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Abstract—We introduce decision-based payoff (DBP) 

uncertainty as a novel measure of informational uncertainty in 

decision-making. It is defined over an observed sample of 

nonnegative payoffs from past decisions, evaluated as a fraction 

of an ex-post optimal payoff benchmark. The resulting 

distribution of relative payoffs is supported on a subset of the 

unit interval. DBP uncertainty, taking values between zero and 

one, quantifies the average deviation from optimality: It 

vanishes when optimal payoffs are always achieved and reaches 

one when observed payoffs are consistently zero despite the 

availability of strictly positive outcomes. The measure is 

compatible with first- and second-order stochastic dominance 

and enables meaningful comparisons across decision problems 

with nonnegative payoffs. It is equal to the average relative 

regret and vanishes for degenerate problems with singleton 

action sets, regardless of the observed outcomes. A numerical 

example involving investment in a call option under uncertain 

asset prices illustrates the concept’s applicability and 

interpretability. 

Keywords—Data-driven decision making, relative regret, 

robust optimization, uncertainty quantification 

I. INTRODUCTION

We consider a decision problem in which a feasible action 
must be selected to maximize an objective that depends on an 
unknown state. In other words, the decision-maker must 
choose an action despite the objective function not being fully 
known. Such problems are common—for instance, when 
formulating a business strategy without a fully specified goal, 
or when investing in financial markets where key asset 
parameters are uncertain. 

Despite this ambiguity, the resulting uncertainty may be 
limited if decisions can be found that consistently yield high 
payoffs—relative to what would be achievable under full 
information. This observation motivates the development of a 
measure of decision-based payoff (DBP) uncertainty, derived 
from imperfect observations of past decisions and outcomes. 
Our central idea is to transform these observations into a 
measure of relative performance, which then serves to 
quantify the uncertainty that is most relevant to the decision-
making process. 

A. Literature

The concept of decision-based payoff uncertainty builds
on classical decision theory, beginning with Wald’s maximin 
principle [1] and the notion of absolute regret introduced by 
Savage [2]. Absolute regret, later axiomatized by Gilboa and 
Schmeidler [3], has seen extensive use in economics [4] and 
operations research [5]. However, this robustness criterion 
suffers from a lack of normalization and is therefore 
unsuitable for reliably comparing different decisions. 

Moreover, as a decision criterion, it typically fails to guarantee 
basic performance levels, such as, for example, positive 
profits in a pricing problem [6]. By instead adopting a relative 
measure of decision success, we obtain a natural 
normalization to unity. Our approach builds on Weber [7], 
who introduces a performance index based on relative regret, 
and applies this concept to pricing and engineering design 
problems [8, 9], as well as to general multicriteria decision-
making [10]. 

B. Outline

The remainder of the paper is organized as follows.
Section II presents the general decision problem and defines 
the corresponding performance index. Section III introduces 
the DBP uncertainty measure and relates it to relative 
performance. Section IV discusses the consequences of 
imperfect observations of payoff performance in constructing 
the empirical relative performance sample. Section V 
examines key properties of DBP uncertainty, including its 
behavior under stochastic ordering and the composition of 
decision problems. Section VI illustrates the use of the 
measure in a numerical investment example. Section VII 
concludes. 

II. MODEL

A decision-maker aims to select an action 𝑥  from a 
(nonempty) compact action set 𝒳  in order to maximize a 
continuous objective function 𝑓: 𝒳 × Θ → ℝ , which also 
depends continuously on a state 𝜃 ∈ Θ , where the state 
space Θ is a (nonempty) compact finite-dimensional set. By 
the extreme value theorem, both the global minimum of the 
objective function, 

𝑓0 = min
(𝑥,𝜃)∈𝒳×Θ

𝑓(𝑥, 𝜃), 

and the state-dependent decision-based optimum, 

𝑓∗(𝜃) = max
𝑥∈𝒳

 𝑓(𝑥, 𝜃) = 𝑓(𝑥(𝜃), 𝜃),  𝜃 ∈ Θ, 

exist, where 𝑥(𝜃) ∈ Χ(θ) =  argmax𝑥∈𝒳𝑓(𝑥, 𝜃)  is an
optimal decision. Since one can always consider the shifted 

function 𝑓 = 𝑓 − 𝑓0, which preserves all optimal decisions, it
is possible—without any loss of generality—to impose the 
normalization 

