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Abstract—A user’s benefit from the energy stored in a battery
over its lifetime depends on the time-varying characteristics of the
battery, which are in turn affected by the chosen usage behavior.
Both the capacity shrinkage and the number of lifetime cycles
are strongly impacted by the depth of discharge as a key decision
variable. Available models of battery lifetime are rather complex
and depend on many factors, such as temperature and other
physical particularities, which complicate the user’s decision
problem. We propose a simple, relatively robust approach for
determining an optimal robust depth of discharge, based on
a cycle-discharge curve and an unknown exponential capacity-
shrinkage curve. We characterize the optimal robust depth of
discharge and describe the implied performance guarantees.
A relative cost of robustness is obtained as the boundary of
the uncertainty set varies. The method provides an example of
parameter estimation based on minimizing the relative regret
caused by the implied decisions. In the special case where the
cycle-discharge curve is exponential as well, we find a closed-form
solution.

Index Terms—Battery aging management, depth of discharge,
lifetime user benefit, relative robustness, robust optimization

I. INTRODUCTION

How aggressively a battery is used on each recharging cycle
has an important influence on how long the battery lasts.
Conversely, using a significant portion of the available battery
capacity drives the economic return from the storage device
in the short run. At a constant capacity the user’s lifetime
payoff is proportional to the chosen depth of discharge (or
“cycle depth”), as well as the number of available cycles,
depending on the cycle-discharge curve. In reality, the capacity
shrinks from cycle to cycle—also as a function of the applied
cycle depth. Moreover, the user often does not have access
to reliable information about the battery characteristics and
its current condition. The latter tend to depend on physical
boundary conditions and “aging factors” which are generally
difficult to track and incorporate into useful battery-aging
models [1]–[4]. As a simple decision tool, we propose a
robust-optimization approach to determine a (relative) depth of
discharge, together with a performance guarantee with respect
to a family of (exponential) capacity-shrinkage curves, based
on the information available to the user. In case the given
cycle-discharge curve is also exponential (as, e.g., in [4] over
significant discharge intervals),1 our robust method yields a
closed-form solution.

1A piecewise-exponential dependence is sufficient, corresponding to a
piecewise-linear approximation of cycle-discharge curves in (lnn, δ)-space.

We evaluate the performance of a candidate parameter
estimate by a “performance index” which tracks a worst-
case “performance ratio.” The performance ratio is thereby the
user’s lifetime payoff at the optimal depth of discharge implied
by the candidate parameter, evaluated when a different true
parameter value determines the actual battery characteristics,
divided by the user’s ex-post optimal lifetime payoff achieved
when the missing parameter is perfectly known. Distribution-
free robust decision-making based on maximizing the mini-
mum payoff across realizations of uncertainty dates back to
Wald’s seminal work [5], which in turn relies on insights
from zero-sum games by von Neumann and Morgenstern [6].
Minimizing the difference of ex-post optimal and achieved
payoffs, termed minimax absolute regret, was proposed by
Savage [7] and has found a large following. Our relatively
robust decision-making approach, which can be viewed as fol-
lowing a minimax relative regret criterion is examined in [8].
In computer science, the general idea of a “competitive ratio”
has been used for the comparative performance evaluation of
algorithms (e.g., online vs. offline); see, e.g., [9]. Relatively
robust decisions have found some applications in economics
(see [10], [11]), and appear also useful in the context of
robustly optimizing the depth of discharge so as to maximize
the lifetime payoff from battery usage. The latter problem
belongs to the realm of battery management [12], which has
been investigated especially in the context of electric vehicles
[13], [14], due to the substantial role the battery price plays
in the cost of the entire vehicle.

II. MODEL

While our considerations are fairly general and should apply
to any type of physical battery, we consider here the battery
of an electric vehicle as a leading example. Such a battery
stores electric energy for the ultimate purpose of propelling
a car forward, thus converting stored energy into distance
travelled at the rate φ (measured in kWh/km). Travelled
distance provides value at the rate v to the user (measured
in dollars/km). On the other hand, recharging a battery has a
constant marginal cost c (measured in dollars/kWh). The main
reason for varying the depth of discharge δ ∈ [0, 1] which we
define here as the fraction of current battery capacity used
in a single discharge-charge cycle is that the battery lifetime
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depends negatively on it.2 Specifically, the cycle-discharge
curve n(δ), specifying the number of cycles over the entire use
life of a battery, is a decreasing and continuously differentiable
function of δ ∈ [0, 1]. The capacity K(i) (measured in kWh)
is nonincreasing in the cycle index i ∈ {0, 1, 2, . . .}, starting
with a given nominal capacity K(0) = K0 > 0, so

K(i) ≤ K(i− 1), i ≥ 1.

