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Abstract—We introduce decision-based payoff (DBP)
uncertainty as a novel measure of informational uncertainty in
decision-making. It is defined over an observed sample of
nonnegative payoffs from past decisions, evaluated as a fraction
of an ex-post optimal payoff benchmark. The resulting
distribution of relative payoffs is supported on a subset of the
unit interval. DBP uncertainty, taking values between zero and
one, quantifies the average deviation from optimality: It
vanishes when optimal payoffs are always achieved and reaches
one when observed payoffs are consistently zero despite the
availability of strictly positive outcomes. The measure is
compatible with first- and second-order stochastic dominance
and enables meaningful comparisons across decision problems
with nonnegative payoffs. It is equal to the average relative
regret and vanishes for degenerate problems with singleton
action sets, regardless of the observed outcomes. A numerical
example involving investment in a call option under uncertain
asset prices illustrates the concept’s applicability and
interpretability.

Keywords—Data-driven decision making, relative regret,
robust optimization, uncertainty quantification

I. INTRODUCTION

We consider a decision problem in which a feasible action
must be selected to maximize an objective that depends on an
unknown state. In other words, the decision-maker must
choose an action despite the objective function not being fully
known. Such problems are common—for instance, when
formulating a business strategy without a fully specified goal,
or when investing in financial markets where key asset
parameters are uncertain.

Despite this ambiguity, the resulting uncertainty may be
limited if decisions can be found that consistently yield high
payoffs—relative to what would be achievable under full
information. This observation motivates the development of a
measure of decision-based payoff (DBP) uncertainty, derived
from imperfect observations of past decisions and outcomes.
Our central idea is to transform these observations into a
measure of relative performance, which then serves to
quantify the uncertainty that is most relevant to the decision-
making process.

A. Literature

The concept of decision-based payoff uncertainty builds
on classical decision theory, beginning with Wald’s maximin
principle [1] and the notion of absolute regret introduced by
Savage [2]. Absolute regret, later axiomatized by Gilboa and
Schmeidler [3], has seen extensive use in economics [4] and
operations research [5]. However, this robustness criterion
suffers from a lack of normalization and is therefore
unsuitable for reliably comparing different decisions.
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Moreover, as a decision criterion, it typically fails to guarantee
basic performance levels, such as, for example, positive
profits in a pricing problem [6]. By instead adopting a relative
measure of decision success, we obtain a natural
normalization to unity. Our approach builds on Weber [7],
who introduces a performance index based on relative regret,
and applies this concept to pricing and engineering design
problems [8, 9], as well as to general multicriteria decision-
making [10].

B. Outline

The remainder of the paper is organized as follows.
Section II presents the general decision problem and defines
the corresponding performance index. Section III introduces
the DBP uncertainty measure and relates it to relative
performance. Section IV discusses the consequences of
imperfect observations of payoff performance in constructing
the empirical relative performance sample. Section V
examines key properties of DBP uncertainty, including its
behavior under stochastic ordering and the composition of
decision problems. Section VI illustrates the use of the
measure in a numerical investment example. Section VII
concludes.

II. MODEL

A decision-maker aims to select an action x from a
(nonempty) compact action set X in order to maximize a
continuous objective function f: X X @ - R, which also
depends continuously on a state § € @, where the state
space O is a (nonempty) compact finite-dimensional set. By
the extreme value theorem, both the global minimum of the
objective function,

fo= min f(x,0),

T (x,0)exXx0

and the state-dependent decision-based optimum,
= me%g(f(x,ﬂ) =f(x(0),0), 6¢€0,
X

exist, where x(6) € X(0) = argmaxyexf(x,0) is an
optimal decision. Since one can always consider the shifted
function f = f — f,, which preserves all optimal decisions, it
is possible—without any loss of generality—to impose the
normalization

fo=0. €

Doing so restricts attention to nonnegative-valued objectives
that attain a value of zero in at least one contingency. The
resulting normalization eliminates ambiguity in the
interpretation of gain magnitudes, which is important, as our
approach to quantifying decision-based payoff uncertainty
relies on measuring relative performance.



To avoid trivialities, we further assume that the decision-
maker can always achieve a nonzero gain, i.e., that the
decision-based optimum is strictly positive:

@) >0, 6c€0. (2)

For any combination of decision and state, the performance
ratio is defined as

(0
(p(x' 8) - f*(g) )

This ratio is a well-defined number in the interval [0,1], so

»(X,0) € [0,1].

(x,8) e X x 0.

