COORDINATION AND INVENTORY MANAGEMENT
IN SUPPLY CHAINS

A DISSERTATION
- SUBMITTED TO THE DEPARTMENT OF MANAGEMENT
SCIENCE AND ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY v
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Hongxia Xiong
March 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 3253556

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3253556
Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(© Copyright by Hongxia Xiong 2007
All Rights Reserved

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I certify that I have read this dissertation and that, in my opinion, it
is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy. (/\Qﬂ/

Thomas A. Weber Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it
is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.
% /%,,./

Warren H. Hausman

I certify that I have read this dissertation and that, in my opinion, it
is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.
S e e

Hau L. Lee
(Graduate School of Business)

Approved for the University Committee on Graduate Studies.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

This dissertation focuses on coordination and inventory management in supply chains.
The three main chapters cover contract design, surplus extraction in multi-principal
multi-agent supply chains, and stock positioning for distribution systems with service
constraints. I review these three problems and summarize the contributions of this
work in Chapter 1.

Chapter 2 is based on the paper “Contract Design in Multi-Principal Multi-Agent
Supply Chains” which I co-wrote with my thesis advisor, Professor Thomas Weber.
This chapter is concerned with incentive alignment issues for decentralized decision-
making in a multi-principal multi-agent supply chain setting. A supply chain is co-
ordinated if the aggregate payoffs of all firms are maximized. Most of the operations
management literature studies parametric contracts to coordinate a single-principal
single-agent supply chain. Prat and Rustichini (2003) provide a foundation to study a
multi-principal multi-agent game. Applying their characterization of weakly truthful
equilibria, we provide a constructive approach to finding a set of nonlinear transfer
schedules that implement any socially efficient outcome as a weakly truthful equi-
librium. Our two-step solution approach is to first solve a reduced contract design
problem based on excess measures and next to transform the solution to actual trans-
fer payments. Our approach can be applied to a very large class of many-to-many
supply chain settings. Although the topic is motivated in the context of supply chain
management, the methods developed in this work can be applied in many other eco-
nomic applications such as political economy, industrial organization, and auction
theory. In addition, our results integrate existing contractual schemes that contain
ex-post provisions into a unified framework, and accommodate a broad range of other
vertical contracts such as ties and requirement contracts.

Chapter 3 is based on “Cooperative Bargaining in Multi-Principal Multi-Agent

Supply Chains,” a paper also co-written with Professor Thomas Weber. Significant

iv
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flexibilities exist in the design of coordinating contracts in Chapter 2 1. However, the
principals have a conflict of interest regarding who pays the agents less. As a natural
follow-up study of Chapter 2, Chapter 3 addresses surplus extraction problem, i.e.,
how much surplus the principals can extract from the agents in the multi-principal
multi-agent contracting game. We first show that the solutions to the reduced contract
design problem can fully determine the in-equilibrium net payoffs of the principals.
We then show that the set of attainable payoff vectors for the principals is convex.
In the special case of common agency with one agent, we provide some necessary
and some sufficient conditions under which each principal can obtain her maximum
possible payoff. We finally discuss how to find the Pareto frontier by numerical imple-
mentation. Several numerical experiments are conducted to illustrate the applications
of our results and provide insights on contracting in multi-principal multi-agent sup-
ply chains. We emphasize that the models and results we have developed can be
applied to a wide range of application settings beyond supply chain management.
Finally, Chapter 4 is based on the paper “Stock Positioning in Distribution Sys-
tems with Service Constraints,” which I co-wrote with Professor Ozalp Ozer. This
chapter addresses inventory allocation in a one-warehouse multi-retailer distribution
system subject to a service-level constraint at each retailer. We focus on a fill-rate
type of service level, which is defined as the fraction of demand that is met from
on-hand inventory at a retailer. The objective is to satisfy end customer demand
while minimizing the inventory holding cost by optimally allocating inventory among
the warehouse and multiple retailers. Because in practice distribution systems can
be very large and computational improvements can be very important, we concen-
trate on developing easy-to-use and easy-to-describe heuristics and approximations.
We first present an optimization algorithm, which provides a benchmark to evaluate
the performance of our heuristics and approximations. We next develop the Triple-
Search Heuristic, which is close-to-optimal, and the Newsvendor Heuristic, which is
in closed-form, easy to use and easy to describe. We also present closed-form ap-
proximations such as the Normal Approximation, the Newsvendor Approximation,
and the Distribution-Free Approximation. Finally, we present numerical experiments
that evaluate the performance of our heuristics and approximations, as well as provide
insights into distribution system design issues. In this, this chapter at least partially

fills a significant gap between theory and practice on inventory management.