We first consider the case where K(i) ≡ K0 as a reference,
and then turn our attention to a more general case with
exponential capacity shrinkage. To avoid trivialities we assume
that c < v/φ, so that using the car makes economic sense, as
long as the battery is intact.

A. Base Case: Constant Capacity

Let K(i) = K0 for all relevant cycle indices i ≥ 0. The
user’s (undiscounted) lifetime payoff (measured in dollars) is

π0(δ) =

(
vδK0

φ
− c(δK0)

)
n(δ) =

K0

φ
(v − cφ) δn(δ),

for all δ ∈ [0, 1]. Hence, finding the lifetime-optimal depth
of discharge δ0 amounts to solving a problem that does not
actually depend on any parameters other than the shape of the
cycle-discharge curve n(·), since

δ0 ∈ arg max
δ∈[0,1]

π0(δ) = arg max
δ∈[0,1]

δn(δ). (1)

A solution to the preceding optimization problem exists, as
by the extreme-value theorem [15, p. 89] any continuous real-
valued function attains its maximum on a compact set. If the
maximizer is interior, i.e., in δ0 ∈ (0, 1), it needs to satisfy
the first-order necessary optimality condition (for δ = δ0):

n(δ) + δn′(δ) = 0.

The latter is equivalent to

ε(δ) = 1, (2)

where we refer to ε(δ) = −δn′(δ)/n(δ) ≥ 0 as the cycle-
discharge elasticity. Since the maximand vanishes for δ = 0,
it is straightforward to see that the optimal depth of discharge
δ0 is an element of (0, 1]. Moreover, if ε(·) (with ε(0) = 0
and ε(1) > 1) is nondecreasing, then the preceding optimality
condition is also sufficient.

Example 1. For n(δ) = n0 exp(−κδ), where n0 is the
maximum number of charging cycles (as δ → 0+), and where
κ > 0 describes an exponential decay, one obtains the cycle-
discharge elasticity ε(δ) = κδ, which increases linearly in δ.
The optimality condition (2), together with the imposed upper
limit (using a standard Lagrangian constrained-optimization
approach) implies δ0 = min{1/κ, 1} as the unique solution to
the cycle-discharge problem (1) in the base case.

2The relative depth of discharge (DoD), as a fraction current capacity
(instead of the nominal capacity K0), has been used by [12]. With capacity
shrinkage, a constant relative DoD implies a decreasing absolute DoD.

B. Use Case: Exponential Capacity Shrinkage

We now allow for a capacity decrease from cycle to cycle
at the (nonnegative) exponential rate λ, so

K(i) = K0 exp(−λi), i ≥ 0. (3)

The precise value of λ > 0 may not be known. Its robust
determination based on minimizing the relative regret for any
admissible incorrect estimate is discussed below. Using the
geometric-series formula, the user’s corresponding lifetime
payoff becomes

πλ(δ) =
K0

φ
(v − cφ) δ

n(δ)−1∑
i=0

exp(−λi)

=
K0

φ
(v − cφ) δ

1− exp(−λn(δ))

1− exp(−λ)
,

where by l’Hôpital’s rule it is limλ→0+ πλ(δ) = π0(δ), for all
δ ∈ [0, 1]. The user’s cycle-discharge optimization problem is
therefore to find

δλ ∈ arg max
δ∈[0,1]

πλ(δ) = arg max
δ∈[0,1]

δ
(
1− exp(−λn(δ))

)
. (4)

As in the base case, the objective has a maximizer δλ ∈ (0, 1],
which in the interior (0, 1) would have to satisfy the first-order
necessary optimality condition,

ε(δ) =
1− exp(−λn(δ))

λn(δ)
(< 1). (5)

For λ → 0+ this condition specializes to that in the base
case, where the cycle-discharge elasticity was required to be
unity (cf. Eq. (2)). In the case where capacity decreases from
cycle to cycle (with λ > 0), the cycle-discharge elasticity is
below 1 at the optimum.

Example 2. In the setting of Ex. 1, the optimality condition (5)
specializes to

δ =
1− exp(−λn(δ))

κλn(δ)
.

