgp = 7ip ~
24.18% (cf. footnote 8), so fac + fap = 1.

C. Failure Time

The average time to failure from the initiation of the project
corresponds to 7p = pgp as in Eq. (5). Conditional on having
been flagged as yellow, the time to failure becomes uy p,
and conditional on a red flag, it is ugp. The corresponding
calculations should be performed using the modified transition
matrix P discussed in Sec. IV-A.

Example 10. Given P as in Ex. 8, one obtains puyp ~ 10.4
periods for the expected failure time from the state sy, and
wrp ~ 7.5 periods for the expected failure time from the state
sgr. The average duration of unsuccessful projects 7p for this
transition matrix was computed in Ex. 9.

D. Flag Effectiveness

To determine the effectiveness of the traffic-light approach it
is useful to assess whether the flagged project states sy and s
serve as effective warnings over a given time horizon 7. For
this consider the random state S(G) of a project ¢ periods after
havmg been started in Green, so s( ) — Sqa, under the PPMC
P as in Sec. IV-A (obtained from P by disabling resource
feedback). The (T-period) sensitivity of flag i € {Y, R},
0" = P(s; € {35,...,50 V5
is the probability of the flag’s appearance, conditional on the
project having reached the absorbing state sp in 1" periods or
less. Conversely, the (T-period) specificity of flag i € {Y, R},

O =PB(s; ¢ {3550 MG

is the probability of flag i’s absence, conditional on the project
reaching successful completion (s¢) after T periods or less.

- SD)a

:SC)a

9Since the modified transition matrix P is not irreducible, it is generically

fac=1-fep =272 ofm



Using the first-passage distribution fz(;) with respect to P (as
introduced in Sec. III-A with respect to P), we obtain that

T—1 3(t) ~T—t (1)
o7 — 21 é‘v Z(T):l iD T>1
v T ¢ ’ =
Yi=1fep
and
T gt T—1 p(t) ~T—t p(r
90 — 21 fé')C ~ 2u=1 fé'z) SR T
v T A(t ) = 1,
S fE

for flag i € {Y, R}.

Example 11. Given the modified transition matrix P in Ex. 8,
the T-period (sensitivity, specificity)-tuples for the flag states
sy and sp are given in Table I.

TABLE I
T-PERIOD FLAG-EFFECTIVENESS INDICATORS FOR sy AND SRg.

T | o, ()

(41.2%, 86.2%)
(57.8%, 71.8%)
(64.5%,63.5%)
(71.6%,53.3%)

(05, 0%)
(38.6%,93.8%)
(51.5%, 85.1%)
(57.0%,78.9%)
(63.9%, 69.0%)

—
o

This means that for the given PPMC the flagged project
state Yellow exhibits a higher sensitivity paired with a lower
specificity than the flagged project state Red. The quality of
either flag as a predictor of medium-term project failure (say,
with a year) is only moderate.'?

E. Resource Cycles

The average duration of a successful project is 7¢ = pugco
as noted in Sec. IV-B. Its resources then spend o periods
outside projects.!! Conversely, the average duration of a failed
project (conditional on having been initialized) is 7p = ugp,
with its resources being redeployed elsewhere for an average
time of upg. Thus, the average cycle time is

Toae = e (Tc + poe) + (1 —7c) (7o + ppc),  (6)
by virtue of the ergodic theorem [16, Thm. 7].

Example 12. For P as in Ex. 4, Eq. (5) yields that ucg ~ 30
periods and ppg =~ 32.8 periods. Thus, the average cycle time
in Eq. (6) becomes T, ~ 41.9 periods, where 7¢,Tp are
given in Ex. 9.

F. Resource Balance

Assuming no systematic effects of project size on its out-
come, the ratio p of in-project resource use versus outside-
project resource use can be based on the partial cycle times
computed in Sec. IV-E, so

il

_ fete + (1 — 7o)
fo(tc +pee) + (1 —7c) (Tp + wpe)  Toae
10A project in state sy has after all a 67.2% success rate, and a project in
state s succeeds with 60.7% probability (using computations as in footnote 8
for starting distributions that assign probability 1 to either sy or sp).
"'We abstract from the fact that project planning may involve project

resources, although of course in some organizations this task is performed
by separate entities, which is the view we take here, for simplicity.

Example 13. In continuation of Ex. 12, we find p = 7 /7., &
26.8%, where 7 was provided in Ex. 9 and 7, in Ex. 12.
Hence, relative to this project portfolio, resources are used
a bit more than a quarter of the time in projects and about
three-quarters of the time outside projects (including project
planning as part of these outside activities).

V. CONCLUSION

The Markov chain-based approach presented in this paper
offers a structured, quantitative method for tracking and fore-
casting project portfolio status. By producing finite-time pre-
dictions and long-run state distributions, it enables decision-
makers to anticipate trends, manage risks, and optimize re-
source allocation. Forecasts are shown to be reasonably robust
to moderate errors in initial state assessments, strengthening
the methods practical value in real-world settings. A limitation
of this approach is its reliance on comparable project types,
for example, by assuming similar dynamics across IT and non-
IT projects. If such differences exist, the portfolio should be
divided into subportfolios of homogeneous projects. To ensure
reliable aggregation, the classification of ongoing projects into
transient states (in S) must also be applied consistently across
the organization. Beyond risk mitigation, this supports clearer,
more effective communication about project portfolio health.
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