𝑓0 = 0. (1) 

Doing so restricts attention to nonnegative-valued objectives 
that attain a value of zero in at least one contingency. The 
resulting normalization eliminates ambiguity in the 
interpretation of gain magnitudes, which is important, as our 
approach to quantifying decision-based payoff uncertainty 
relies on measuring relative performance. 
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To avoid trivialities, we further assume that the decision-
maker can always achieve a nonzero gain, i.e., that the 
decision-based optimum is strictly positive: 

𝑓∗(𝜃) > 0,  𝜃 ∈ Θ. (2) 

For any combination of decision and state, the performance 
ratio is defined as 

𝜑(𝑥, 𝜃) =
𝑓(𝑥, 𝜃)

𝑓∗(𝜃)
, (𝑥, 𝜃) ∈ 𝒳 × Θ. 

This ratio is a well-defined number in the interval [0,1], so 

𝜑(𝒳, Θ) ⊆ [0,1]. 

For any fixed decision 𝑥, the mapping 𝜑(𝑥,⋅) is continuous by 
the maximum theorem. Thus, by the extreme value theorem, 
the performance index 

𝜌(𝑥) = min 
𝜃∈Θ

𝜑(𝑥, 𝜃),  𝑥 ∈ 𝒳, 

is well-defined. Moreover, 𝜌(𝑥) is continuous (again by the 
maximum theorem) and its image over 𝒳  is contained in a 
“minimal” interval, that is, 

{0, 𝜌∗} ⊂ 𝜌(𝒳) ⊆ [0, 𝜌∗],

where the optimal performance ratio 𝜌∗ is strictly positive and
bounded below by the ratio of the worst to the best optimal 
payoff. Specifically,  

𝜌∗ ∈ [𝜌, 1], where 𝜌 =
min 𝑓∗(Θ) 

max 𝑓∗(Θ)
> 0.

As the lower bound for the optimal performance index is 
strictly positive, it offers a nontrivial performance guarantee. 

III. DECISION-BASED PAYOFF UNCERTAINTY

We assume that decision-based payoff uncertainty has 
been encountered in 𝑁 ≥ 1  past attempts to maximize the 
objective. From these attempts, a sequence of set-valued 
samples 𝒮1, … , 𝒮𝑁  has been recorded, where 𝒮𝑖 = (𝒳𝑖 , Θ𝑖) ,
with 𝒳𝑖 ⊂ 𝒳  denoting a compact set of possible decisions,
and Θ𝑖 ⊂ Θ a compact set of possible states that could have
given rise to the (possibly) experienced reward 𝑦𝑖 =
𝑓(𝑥𝑖 , 𝜃𝑖) ∈ ℝ+  in the 𝑖-th trial, for some (𝑥𝑖 , 𝜃𝑖) ∈ 𝒳𝑖 × Θ𝑖 .
By continuity of the objective function 𝑓, the observed reward 
must lie within the compact set 

𝒴𝑖 = 𝑓(𝒳𝑖 , Θ𝑖),  𝑖 ∈ {1, … , 𝑁}.

This information structure reflects three intertwined types of 
uncertainty: decision uncertainty, state uncertainty, and 
reward uncertainty. These are not independent of one another 
but are intricately linked through the payoff function. In 
specific applications, knowledge of any two of the three 
components determines the third. For instance, if Θ ⊂ ℝ and 
𝑓 is strictly increasing in 𝜃, then a precise reward observation 
𝑦𝑖 ∈ ℝ+ (so 𝒴𝑖 = {𝑦𝑖}) and a precise record of the decision
𝑥𝑖 ∈ 𝒳  in the 𝑖 -th trial (so 𝒳𝑖 = {𝑥𝑖} ) together imply the
existence of a unique state 𝜃𝑖 ∈ Θ such that 𝑦𝑖 = 𝑓(𝑥𝑖 , 𝜃𝑖),
yielding Θ𝑖 = {𝜃𝑖} . From this, we extract the (relative)
performance samples 

𝑟𝑖 = min 𝜑(𝒳𝑖 , Θ𝑖) ∈ [0,1],  𝑖 ∈ {1, … , 𝑁},

each representing a tight lower bound on the actual relative 
performance achieved in trial 𝑖. Based on the collection ℛ =
{𝑟1, … , 𝑟𝑁}, we define the empirical cumulative distribution
function (CDF) of relative performance as 

𝐺(𝑠|ℛ) = (
1

𝑁
) ∑ 𝟏{𝑟𝑖≤𝑠}

𝑁
𝑖=1 ,    𝑠 ∈ [0,1]. 