Given that (1 − e−x)/x < 1, for all x = λn(δ) > 0, the
preceding equation has an (interior) solution by the Brouwer’s
fixed-point theorem [16, p. 118], as long as κ ≥ 1. In that
case, the solution is unique because the unit slope on the left-
hand side strictly exceeds the slope on the right-hand side,
(1 − exp(−λn(δ)))/(λn(δ)) − exp(−λn(δ)), which lies in
the interval (0, 1/3), for any λn(δ) > 0.

C. Comparative Statics

An interesting, and perhaps somewhat counterintuitive, in-
sight is that the optimal solution δλ to the user’s cycle-
discharge problem in the general form (4) is increasing in λ,
as long as the corresponding optimal cycle count is nontrivial.

Proposition 1. Let δλ ∈ (0, 1] be an optimal solution to the
cycle-discharge problem (4). Then ∂δλ/∂λ ≥ 0, as long as
n(δλ) ≥ 1.



Proof. To obtain the claim, it is sufficient to establish that the
objective function πλ(δ) is supermodular in (δ, λ); see, e.g.,
[17]. Indeed, by direct differentiation one obtains that

sgn
(
∂2πλ(δ)

∂λ∂δ

)
= sgn

(
n(δ)− δn′(δ)(n(δ)− 1)

)
> 0,

as long as n(δ) ≥ 1, which concludes our proof.

The intuition for this result is that as the battery capacity
decreases faster across cycles, it becomes a more perishable
resource that is no longer worth preserving and thus should
be exploited more aggressively, as each current capacity level
will be succeeded by a significantly worse capacity level.

III. ROBUST DETERMINATION OF CAPACITY DECAY

Let us now reconsider the general cycle-discharge prob-
lem (4) when the capacity-shrinkage rate is only known to
lie in a range Λ = (λ1, λ2) with 0 ≤ λ1 < λ2 ≤ ∞.3 As a
consequence of Prop. 1, all possible solutions δλ to the cycle-
discharge problem (4) must lie in the set ∆ = [δλ1

, δλ2
].4

A. Robustness Evaluation

By the solution monotonicity in Prop. 1 one can associate
with any solution value in δ̂ ∈ ∆ a distinct candidate parameter
value λ̂, so δλ̂ = δ̂. This in turn suggests the following robust
approach where the performance of any potential estimate
λ̂ ∈ Λ is evaluated based on how well the implied action δλ̂
does in a scenario where λ ∈ Λ realizes, which in turn would
imply the ex-post optimal action δλ. Hence, we consider the
performance ratio,

ϕ(λ̂, λ) =
πλ(δλ̂)

πλ(δλ)
=
δλ̂
(
1− exp(−λn(δλ̂))

)
δλ
(
1− exp(−λn(δλ))

) ∈ [0, 1], (6)

for all λ ∈ Λ, which leads to the performance index,

ρ(λ̂) = inf
λ∈Λ

ϕ(λ̂, λ), (7)

for all λ̂ ∈ Λ, as the worst-case performance ratio with respect
to the ambiguity set Λ.5

Proposition 2. The performance index can be written in the
form

ρ(λ̂) = min
{
ϕ(λ̂, λ1), ϕ(λ̂, λ2)

}
, (8)

for all λ̂ ∈ Λ.

Proof. Fix λ̂ ∈ Λ. Then for λ = λ̂ the performance ratio
attains its maximum value, ϕ(λ̂, λ̂) = 1. We now show
that ϕ(λ̂, ·) is quasiconcave, which implies the representation
of the performance index in Eq. (8). For this, consider first

∂ϕ(λ̂, λ)

∂λ
∝
δλ̂
π∗λ

(
n(δλ̂)e−λn(δλ̂) − δλ

δλ̂
n(δλ)e−λn(δλ)ϕ(λ̂, λ)

)
,

3See [18, Sec. 1.3] for details on the (affine) extension of the real numbers,
R̄ = [−∞,∞].

4For λ2 = ∞ the limiting value, δ∞ = limλ→∞ δλ, exists because of
the monotone-convergence theorem for sequences [15, p. 55] (given that the
δλ-values are uniformly bounded by 1).

5Naturally, 1 minus the performance index corresponds to the (maximal)
relative regret, 1− ρ(λ̂) = supλ∈Λ

(
πλ(δλ)− πλ(δλ̂)

)
/πλ(δλ) ∈ [0, 1].

where π∗λ = πλ(δλ). As a direct consequence,

sgn

(
∂ϕ(λ̂, λ)

∂λ

)
= sgn

(
λn(δλ̂)

eλn(δλ̂) − 1
− λn(δλ)

eλn(δλ) − 1

)
.