For any fixed decision x, the mapping ¢ (x,) is continuous by
the maximum theorem. Thus, by the extreme value theorem,
the performance index

p(x) =min¢(x,0), x€X,

is well-defined. Moreover, p(x) is continuous (again by the
maximum theorem) and its image over X is contained in a
“minimal” interval, that is,

{0,p"} c p(X) €[0,p7],
where the optimal performance ratio p* is strictly positive and
bounded below by the ratio of the worst to the best optimal
payoff. Specifically,
min f*(0) >0

p*E [B' 1], where[_) = @) .

As the lower bound for the optimal performance index is
strictly positive, it offers a nontrivial performance guarantee.

III. DECISION-BASED PAYOFF UNCERTAINTY

We assume that decision-based payoff uncertainty has
been encountered in N = 1 past attempts to maximize the
objective. From these attempts, a sequence of set-valued
samples Sy, ..., Sy has been recorded, where S; = (X, 0;),
with X; € X denoting a compact set of possible decisions,
and ©; C O a compact set of possible states that could have
given rise to the (possibly) experienced reward y; =
f(x;,6;) € R, in the i-th trial, for some (x;, ;) € X; X 0.
By continuity of the objective function f, the observed reward
must lie within the compact set

Y= (X, 0y,

This information structure reflects three intertwined types of
uncertainty: decision uncertainty, state uncertainty, and
reward uncertainty. These are not independent of one another
but are intricately linked through the payoff function. In
specific applications, knowledge of any two of the three
components determines the third. For instance, if @ € R and
f is strictly increasing in 8, then a precise reward observation
y; € R, (soY; = {y;}) and a precise record of the decision
x; € X in the i-th trial (so X; = {x;}) together imply the
existence of a unique state 6; € © such that y; = f(x;,6;),
yielding ©; = {6;} . From this, we extract the (relative)
performance samples

n= min (p(xil G)l) € [Oll]l i€ {1I ---rN}r

each representing a tight lower bound on the actual relative
performance achieved in trial i. Based on the collection R =
{ry, ..., 7y}, we define the empirical cumulative distribution
function (CDF) of relative performance as

i €{1,..,N}.

GGsIR) = (D Ii 1, 5 € [01],

Our measure of (observed) decision-based payoff
uncertainty (“DBP uncertainty”) is then defined as

1 1

UR) =J- G(s|R)ds =1 —f s dG(s|R), 3
0 0

where the second expression follows from integration by

parts. The term
1 1 N
dG(s|R) =— E =
fos s1R) N2, i=T

i=1
is simply the arithmetic mean of the performance sample.

Thus, DBP uncertainty is an affine function of the observed
average performance:

UR)=1—-r=u(r).

This value can be interpreted as the average relative regret
experienced by the decision-maker, arising from uncertainty
about the underlying state as well as from potential
imprecision in recalling past actions or rewards.

Example 1 (Perfect Information). 1f the decision-maker
observes 0;, then it is possible to select x; = x(6;) and attain
the payoff y; = f*(0,), so that r; = 1, assuming perfect recall
of decisions and rewards. Accordingly, DBP uncertainty
vanishes: U({1, ...,1}) = 0.

Example 2 (Relatively Robust Decisions). By maximizing
the performance index and thereby implementing a relatively
robust decision,

X* € argmax p(x),
XEX

the decision-maker secures, in any given state 8 € 0, a reward
f(x*,8) which, by construction, is bounded below by
p*f*(08). This guarantee further exceeds the uniform lower

bound e-min /7 (®)>0. In this case, the DBP uncertainty

satisfies U(R) <1 —p*, for any performance sample R
(again assuming perfect recall).

IV. IMPERFECT OBSERVATIONS

A key reason for shortcomings in relative payoff
performance is that the decision-maker cannot observe the
state 6 directly, but instead receives an informative random
signal Z with realizations in a measurable signal space Z.
Accordingly, the decision-maker’s policy is to choose an
action based on the signal, i.e., x = £(z), where

é(2)ei(z) = argmax f(x,z) c X,

and f: X x Z - R is a surrogate objective that reflects the
decision-maker’s treatment of uncertainty. This surrogate is
constructed so that, under perfect information, f -optimal
decisions coincide with f-optimal decisions. Specifically, if
there exists a map {: © =3 Z such that, for any 6 # 8,

P(Z€((©)|0) =1 and P(Z € (6)NLH)]6) =0,

then perfect identifiability of the state via the signal is
achieved. In that case, making f-optimal decisions implies f-
optimality:

P(E(Z) AX(O)#016)=0, 6€0,



where A denotes the symmetric difference and X(0) =
argmax f(x,0).
X

Let B(- |z) denote the posterior belief over © after observing
z, and let $(z|6) denote the sampling density of Z conditional
on 6. Standard examples of surrogate objectives include:

o Expected payoff (with belief distribution B(- |2)):
foun) = [ £ 0 dB@l);
)

o Worst-case payoff (with sampling density B(- |6)):
f(x,2z) = inf{f(x,0):0 € 0, B(2]|0) > 0};
e Negative worst-case absolute regret:
f(x,2) = —sup {f*(6) — f(x,6):6 € O, B(z]6) > 0}
o Updated performance index:
f(x,2) = inf{p(x,0):0 € 0, £(z]6) > 0}.
A. Relative-Performance Samples

Given a signal realization z;, the decision-maker
implements x; = £(z;) . Moreover, given a set-valued
observation Y; € R, of possible payoffs, the effectively
observed subset of states is

G)i = {9 € sz(xi, 6) € yl}

Hence, the effectively observed (posterior-averaged) relative
performance is

Ti @ (x;,0)dB (0|2, ..., zy).

POz, ., 2y) o,

The posterior distribution B(- |z, ..., Zy) is obtained from a
prior h and likelihood S via Bayes’ rule:

h(O) 1, B (216)
Joh (O, B (z16)d6’

The prior h can be informed by the set-valued state
realizations ©;, e.g., by (parametrized) maximum likelihood:

B(0|zq,...,2y) = 0 € 0.

9 € argmax L(9|0y,...,0y)
VET

N
1 (.
= argmax n(leilf@ih(ew) dG),

i=1

so that the estimated prior becomes h(-) = A(- |9) on 6.

B. Problem Inputs and Outputs
In summary, the inputs to the decision problem are:

e h(-|9),9 € T:aparameterized family of priors with
common support ©;

o [(-16), 6 €0 : the sampling distribution of Z
characterizing the decision-maker’s information;

®  Zi,...Zy; Yy, ..., Yy : observations of signals and
set-valued payoff realizations from N independent
experiments;

e f(,0),0 € 0: the state-dependent objective; and
f (-, z): the surrogate objective.

The outputs are:

e h(-) = h(- |9): the maximum-likelihood prior; and
B(: |24, -, Zy): the posterior distribution;

e Actions x; = §(z;) that maximize the surrogate
objective, producing relative-performance lower
bounds 7;;

e The empirical distribution G(- |R) of R = {r;} as
defined in Section III, along with the resulting
uncertainty measure U(R) = 1 — .

V. PROPERTIES

We now turn our attention to the properties of the proposed
DBP uncertainty measure, in terms of stochastic ordering and
composition of decision problems.

A. Stochastic Ordering

Since DBP uncertainty in (3) is the integral of the
empirical CDF of R, second-order stochastic dominance
(SOSD) [11] implies a weak ordering of DBP uncertainty. 4
fortiori, a stochastic increase via first-order stochastic
dominance (FOSD) [12] also induces a weak ordering of DBP
uncertainty (as FOSD implies SOSD). Because U is affine
in r, higher-order distributional changes that keep the average
relative performance fixed do not affect DBP uncertainty.

Proposition 1: Let R,R be two performance samples.
Then:

(i) G(+ |R) =rosp G(- IR) = U(R) < U(R); and
(i) G(‘ |17§) Fsosp G(- |R) = U(ﬁ) <U).

Similarly, a better observation of the decision problem
reduces DBP uncertainty. To see this, let Sy = {S;},, with
S =(X;,0;) =0, foralli € {1,..., N}, an observed sample
of past decisions. The sample Sy = {$;}\, is called sharper
than Sy (denoted by Sy S Sy ) if $;cS;, for all i€
{1,...,N}.

Proposition 2: Let R and R be performance samples
associated with Sy and Sy, respectively. Then: Sy S Sy =
U(R) < U(R).

A sharper sample observation leads to a decrease in DBP
uncertainty.

Proposition 3: For any given sample Sy = {S;}\.,, the
DBP uncertainty vanishes if §; = X(6;) X {6;}, for i€
{1,..,N}. If in addition 8 # 8 = X(0) # X(8), for all
6,8 € 0, then the preceding condition is also necessary for the
DBP uncertainty to vanish.

When only optimal decisions are being taken, a
performance sample with positive DBP uncertainty cannot
exist. On the other hand, if the state is unknown to the
decision-maker, then a zero DBP might only be observed if
two states could potentially have the same optimal action set.