Our measure of (observed) decision-based payoff 
uncertainty (“DBP uncertainty”) is then defined as 

𝑈(ℛ) = ∫ 𝐺(𝑠|ℛ)
1

0

𝑑𝑠 = 1 − ∫ 𝑠
1

0

 𝑑𝐺(𝑠|ℛ), (3) 

where the second expression follows from integration by 
parts. The term 

∫ 𝑠
1

0

 𝑑𝐺(𝑠|ℛ) =
1

𝑁
∑ 𝑟𝑖

𝑁

𝑖=1

= 𝑟 

is simply the arithmetic mean of the performance sample. 
Thus, DBP uncertainty is an affine function of the observed 
average performance: 

𝑈(ℛ) = 1 − 𝑟 = 𝑢(𝑟). 

This value can be interpreted as the average relative regret 
experienced by the decision-maker, arising from uncertainty 
about the underlying state as well as from potential 
imprecision in recalling past actions or rewards. 

Example 1 (Perfect Information).   If the decision-maker 
observes θi, then it is possible to select 𝑥𝑖 = 𝑥(θ𝑖) and attain
the payoff 𝑦𝑖 = 𝑓∗(θ𝑖), so that 𝑟𝑖 = 1, assuming perfect recall
of decisions and rewards. Accordingly, DBP uncertainty 
vanishes: 𝑈({1, … ,1}) = 0.  

Example 2 (Relatively Robust Decisions).   By maximizing 
the performance index and thereby implementing a relatively 
robust decision, 

𝑥̂∗ ∈ argmax
𝑥∈𝒳

 ρ(𝑥), 

the decision-maker secures, in any given state θ ∈ Θ, a reward 
𝑓(𝑥̂∗, θ)  which, by construction, is bounded below by
ρ∗𝑓∗(θ). This guarantee further exceeds the uniform lower

bound 
*min ( ) 0f    . In this case, the DBP uncertainty

satisfies 𝑈(ℛ) ≤ 1 − ρ∗,  for any performance sample ℛ
(again assuming perfect recall). 

IV. IMPERFECT OBSERVATIONS

A key reason for shortcomings in relative payoff 
performance is that the decision-maker cannot observe the 
state 𝜃 directly, but instead receives an informative random 
signal 𝑍  with realizations in a measurable signal space 𝒵 . 
Accordingly, the decision-maker’s policy is to choose an 
action based on the signal, i.e., 𝑥 = 𝜉(𝑧), where 

𝜉(𝑧) ∈ Ξ(𝑧) = argmax 
𝑥∈𝒳

𝑓(𝑥, 𝑧) ⊂ 𝒳,

and 𝑓: 𝒳 × 𝒵 → ℝ is a surrogate objective that reflects the
decision-maker’s treatment of uncertainty. This surrogate is 

constructed so that, under perfect information, 𝑓 -optimal
decisions coincide with 𝑓-optimal decisions. Specifically, if 

there exists a map 𝜁: Θ ⇉ 𝒵 such that, for any 𝜃 ≠ 𝜃̂, 

𝑃(𝑍 ∈ 𝜁(𝜃)|𝜃) = 1   and   𝑃(𝑍 ∈ 𝜁(𝜃) ∩ 𝜁(𝜃̂)|𝜃) = 0, 

then perfect identifiability of the state via the signal is 

achieved. In that case, making 𝑓-optimal decisions implies 𝑓-
optimality: 

𝑃(Ξ(𝑍)   △  Χ(𝜃) ≠ ∅ ∣ 𝜃) = 0,  𝜃 ∈ Θ, 



where △  denotes the symmetric difference and Χ(𝜃) = 

argmax 
𝑥∈𝒳

𝑓(𝑥, 𝜃). 