On the other hand, the function x 7→ x/(exp(x) − 1) is
decreasing, for all x > 0. Thus, by setting x = λn(δλ) and
x̂ = λn(δλ̂), and realizing that (λ̂−λ)(x̂−x) ≤ 0 by Prop. 1,
one obtains that the slope of ϕ(λ̂, ·) has a single-crossing
property,

(λ̂− λ)
∂ϕ(λ̂, λ)

∂λ
≥ 0, λ ∈ Λ,

which in turn yields that ϕ(λ̂, ·) is quasiconcave.

B. Robust Parameter-Estimation Problem

The robust parameter-estimation problem becomes

λ̂∗ ∈ arg max
λ̂∈Λ̄

ρ(λ̂), (9)

where Λ̄ denotes the closure of Λ. The optimal performance
index, ρ∗ = ρ(λ̂∗), provides a relative performance guarantee,
in the sense that assuming λ̂∗ as the true parameter leads to
a maximum relative loss (with respect to an ex-post optimal
payoff) that cannot exceed 1− ρ∗. For example, if ρ∗ = 70%,
then the implied optimal battery discharge policy yields a
lifetime payoff π̂∗ = πλ̂∗(δλ̂∗) that is within 30% of the ex-
post optimal lifetime payoff π∗λ = πλ(δλ), for all possible
parameter values λ ∈ Λ. The next result characterizes an
optimal robust parameter estimate.

Proposition 3. The parameter λ̂∗ ∈ Λ̄ = [λ1, λ2] solves the
robust parameter-estimation problem (9) if and only if

ϕ(λ̂∗, λ1) = ϕ(λ̂∗, λ2). (10)

Proof. Fix λ ∈ Λ. Consider first the slope of the performance
ratio with respect to the candidate parameter λ̂ ∈ Λ,

∂ϕ(λ̂, λ)

∂λ̂
∝ δ̂′

π∗λ

(
1− e−λn(δλ̂) + δλ̂λn

′(δλ̂)
)
,

where δ̂′ = ∂δλ̂/∂λ̂ ≥ 0 by Prop. 1, and where π∗λ = πλ(δλ)
as before. Provided an interior solution δλ̂ ∈ (0, 1),6 the op-
timality condition (5), evaluated at the candidate parameter λ̂
(instead of the unknown true parameter λ) yields

−λ̂δλ̂n
′(δλ̂) = 1− exp(−λ̂n(δλ̂)).

Hence, we can conclude that

sgn

(
∂ϕ(λ̂, λ)

∂λ̂

)
= sgn

(
1− e−λn(δλ̂)

λn(δλ̂)
− 1− e−λ̂n(δλ̂)

λ̂n(δλ̂)

)
,

as long as δ̂′ > 0, and otherwise a slope of zero. But this
implies that

(λ̂− λ)
∂ϕ(λ̂, λ)

∂λ̂
≥ 0,

6For δλ̂ = 1, it is δ̂′ = 0, so ϕ(·, λ) becomes (locally) constant.



for all λ̂ ∈ Λ. As a result,

∂ϕ(λ̂, λ1)

∂λ̂
≤ 0 ≤ ∂ϕ(λ̂, λ2)

∂λ̂
; (11)

that is, the boundary performance ratios exhibit countervailing
monotonicities in the candidate parameter λ̂ ∈ Λ, with ϕ(·, λ1)
being nonincreasing and ϕ(·, λ2) being nondecreasing. Their
difference,

D(λ̂) = ϕ(λ̂, λ2)− ϕ(λ̂, λ1), (12)

must therefore be nondecreasing in λ̂ ∈ Λ. Note further that
D(λ1) = ϕ(λ1, λ2)− 1 ≤ 0 and D(λ2) = 1−ϕ(λ2, λ1) ≥ 0.
Since D(·) is continuous, by the intermediate-value theorem
[15, p. 93], there exists λ̂∗ ∈ Λ such that D(λ̂∗) = 0. By the
representation of the performance index in Eq. (8) of Prop. 2,
one obtains

ρ(λ̂) = min
{

0, D(λ̂)
}

+ ϕ(λ̂, λ1)

= min
{
−D(λ̂), 0

}
+ ϕ(λ̂, λ2),

for all λ̂ ∈ Λ. But this means,

ρ(λ̂) =

{
ϕ(λ̂, λ1), if D(λ̂) ≥ 0,

ϕ(λ̂, λ2), if D(λ̂) < 0.