B. Composition of Decision Problems

Consider now the combination of independent decision
problems. For this, assume that X = X; X X, and that
f(x,0) = fi(x,0) + fo(x,,0), where x; € X; and x, €
X,. Then



f1(x1,0) + f5(x;,0)

) + £ (6)

n {f1(x1,9) fz(xz:g)}

AR A
= min {@;(x1,0), p2(x3,0)},

so the sample average r of the joint performance r; € Rq,,
weakly exceeds the sample average of min {7”1,1"7‘2,1'}: with
(1,i,72,) € Ry X R, . The following result formalizes the

additive risk pooling of decisions in the presence of unknown
states.

@(x,0)

Proposition 4: U(R142) <1 — (%) >N  min {7"1,1': 7’2,1’}»

It is possible to obtain a similar result on multiplicative
risk pooling, with f(x,8) = f;(xy,0) f5(x,,8), for DBP
uncertainty based on the joint performance 7; € R;y, as
follows.

Proposition 5: U(R1xz) <1 — (%) >N, T1i T2,

In Prop. 5, for independent states, when 6 = (6, 6,) and
each f; depends on the state only through 6;, equality applies.

VI. APPLICATION

Consider the decision problem of investing in a European
call option with strike price k at market price p > 0, given
that the decision-maker has investment capital a > 0 .
Without loss of generality, we assume a zero risk-free interest
rate, which simplifies the analysis by removing any
dependence on the option’s time to maturity T > 0.!

Let ® = [64, 6,] denote the decision-maker’s subjective
range of feasible stock prices at maturity, with 6; < k < 6, —
p to avoid trivialities. The corresponding objective function is

f(x,0) = a+ (max{f —k,0} —p)x, (x,0) €EX X0,

where X = [0,x] denotes the set of feasible investment
amounts, and X =a/p ensures the normalization
condition (1). If the state 8 € ® is known, the optimal
decision is
x(0) =x- 1{9—K—p20}9 0 €0,

yielding the optimal payoff

f*(0) =a+ xmax{d —k—p,0} >0,
in accordance with assumption (2). The performance index
then becomes

. a+ (max{f — k,0} — p)x
() = min a + xmax{f0 —k —p,0}’
To interpret this ratio economically, we note that it measures
the worst-case ex-post efficiency, quantifying how well a
given investment x performs relative to the state-contingent
optimum that could have been achieved if & were known. The
numerator captures realized gains from investment, whereas
the denominator represents the ideal benchmark payoff that
one could obtain by acting with full knowledge of 6.

The decision-maker’s challenge is thus inherently
epistemic: Any departure from full knowledge incurs potential
performance loss, and the degree of this loss, aggregated
across a sample of decisions, forms the basis for DBP

x € X.

uncertainty. Importantly, the normalization to [0,1] ensures
that this measure retains interpretability across different
investment magnitudes or risk scales.

As shown in [7], due to the quasiconcavity of the
minimand in 8, the performance index p(x) is determined by
the minimum of the boundary ratios ¢ (x, 8,) and @(x, 6,):

p(x) = min{a px,a 6k p)?f}‘ x € X.

a+ (0, —k—p)x
The relatively robust decision X* maximizes the performance

index, occurring when the two boundary ratios are equal:

2 x x < x
x 1 p
1+(E+92—K—p)p 2+92—K—P
The decision X* balances caution and aggressiveness in an
environment of irreducible uncertainty. It represents a
strategic compromise between maximizing potential gains
when the state is favorable and minimizing regret when it is
not. From a policy perspective, it is a conservative decision,
chosen not because it yields the best possible outcome, but

E.

because it guarantees the best worst-case relative
performance.
This leads to the optimal performance ratio
* (/\*) a 92 — K
p =px)= = ,
_ D = 2(0,— k) —
P (e S

which lies in the open interval (%2, 1). The naive lower bound
p=min f "(©®)/max [ (@) =p/ (6, — k) is strictly smaller

than p*2 —At x = £*, for any performance sample R from
past investments, the realized DBP uncertainty satisfies
N 0,—k—p 1
UR)<1-p"= 200, 1) —p € (0,%%).

This upper bound is notable and reflects the payoff uncertainty
embedded in the problem, as the decision has to be taken in
the absence of state information. The conclusion is thus
twofold: First, relatively robust decisions provide the best
possible guarantees against relative regret, and second, the
generic impossibility of attaining ex-post optimal payoffs
means that DBP uncertainty is typically a nontrivial measure
that in practice takes on strictly positive values.