Let 𝐵(⋅ |𝑧) denote the posterior belief over Θ after observing 
𝑧, and let 𝛽(z|𝜃) denote the sampling density of Z conditional 
on θ. Standard examples of surrogate objectives include: 

• Expected payoff (with belief distribution 𝐵(⋅ |𝑧)):

𝑓(𝑥, 𝑧) = ∫ 𝑓
Θ

(𝑥, 𝜃) 𝑑𝐵(𝜃|𝑧); 

• Worst-case payoff (with sampling density 𝛽(⋅ |𝜃)):

𝑓(𝑥, 𝑧) = inf {𝑓(𝑥, 𝜃): 𝜃 ∈ Θ,  𝛽(𝑧|𝜃) > 0};

• Negative worst-case absolute regret:

𝑓(𝑥, 𝑧) = −sup {𝑓∗(𝜃) − 𝑓(𝑥, 𝜃): 𝜃 ∈ Θ,  𝛽(𝑧|𝜃) > 0};

• Updated performance index:

𝑓(𝑥, 𝑧) = inf {𝜑(𝑥, 𝜃): 𝜃 ∈ Θ,  𝛽(𝑧|𝜃) > 0}.

A. Relative-Performance Samples

Given a signal realization 𝑧𝑖  ,  the decision-maker
implements 𝑥𝑖 = 𝜉(𝑧𝑖) . Moreover, given a set-valued
observation 𝒴𝑖 ⊂ ℝ+  of possible payoffs, the effectively
observed subset of states is 

Θ𝑖 = {𝜃 ∈ Θ: 𝑓(𝑥𝑖 , 𝜃) ∈ 𝒴𝑖}.

Hence, the effectively observed (posterior-averaged) relative 
performance is 

𝑟̃𝑖  =
1

𝑃(Θ𝑖|𝑧1, … , 𝑧𝑁)
∫ 𝜑

Θ𝑖

(𝑥𝑖 , 𝜃) 𝑑𝐵(𝜃|𝑧1, … , 𝑧𝑁).

The posterior distribution 𝐵(⋅ |𝑧1, … , 𝑧𝑁) is obtained from a
prior ℎ and likelihood 𝛽 via Bayes’ rule: 

𝐵(𝜃|𝑧1, … , 𝑧𝑁) =
ℎ(𝜃) ∏ 𝛽𝑁

𝑖=1 (𝑧𝑖|𝜃)

∫ ℎ
Θ

(𝜃) ∏ 𝛽𝑁
𝑖=1 (𝑧𝑖|𝜃) 𝑑𝜃

,  𝜃 ∈ Θ. 

The prior ℎ  can be informed by the set-valued state 
realizations Θ𝑖, e.g., by (parametrized) maximum likelihood:

𝜗̂ ∈ argmax 
𝜗∈𝒯

 𝐿(𝜗|Θ1, … , Θ𝑁) 

= argmax
𝜗∈𝒯

 ∏ (
1

|Θ𝑖|
∫ ℎ̂

Θ𝑖

(𝜃|𝜗) 𝑑𝜃)

𝑁

𝑖=1

,

so that the estimated prior becomes ℎ(⋅) = ℎ̂(⋅ |𝜗̂) on Θ. 

B. Problem Inputs and Outputs

In summary, the inputs to the decision problem are:

• ℎ̂(⋅ |𝜗), 𝜗 ∈ 𝒯: a parameterized family of priors with
common support Θ;

• 𝛽(⋅ |𝜃) , 𝜃 ∈ Θ : the sampling distribution of 𝑍
characterizing the decision-maker’s information;

• 𝑧1, … , 𝑧𝑁 ; 𝒴1, … , 𝒴𝑁 : observations of signals and
set-valued payoff realizations from 𝑁  independent
experiments;

• 𝑓(⋅, 𝜃) , 𝜃 ∈ Θ : the state-dependent objective; and

𝑓(⋅, 𝑧): the surrogate objective.

The outputs are: 

• ℎ(⋅) = ℎ̂(⋅ |𝜗̂): the maximum-likelihood prior; and
𝐵(⋅ |𝑧1, … , 𝑧𝑁): the posterior distribution;

• Actions 𝑥𝑖 = 𝜉(𝑧𝑖)  that maximize the surrogate
objective, producing relative-performance lower
bounds 𝑟𝑖;

• The empirical distribution 𝐺(⋅ |ℛ)  of ℛ = {𝑟𝑖}  as
defined in Section III, along with the resulting
uncertainty measure 𝑈(ℛ) = 1 − 𝑟.