“⇒:” We can now establish the sufficiency of Eq. (10). By
virtue of Eq. (11), the performance index ρ(·) is nondecreasing
on [λ1, λ̂

∗] and nonincreasing on [λ̂∗, λ2], which implies that
λ̂∗ solves the robust parameter-estimation problem (9).
“⇐:” If for a solution λ̂∗ of the robust parameter-estimation
problem (9) we have D(λ̂∗) > 0, then by Eq. (8) it is ρ∗ =
ρ(λ̂∗) = ϕ(λ̂∗, λ1) < ϕ(λ̂∗, λ2). But by the countervailing
monotonicities of the boundary performance ratios established
earlier, there exists a λ̂∗∗ ∈ (λ1, λ̂

∗), so that ϕ(λ̂∗∗, λ1) =
ϕ(λ̂∗∗, λ2) > ρ∗, which is a contradiction to ρ∗ being the
optimal performance index. Considering the possibility that
D(λ̂∗) < 0 leads to a similar impossibility. Hence, D(λ̂∗) = 0
must hold, thus establishing the necessity of Eq. (10) for any
solution λ̂∗ to the robust parameter-estimation problem (9).
This concludes our proof.

Example 3. Consider a user without any prior knowledge
about the capacity-shrinkage rate, corresponding to Λ = R+,
so λ1 = 0 and λ2 =∞. By Prop. 2 the performance index is

ρ(λ̂) = min
{
ϕ(λ̂, 0), ϕ(λ̂,∞)

}
= min

{
δλ̂n(δλ̂)

δ0n(δ0)
, δλ̂

}
.

Hence, Eq. (10) in Prop. 3 implies that the optimal robust
discharge rate is

δ̂∗ = δλ̂∗ = n−1(δ0n(δ0)),

taking into account that n(·) is invertible. In the setting of
Exs. 1 and 2, this result specializes to

δ̂∗ = min

{
δ0 −

ln δ0
κ

, 1

}
= min

{
1 + [lnκ]+

κ
, 1

}
≥ δ0,

where δ0 = min{1/κ, 1}, as determined in Ex. 1. The optimal
robust discharge rate δ̂∗ is decreasing in the cycle-discharge
decay rate κ > 1 (while it is constant, δ̂∗ = 1, for κ ≤ 1).

IV. COST OF ROBUSTNESS

To examine the consequences of shifts in the prior knowl-
edge about the unknown capacity-shrinkage parameter λ, we
assume that the bounds of Λ are strictly positive and finite,
so 0 < λ1 < λ2 < ∞. The following result summarizes the
comparative statics.

Proposition 4. (i) The optimal performance index ρ∗ is
nondecreasing in λ1 and nonincreasing in λ2. (ii) The optimal
robust parameter λ̂∗ is nondecreasing in the boundaries λ1

and λ2 of the parameter space Λ = (λ1, λ2).

Proof. (i) Fixing one of the two bounds of Λ, say λi, and
varying λj (with j = 3 − i) to its new value λ′j (without
crossing λi) immediately implies the conclusion based on
whether the new domain Λ′ is a subset of Λ or the other
way around, based on the fact that the worst-case performance
ratio in Eq. (7), and thus the performance index, can only
increase when the new optimization domain is a subset of the
previous optimization domain. (ii) By Prop. 3 any optimal
robust parameter λ̂∗ satisfies Eq. (10). Differentiating this
relation with respect to λi, for i ∈ {1, 2}, yields

D′(λ̂∗)
∂λ̂∗

∂λ1
=
∂ϕ(λ̂∗, λ1)

∂λ
(13)

and

−D′(λ̂∗)∂λ̂
∗

∂λ2
=
∂ϕ(λ̂∗, λ2)

∂λ
, (14)

where D(λ̂) is the difference of the boundary performance
ratios in Eq. (12). As shown in the proof of Prop. 3, it is
D′(λ̂) ≥ 0 for all λ̂ ∈ Λ. Furthermore, by the quasiconcavity
of ϕ(λ̂∗, ·), established in the proof of Prop. 2,

∂ϕ(λ̂∗, λ2)

∂λ
≤ 0 ≤ ∂ϕ(λ̂∗, λ1)

∂λ
,

so that Eqs. (13) and (14) together imply 7

∂λ̂∗

∂λi
≥ 0,

for i ∈ {1, 2}, thus proving our claim.