Example. Consider now a numerical example in which the
underlying stock price S; (with Sy = 100 at time t = 0)
follows a geometric Brownian motion for t € [0, T]. That is,
S; satisfies the stochastic differential equation
% = pdt + o dW,,
t

where W, is a Wiener process, 4 € R is the drift, and ¢ € R,
is the volatility of returns; see [13, Ch. 3]. The normalized
stock price satisfies

s = oo(n- ) o

—=exp||u——|t+oW,|, te][01],

So 2
and is thus log-normally distributed with parameters fi, =
(u — 02/2)t and 62 = o?t. The distribution has expectation

Spett and standard deviation Syetty/ et — 1. Its density is
given by

202t

(s) = ——ex [_ (In(s/So) — (1 — 0’2/2)t)2]
9= ot :

! All results in this section extend to the case with a risk-free rate 7 = 0 by
substituting a/§ for a and p/d for p, where § = exp(—rT) € (0,1] is the
discount factor.

(n-p)*

2 1 1e —n _ s
Using n = 6, — k, we find that p P @ o)n



for all (s,t) € Ry, X [0,T]. Given a critical value ¢ of the
normal distribution, the corresponding quantile of the log-
normal distribution is

SAt(O = Soexp(d; + 6;0),

where { € {1.282,1.645,2.326} corresponds to the 90th,
95th, and 99th percentiles, respectively.

ForT=1,u=0,0=0.3, and r =0, we obtain fi; =
—0.045 and 62 = 0.09 (with higher volatility ¢ = 0.5, we
get iy = —0.125 and 6% = 0.25). The associated vector of

critical values (§T(1.282),§T(1.645),§T(2.326)) is equal
to (140.4386,156.5961,192.0912), and it is equal to

(167.5313, 200.8725, 282.3564) for the larger volatility.
The Black-Scholes price for an option at the strike price x =
110 is p = 8.1410; at the higher volatility with the same
strike it becomes p = 16.0957.

-

Relative
Performance

11 - (DBP uncertainty)

Ex-Post
Payofl

Fig. 1. DBP Uncertainty: U(R) = 1— () Zi, 7 .

An example with capital @ = 1000 is illustrated in Fig. 1. The
stock follows a geometric Brownian motion as described. As
a signal, one may consider a perfect reading z of the stock
price at time t. As t varies from 0 to 1, the informativeness of
the signal increases from none to complete. This determines
the posterior distribution B(8|z) . The DBP uncertainty
decreases with increasing volatility (assuming prices adjust
via Black-Scholes), as the relative size of the investment
diminishes. One further observes that relatively robust
decisions implicitly reflect risk aversion.

VII. CONCLUSION

This paper introduces decision-based payoff uncertainty
(DBP uncertainty), a distribution-free measure for quantifying
the informational quality of decisions in the presence of
unknown states. The measure is rooted in evaluating the
relative performance of past decisions and is fundamentally
connected to relative robustness and mean relative regret. Five
key insights emerge. First, DBP uncertainty departs from
entropy-based approaches by focusing on observed payoffs
rather than belief distributions. This distinction is crucial:
Agnostic measures such as (relative) entropy may interpret
repeated poor outcomes (e.g., consistent zero payoffs) as
reflecting low uncertainty, whereas DBP uncertainty correctly

recognizes that, in such cases, the decision-maker has no
actionable information about the underlying state. Second, the
proposed measure exhibits robustness to limited sample
contamination. Given a sufficiently large dataset, DBP
uncertainty remains stable under the presence of a few
outliers. Third, by maximizing the performance index, the
decision-maker can systematically reduce DBP uncertainty.
This identifies relatively robust strategies that ensure the
highest guaranteed relative performance, even without precise
state information. Fourth, DBP uncertainty is formally
equivalent to mean relative regret. This equivalence not only
grounds the measure in established decision-theoretic
constructs but also lends interpretability: DBP uncertainty
reflects the average opportunity lost due to lack of
information. Finally, the measure is compatible with second-
order stochastic dominance (SOSD): Improvements in the
distribution of relative performance, whether through reduced
risk or stochastic shifts, weakly reduce DBP uncertainty.

Taken together, these features suggest that DBP
uncertainty offers a pragmatic reorientation in the assessment
of uncertainty. Rather than placing primary emphasis on the
internal coherence of beliefs, it shifts attention to the external
adequacy of decisions, as revealed through observable
outcomes. This is particularly valuable in environments where
probabilistic calibration is either infeasible or conceptually ill-
posed—for instance, in one-off strategic settings, opaque
markets, or poorly understood systems. In such cases,
traditional measures may understate the true difficulty of the
decision problem by relying on assumptions about belief
precision. DBP uncertainty, by contrast, gauges what the
decision-maker can justify not in theory, but in hindsight, that
is, how close their chosen actions came to what could have
been achieved under full knowledge.
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