V. PROPERTIES

We now turn our attention to the properties of the proposed 
DBP uncertainty measure, in terms of stochastic ordering and 
composition of decision problems.  

A. Stochastic Ordering

Since DBP uncertainty in (3) is the integral of the
empirical CDF of ℛ , second-order stochastic dominance 
(SOSD) [11] implies a weak ordering of DBP uncertainty. A 
fortiori, a stochastic increase via first-order stochastic 
dominance (FOSD) [12] also induces a weak ordering of DBP 
uncertainty (as FOSD implies SOSD). Because 𝑈  is affine 
in 𝑟, higher-order distributional changes that keep the average 
relative performance fixed do not affect DBP uncertainty. 

Proposition 1: Let ℛ, ℛ̂  be two performance samples. 
Then: 

(i) 𝐺(⋅ |ℛ̂) ≽FOSD 𝐺(⋅ |ℛ)  ⇒  𝑈(ℛ̂) ≤ 𝑈(ℛ); and

 (ii) 𝐺(⋅ |ℛ̂) ≽SOSD 𝐺(⋅ |ℛ)  ⇒  𝑈(ℛ̂) ≤ 𝑈(ℛ).

Similarly, a better observation of the decision problem 

reduces DBP uncertainty. To see this, let 𝒮𝑁 = {𝒮𝑖}𝑖=1
𝑁 , with

𝒮𝑖 = (𝒳𝑖 , Θ𝑖) ≠ ∅, for all 𝑖 ∈ {1, … , 𝑁}, an observed sample

of past decisions. The sample 𝒮̂𝑁 = {𝒮̂𝑖}𝑖=1
𝑁  is called sharper

than 𝒮𝑁  (denoted by 𝒮̂𝑁 ⊆ 𝒮𝑁 ) if 𝒮̂𝑖 ⊂ 𝒮𝑖 , for all 𝑖 ∈
{1, … , 𝑁}. 

Proposition 2: Let ℛ  and ℛ̂  be performance samples 

associated with 𝒮𝑁  and 𝒮̂𝑁 , respectively. Then: 𝒮̂𝑁 ⊆ 𝒮𝑁  ⇒
U(ℛ̂) ≤ U(ℛ). 

A sharper sample observation leads to a decrease in DBP 
uncertainty.  

Proposition 3: For any given sample 𝒮𝑁 = {𝒮𝑖}𝑖=1
𝑁 , the

DBP uncertainty vanishes if 𝒮𝑖 = Χ(𝜃𝑖) × {𝜃𝑖}, for 𝑖 ∈
{1, … , 𝑁}.  If in addition 𝜃 ≠ 𝜃̂  ⇒  Χ(𝜃) ≠ Χ(𝜃̂) , for all 

𝜃, 𝜃̂ ∈ Θ, then the preceding condition is also necessary for the 
DBP uncertainty to vanish. 

When only optimal decisions are being taken, a 
performance sample with positive DBP uncertainty cannot 
exist. On the other hand, if the state is unknown to the 
decision-maker, then a zero DBP might only be observed if 
two states could potentially have the same optimal action set. 

B. Composition of Decision Problems

Consider now the combination of independent decision
problems. For this, assume that 𝒳 = 𝒳1 × 𝒳2  and that
𝑓(𝑥, 𝜃) = 𝑓1(𝑥1, 𝜃) + 𝑓2(𝑥2, 𝜃) , where 𝑥1 ∈ 𝒳1  and 𝑥2 ∈
𝒳2. Then



𝜑(𝑥, 𝜃) =
𝑓1(𝑥1, 𝜃) + 𝑓2(𝑥2, 𝜃)

𝑓1
∗(𝜃) + 𝑓2

∗(𝜃)

≥ min {
𝑓1(𝑥1, 𝜃)

𝑓1
∗(𝜃)

,
𝑓2(𝑥2, 𝜃)

𝑓2
∗(𝜃)

}

= min {𝜑1(𝑥1, 𝜃), 𝜑2(𝑥2, 𝜃)},

so the sample average 𝑟 of the joint performance 𝑟𝑖 ∈ ℛ1+2

weakly exceeds the sample average of min {𝑟1,𝑖 , 𝑟2,𝑖}, with

(𝑟1,𝑖 , 𝑟2,𝑖) ∈ ℛ1 × ℛ2 . The following result formalizes the

additive risk pooling of decisions in the presence of unknown 
states.  