1Recently, Weber and Xiong (2006) have extended the results in Chapter 2 to find all socially
efficient contracts in closed-form, allowing for both agent payoff externalities and payoff nonconcav-
ities.
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Chapter 1

Introduction

This dissertation studies two topics of supply chain management, coordination and
inventory management. Although the research topics on coordination are motivated
in a supply chain management setting, the results and approaches can be applied in
other settings such as political economy, industrial organization, and auction theory.

The organization of the dissertation is as follows. Chapter 1 presents the moti-
vation, reviews the problems, and summarizes our contributions. Chapters 2 and 3
treat the first topic on coordination in multi-principal multi-agent supply chains. The
second topic, stock positioning in a distribution system with service constraints, is

presented in Chapter 4, which can be read independently.

1.1 Motivation

Supply chains often consist of many participating firms, in part as a result of an in-
creasing trend in outsourcing business processes. Coordination of such multi-principal
multi-agent supply chains is important since it avoids aggregate efficiency losses across
all participating firms, due to, for example, double marginalization. Chapter 2 fo-
cuses on construction of a set of nonparametric bilateral contracts between principals

and agents that coordinate a two-echelon multi-principal multi-agent supply chain,
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CHAPTER 1. INTRODUCTION 2

while all involved firms maintain control over their own actions. Consider Coke and
Pepsi and their common retailers who compete in a common consumer market. The
question is how Coke and Pepsi, who act as principals, can noncooperatively design
incentive-compatible contracts that will make the retailers take socially efficient ac-
tions. Chapter 2 tries to find answers to this question in a complete-information
setting. In particular, we identify contract mechanisms that can be used to coor-
dinate multi-principal multi-agent supply chains. To achieve this, we first solve a
reduced contract design problem and then transform the solutions to find socially
efficient pricing schedules. It turns out that the principals have significant flexibil-
ity in coordinating a multi-principal multi-agent supply chain. A related question
is, how Coke and Pepsi can extract as much surplus as possible from their retailers
while coordinating the supply chain. Chapter 3 aims to answer this question. We
show that the principals’ net payoff vector is on the Pareto frontier!, which is found
by optimizing a weighted summation of the net payoffs of Coke and Pepsi over all
possible coordinating schemes.

In addition to coordination, maintaining the right inventory level at the right
location in a multi-echelon supply chain is a fundamental problem in supply chain
optimization. Tremendous progress in this subject has been made, but the formula-
tions and the methodologies developed in multi-echelon production and distribution
systems may be difficult to explain to non-mathematically oriented academics and
practitioners. Furthermore, in practice, distribution systems can be very large, and
computational improvement on optimal inventory allocation can be very important.
Chapter 4 focuses on developing easy-to-describe, close-to-optimal and robust heuris-
tics for efficient inventory management in multi-period, multi-product supply chains.
We first present an optimization algorithm that can serve as a benchmark to evaluate
the performance of the heuristics and approximations. Some of our approaches are

based on solving newsvendor-type problems and thus can be easily implemented on

1Pareto frontier is with respect to all the principals, i.e., the principals appropriate surplus from
the agents that cannot be increased for one principal without making another principal worse off.
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CHAPTER 1. INTRODUCTION 3

a spreadsheet. Our easy-to-implement heuristics and approximations allow further

insight into system design issues and enable managers to manage large-scale systems.

1.2 Overview

Before presenting the three studies, I provide an overview of each of the chapters
below. In the beginning of each chapter we include further motivation, a literature
review, and detailed descriptions of the problem environment. We discuss possible

future work at the end of each chapter.