Part (i) of Prop. 4 says that the optimal performance
guarantee ρ∗ improves whenever Λ shrinks. The gradient,

∂ρ∗

∂λi
=
∂ϕ(λ̂∗, λi)

∂λi
, i ∈ {1, 2}, (15)

represents the firm’s (relative) “cost of robustness,” measured
as change in the performance index induced by a small
deformation of the parameter space.8 As might have been
instinctively obvious from the outset: additional parameter
ambiguity lowers the performance guarantee. Indeed, by quan-
tifying this intuition Eq. (15) provides an indicator for the

7By the characterization of the optimal robust parameters in Prop. 3,
naturally D′(λ̂∗) = 0 implies that the slope of λ̂∗ with respect to λi also
vanishes (for i ∈ {1, 2}).

8The “price of robustness” was popularized by [19]. The specific measures
employed may naturally vary across applications.



value of additional data, so as to inform decisions about
conducting further costly battery-discharge experiments that
could tighten the parameter space Λ. Part (ii) of Prop. 4
states that when the lower boundary λ1 of Λ increases,
for example, as a consequence of additional measurements,
then the optimal robust parameter λ̂∗ also increases (at least
weakly), and so does (by Prop. 1) the optimal robust depth of
discharge δ̂∗ = δλ̂∗ , with λ̂∗ in Eq. (9). Ceteris paribus, an
increase of the upper boundary λ2 has qualitatively the same
effect.

V. NUMERICAL EXAMPLE

Consider an electric vehicle (EV) whose (hypothetical lead-
acid) battery has the nominal capacity K0 = 100 kWh,
which converts electric energy at the rate φ = 0.2 kWh/km
into distance travelled. The user’s value of transportation is
v = 0.50 $/km, while the cost of electricity is given by
c = 0.25 $/kWh. The dollar-value of a full nominal charge
becomes η = (v− cφ)K0/φ = $225. Thus, the user’s lifetime
payoff, as a function of the depth of discharge δ ∈ [0, 1],
becomes

πλ(δ) = ηδ
1− exp(−λn(δ))

1− exp(−λ)
,

where the capacity-shrinkage rate λ ∈ Λ in Eq. (3) is unknown
to the user. For the cycle-discharge curve n(·) the user
identifies an exponential dependency n(δ) = n0 exp(−κδ) via
least-squares regression, with n0 = exp(8.9569) ≈ 7761 and
κ = 3.127997, based on the measurements in Table I.9

TABLE I
EMPIRICAL CYCLE-DISCHARGE CURVEa

Depth-of- Cycle Counts
Discharge (δ) n lnn

0.05 15000 9.6158
0.1 7000 8.8537
0.2 3300 8.1017
0.3 2050 7.6256
0.4 1475 7.2964
0.5 1150 7.0475
0.6 950 6.8565
0.7 780 6.6593
0.8 675 6.5147
0.9 590 6.3801
1 500 6.2146

aMeasurements for a lead-acid battery [20].

From the expression in Ex. 3 we can conclude that the
optimal robust discharge rate is δ̂∗ = 0.6843, leading to an
optimal performance index of the same value: ρ∗ = 68.43%.
The corresponding optimal robust parameter, determined so
that δλ̂∗ = δ̂∗, is λ̂∗ = 0.001499.

VI. CONCLUSION

For practical applications, it is useful to determine robust
decision rules without having to rely on very complex models,

9This numerical example serves as a proof of concept. A similar exercise
can be performed with appropriate data for other kinds of batteries (see, e.g.,
[4, p. 351]), such as lithium-ion which is the type usually deployed in EVs.

for which the data and boundary conditions might be very
difficult to determine. The present research, by focusing on
a simple, imperfectly known relationship, namely the depen-
dence of capacity shrinkage on the depth of discharge, exam-
ines a relatively robust approach which provides a performance
guarantee. In a numerical example, we obtain a performance
index of close to 70% for a robust parameter estimate without
any prior knowledge about its range (other than that the
capacity-shrinkage rate is positive). This means that no matter
what the true parameter might be, the proposed optimal robust
depth of discharge achieves a lifetime payoff within about 30%
of what could be achieved with perfect ex-post knowledge
about the parameter value. The optimization model here may
therefore serve as a building block for larger system models
that need to rely on less data and still remain useful in practice.
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