Proposition 4: 𝑈(ℛ1+2) ≤ 1 − (
1

N
) ∑ min {𝑟1,𝑖 , 𝑟2,𝑖}

𝑁
𝑖=1 . 

It is possible to obtain a similar result on multiplicative 
risk pooling, with 𝑓(𝑥, 𝜃) = 𝑓1(𝑥1, 𝜃) 𝑓2(𝑥2, 𝜃),  for DBP
uncertainty based on the joint performance 𝑟𝑖 ∈ ℛ1×2 as
follows. 

Proposition 5: 𝑈(ℛ1×2) ≤ 1 − (
1

N
) ∑ 𝑟1,𝑖 𝑟2,𝑖

𝑁
𝑖=1 . 

In Prop. 5, for independent states, when 𝜃 = (𝜃1, 𝜃2) and
each 𝑓𝑗 depends on the state only through 𝜃𝑗, equality applies.

VI. APPLICATION

Consider the decision problem of investing in a European 

call option with strike price 𝜅 at market price 𝑝 > 0, given 

that the decision-maker has investment capital 𝛼 > 0 . 

Without loss of generality, we assume a zero risk-free interest 

rate, which simplifies the analysis by removing any 

dependence on the option’s time to maturity 𝑇 > 0.1 

Let Θ = [𝜃1, 𝜃2]  denote the decision-maker’s subjective

range of feasible stock prices at maturity, with 𝜃1 < 𝜅 < 𝜃2 −
𝑝 to avoid trivialities. The corresponding objective function is 

𝑓(𝑥, 𝜃) = 𝛼 + (max{𝜃 − 𝜅, 0} − 𝑝)𝑥, (𝑥, 𝜃) ∈ 𝒳 × Θ, 

where 𝒳 = [0, 𝑥‾]  denotes the set of feasible investment 

amounts, and 𝑥‾ = 𝛼/𝑝  ensures the normalization 

condition (1). If the state 𝜃 ∈ Θ  is known, the optimal 

decision is  

𝑥(𝜃) = 𝑥̅ ⋅ 𝟏{𝜃−𝜅−𝑝≥0},    𝜃 ∈ Θ,

yielding the optimal payoff 

𝑓∗(𝜃) = 𝛼 + 𝑥‾ max{𝜃 − 𝜅 − 𝑝, 0} > 0,
in accordance with assumption (2). The performance index 

then becomes 

𝜌(𝑥) = min
𝜃∈Θ

𝛼 + (max{𝜃 − 𝜅, 0} − 𝑝)𝑥

𝛼 + 𝑥‾ max{𝜃 − 𝜅 − 𝑝, 0}
,  𝑥 ∈ 𝒳. 

To interpret this ratio economically, we note that it measures 

the worst-case ex-post efficiency, quantifying how well a 

given investment x performs relative to the state-contingent 

optimum that could have been achieved if 𝜃 were known. The 

numerator captures realized gains from investment, whereas 

the denominator represents the ideal benchmark payoff that 

one could obtain by acting with full knowledge of 𝜃. 

The decision-maker’s challenge is thus inherently 

epistemic: Any departure from full knowledge incurs potential 

performance loss, and the degree of this loss, aggregated 

across a sample of decisions, forms the basis for DBP 

1 All results in this section extend to the case with a risk-free rate 𝑟 ≥ 0 by 

substituting 𝛼/𝛿 for 𝛼 and 𝑝/𝛿 for 𝑝, where 𝛿 = exp(−𝑟𝑇) ∈ (0,1] is the 

discount factor. 

uncertainty. Importantly, the normalization to [0,1] ensures 

that this measure retains interpretability across different 

investment magnitudes or risk scales. 