1.2.1 Contract Design in Multi-Principal Multi-Agent
Supply Chains

Chapter 2 shows the design of non-parametric coordinating contracts in a multi-
principal multi-agent supply chain in a complete-information setting. Maximizing
the firms’ aggregrate surplus requires both vertical coordination through contracts
and implicit horizontal coordination without the use of anticompetitive practices.
Prat and Rustichini (2003) characterize weakly truthful equilibria in multi-principal
multi-agent games, which guarantee the noncooperative implementation of socially
efficient outcomes. In a two-echelon multi-principal multi-agent supply chain, when
all agents’ actions are contractible, payoff externalities among agents are additive,
and all gross payoffs are concave. Chapter 2 provides a construction of a set of non-
parametric socially efficient contracts. More specifically, we first find solutions to an
equivalent reduced contract design problem and then map the solutions to the original
contract design problem by an outcome-contingent transformation. The flexibility in
the design of the contracts depends substantially on how interdependent the payoffs
are in the supply chain. In the case of additively separable payoffs, any efficient

outcome can be implemented via a customizable outcome-contingent surplus-sharing
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CHAPTER 1. INTRODUCTION 4

contract. If payoffs are also concave, a simple affine contract can implement effi-
cient outcomes. In the presence of nonadditive payoff interdependencies, principals
need to propose requirements contracts which contain provisions with respect to an
agent’s actions for other principals. When payoffs in the supply chain are additive,
virtually all known commercial contracts can be employed by almost all principals
to coordiné,te a two-echelon multi-principal multi-agent supply chain. We find that
the coordinating solutions that have been proposed in operations management liter-
ature, such as quantity-dependent pricing (for example, two-part tariff contracts and
quantity-discount contracts) and royalty schemes (for example, buy-back contracts,
revenue-sharing contracts, quantity-flexibility contracts, and sales-rebate contracts)
can be unified into our nonparametric general contract design framework. Finally,
our results also accommodate a broad range of other vertical contracts such as ties
(discounts across products) and requirement contracts (such as resale price mainte-
nance and exclusive dealing). From the point view of practical implementation of
coordination through contract design, we find that affine contracts are generally not

desirable to principals.

1.2.2 Surplus Extraction in Multi-Principal Multi-Agent
Supply Chains

As a natural follow-up study of Chapter 2, Chapter 3 addresses surplus extraction
problem, i.e., how much surplus the principals can extract from the agents in the
multi-principal multi-agent contracting game. There is tremendous flexibility in de-
signing coordinating contracts, as the solution to a reduced contract design problem
is not unique (M x N unknowns with M + N constraints, where M denotes the
number of principals, and N denotes the number of agents), and the transformation
from the solution to a reduced contract design problem to pricing schedules is not

unique. One expects that the principals select a coordinating contract from multiple
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CHAPTER 1. INTRODUCTION 5

coordinating contracts to extract as much surplus as possible from the agents. To ad-
dress the surplus extraction question, we first show that the solutions to the reduced
contract-design problem completely determine the in-equilibrium net payoffs of the
principals. We can thus find the principals’ net payoff Pareto frontier by optimizing
the sum of weighted principal payoffs over all possible coordinating contracts. We
find that the attainable utility payoff set is convex.

When the Pareto frontier is unique or symmetric, we have also implicitly answered
the questions of what coordinating contracts the principals may choose and what the
in-equilibrium net payoffs are to the principals and the agents. In the special case of
common agency, we find that it is possible that each principal can obtain her maxi-
mum possible payoff. For a general multi-principal multi-agent contracting game, we
find the Pareto frontier of the principals’ net payofls by solving a linear programming
problem. Finally, we conduct numerical experiments to gain insights on contract
design, and surplus extraction in multi-principal multi-agent supply chains. In a ca-
pacity constrained example, we demonstrate that selecting a coordinating contract
from a complete set of coordinating contracts is of advantage to the principals, i.e.,
they can actually extract all the system surplus. In Cournot oligopoly examples with
common agency?, we illustrate that in the case of product substitutes, the princi-
pals can obtain their maximum attainable payoffs but cannot extract all the system
surplus. In the case of product complements, the principals cannot obtain their max-
imum possible payoffs but can extract all the system surplus. Although our results
and models are motivated by the coordination of multi-principal multi-agent supply
chains, they can be applied to multi-principal multi-agent games in other application

settings such as political economy, industrial organization, and auction theory.