As shown in [7], due to the quasiconcavity of the 

minimand in 𝜃, the performance index 𝜌(𝑥) is determined by 

the minimum of the boundary ratios 𝜑(𝑥, 𝜃1) and 𝜑(𝑥, 𝜃2):

𝜌(𝑥) = min {
𝛼 − 𝑝𝑥

𝛼
,
𝛼 + (𝜃2 − 𝜅 − 𝑝)𝑥

𝛼 + (𝜃2 − 𝜅 − 𝑝)𝑥‾
} ,  𝑥 ∈ 𝒳. 

The relatively robust decision 𝑥̂∗ maximizes the performance

index, occurring when the two boundary ratios are equal: 

𝑥̂∗ =
𝑥‾

1 + (
𝑥‾
𝛼

+
1

𝜃2 − 𝜅 − 𝑝
) 𝑝

=
𝑥‾

2 +
𝑝

𝜃2 − 𝜅 − 𝑝

<
𝑥‾

2
. 

The decision 𝑥̂∗  balances caution and aggressiveness in an

environment of irreducible uncertainty. It represents a 

strategic compromise between maximizing potential gains 

when the state is favorable and minimizing regret when it is 

not. From a policy perspective, it is a conservative decision, 

chosen not because it yields the best possible outcome, but 

because it guarantees the best worst-case relative 

performance. 

This leads to the optimal performance ratio 

𝜌∗ = 𝜌(𝑥̂∗) =
𝛼

𝛼 + (1 −
𝑝

𝜃2 − 𝜅
) 𝑝𝑥‾

=
𝜃2 − 𝜅

2(𝜃2 − 𝜅) − 𝑝
 , 

which lies in the open interval (½, 1). The naïve lower bound 
* *

2min ( ) / max ( ) / ( )f f p  =   = − is strictly smaller

than 𝜌∗.2 —At 𝑥 = 𝑥̂∗, for any performance sample ℛ from

past investments, the realized DBP uncertainty satisfies 

𝑈(ℛ) ≤ 1 − 𝜌∗ =
𝜃2 − 𝜅 − 𝑝

2(𝜃2 − 𝜅) − 𝑝
∈ (0, ½). 

This upper bound is notable and reflects the payoff uncertainty 

embedded in the problem, as the decision has to be taken in 

the absence of state information. The conclusion is thus 

twofold: First, relatively robust decisions provide the best 

possible guarantees against relative regret, and second, the 

generic impossibility of attaining ex-post optimal payoffs 

means that DBP uncertainty is typically a nontrivial measure 

that in practice takes on strictly positive values. 

Example. Consider now a numerical example in which the 

underlying stock price 𝑆𝑡  (with 𝑆0 = 100  at time 𝑡 = 0 )

follows a geometric Brownian motion for 𝑡 ∈ [0, 𝑇]. That is, 

𝑆𝑡 satisfies the stochastic differential equation
𝑑𝑆𝑡

𝑆𝑡

= 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 ,

where 𝑊𝑡 is a Wiener process, 𝜇 ∈ ℝ is the drift, and 𝜎 ∈ ℝ+

is the volatility of returns; see [13, Ch. 3]. The normalized 

stock price satisfies 

𝑆𝑡

𝑆0

= exp [(𝜇 −
𝜎2

2
) 𝑡 + 𝜎𝑊𝑡] ,  𝑡 ∈ [0,1],

and is thus log-normally distributed with parameters 𝜇̂𝑡 =
(𝜇 − 𝜎2/2)𝑡 and 𝜎̂𝑡

2 = 𝜎2𝑡. The distribution has expectation

𝑆0𝑒𝜇𝑡 and standard deviation 𝑆0𝑒𝜇𝑡√𝑒𝜎2𝑡 − 1. Its density is

given by 

𝑔𝑡(𝑠) =
1

√2𝜋𝑡 𝜎𝑠
exp [−

(ln(𝑠/𝑆0) − (𝜇 − 𝜎2/2)𝑡)2

2𝜎2𝑡
], 

2 Using 𝜂 = 𝜃2 − 𝜅, we find that 𝜌∗ − 𝜌 =
(𝜂−𝑝)2

(2𝜂−𝑝) 𝜂
> 0.



for all (𝑠, 𝑡) ∈ ℝ++ × [0, 𝑇]. Given a critical value 𝜁  of the

normal distribution, the corresponding quantile of the log-

normal distribution is 

𝑆̂𝑡(𝜁) = 𝑆0exp(𝜇̂𝑡 + 𝜎̂𝑡𝜁),

where 𝜁 ∈ {1.282,1.645,2.326}  corresponds to the 90th, 

95th, and 99th percentiles, respectively. 

For 𝑇 = 1 , 𝜇 = 0 , 𝜎 = 0.3 , and 𝑟 = 0 , we obtain 𝜇̂𝑇 =
−0.045  and 𝜎̂𝑇

2 = 0.09  (with higher volatility 𝜎 = 0.5 , we

get 𝜇̂𝑇 = −0.125 and 𝜎̂𝑇
2 = 0.25). The associated vector of

critical values (𝑆̂𝑇(1.282), 𝑆̂𝑇(1.645), 𝑆̂𝑇(2.326))  is equal

to (140.4386,156.5961,192.0912) ,  and it is equal to 

(167.5313,  200.8725,  282.3564) for the larger volatility. 

The Black-Scholes price for an option at the strike price 𝜅 =
110  is 𝑝 = 8.1410 ; at the higher volatility with the same 

strike it becomes 𝑝 = 16.0957. 

Fig. 1. DBP Uncertainty: 𝑈(ℛ) = 1 − (
1

N
) ∑ 𝑟𝑖

𝑁
𝑖=1  .

An example with capital 𝛼 = 1000 is illustrated in Fig. 1. The 
stock follows a geometric Brownian motion as described. As 
a signal, one may consider a perfect reading 𝑧 of the stock 
price at time 𝑡. As 𝑡 varies from 0 to 1, the informativeness of 
the signal increases from none to complete. This determines 
the posterior distribution 𝐵(𝜃|𝑧) . The DBP uncertainty 
decreases with increasing volatility (assuming prices adjust 
via Black-Scholes), as the relative size of the investment 
diminishes. One further observes that relatively robust 
decisions implicitly reflect risk aversion. 

VII. CONCLUSION

This paper introduces decision-based payoff uncertainty 
(DBP uncertainty), a distribution-free measure for quantifying 
the informational quality of decisions in the presence of 
unknown states. The measure is rooted in evaluating the 
relative performance of past decisions and is fundamentally 
connected to relative robustness and mean relative regret. Five 
key insights emerge. First, DBP uncertainty departs from 
entropy-based approaches by focusing on observed payoffs 
rather than belief distributions. This distinction is crucial: 
Agnostic measures such as (relative) entropy may interpret 
repeated poor outcomes (e.g., consistent zero payoffs) as 
reflecting low uncertainty, whereas DBP uncertainty correctly 

recognizes that, in such cases, the decision-maker has no 
actionable information about the underlying state. Second, the 
proposed measure exhibits robustness to limited sample 
contamination. Given a sufficiently large dataset, DBP 
uncertainty remains stable under the presence of a few 
outliers. Third, by maximizing the performance index, the 
decision-maker can systematically reduce DBP uncertainty. 
This identifies relatively robust strategies that ensure the 
highest guaranteed relative performance, even without precise 
state information. Fourth, DBP uncertainty is formally 
equivalent to mean relative regret. This equivalence not only 
grounds the measure in established decision-theoretic 
constructs but also lends interpretability: DBP uncertainty 
reflects the average opportunity lost due to lack of 
information. Finally, the measure is compatible with second-
order stochastic dominance (SOSD): Improvements in the 
distribution of relative performance, whether through reduced 
risk or stochastic shifts, weakly reduce DBP uncertainty. 

Taken together, these features suggest that DBP 
uncertainty offers a pragmatic reorientation in the assessment 
of uncertainty. Rather than placing primary emphasis on the 
internal coherence of beliefs, it shifts attention to the external 
adequacy of decisions, as revealed through observable 
outcomes. This is particularly valuable in environments where 
probabilistic calibration is either infeasible or conceptually ill-
posed—for instance, in one-off strategic settings, opaque 
markets, or poorly understood systems. In such cases, 
traditional measures may understate the true difficulty of the 
decision problem by relying on assumptions about belief 
precision. DBP uncertainty, by contrast, gauges what the 
decision-maker can justify not in theory, but in hindsight, that 
is, how close their chosen actions came to what could have 
been achieved under full knowledge.  
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