2Common agency refers to a special case when there is only one agent who contracts with all
multiple principals.
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CHAPTER 1. INTRODUCTION 6

1.2.3 Stock Positioning in Distributions Systems with

Service Constraints

A transparent one-to-one relationship between a service-constrained model and a
backorder-cost model does not exist for multi-echelon inventory systems. Hence, since
the 1970s two separate streams of research have evolved: one dealing with backorder-
cost problems, the other one dealing with service-constrained problems. Chapter 4
investigates how to maintain the right inventory level at the right location in a multi-
echelon supply chain to deliver desired end-customer service levels while minimizing
inventory holding costs. In particular, we study a continuous-review distribution
system with one warehouse replenishing multiple retailers subject to fill-rate type
service-level constraints, who then satisfy stochastic customer demands through pos-
itive on-hand inventory. We assume that unsatisfied demand is back-ordered at each
location and that the warehouse applies a first-come-first-served inventory allocation
strategy. Both the warehouse and the retailers follow a base-stock policy based on
local inventory information. The warehouse replenishes from an outside source with
an ample supply. FEach shipment requires a leadtime but has no fixed costs. Each
location incurs a holding cost. The data are assumed stationary and the horizon is
infinite.

We provide an algorithm that optimally allocates stock to each location while
ensuring that fill-rate service requirements at the retailers are satisfied. Because
distribution systems can be very large in practice, and hence optimal solutions may
not be tractable for large-scale systems, we next focus on developing close-to-optimal,
robust, and easy-to-use heuristics and approximations. More specifically, we propose
two heuristics to allocate stock in a distribution system: the triple-search heuristic
and the newsvendor heuristic. The triple-search heuristic considers three feasible
inventory allocation strategies and selects the best. Extensive numerical study (over

530 problem instances) has found that this heuristic’s cost is on average 1.18% more
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CHAPTER 1. INTRODUCTION 7

than the best base-stock policy’s cost. It is computationally fast, and hence amenable
for real applications. The newsvendor heuristic solves 2J% newsvendor problems to
allocate inventory across the distribution system. Its cost is 18% more than that
of the best base-stock policy. This heuristic is not as accurate as the triple-search
heuristic, but it is computationally much faster, and simpler to use and describe.
The computational efficiency enables one to analyze large-scale systems that manage
thousands of SKUs. Finally, this heuristic also provides a step for developing a closed-
form approximation later on.

Next we propose three closed-form approximations. The main purpose of these
approximations is to predict the system’s performance. Our tests show that all three
approximations perform this task fairly well. Using these approximations we provide
insights into stock positioning and guantify, for example, how logistic postponement or
consolidation of retailers affects the distribution system’s performance. Compared to
the optimal algorithm and the heuristics, these approximations require much less data

and are easier to describe to non-mathematically oriented students and practitioners.

1.3 Contributions

The significance of our research is that it provides a constructive approach for finding
contracts that implement a socially efficient outcome in a two-echelon supply chain
consisting of multiple upstream firms and multiple downstream firms with complete
information. It also provides easy-to-understand and easy-to-implement means for
inventory management in large-scale distribution systems. Owur contributions are
summarized as follows:

First, we tackle the coordination problem in a multi-principal multi-agent supply
chain setting, which is, as far as we know, the first such effort in a supply chain

management context.

37 is the number of retailers in a distribution system.
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CHAPTER 1. INTRODUCTION 8

Second, we provide a general constructive approach to treat contract design in
multi-principal multi-agent supply chains. Our two-step solution provides the most
comprehensive way of understanding the contract design problem. For example, based
on our contract design framework, Strulovici and Weber (2004) have characterized
the Pareto coordinating contracts assuming payoff concavity, and Weber and Xiong
(2006) have found all socially efficient contracts in closed-form allowing for agent
payoff externalities and payoff nonconcavities.

Third, our treatment of contract design is nonparametric and thus our results
integrate existing contractual schemes that contain ex-post provisions into a unified
framework, and also accommodates a broad range of other vertical contracts such as
ties and requirement contracts.

Fourth, we take one step further in contract design to address surplus extraction
problem. By characterizing and computing the Pareto frontier of the principals’ payoff
set, we gain insights into what coordinating contracts the principals will possibly select
when multiple such contracts exist.

Fifth, the theoretic framework and results on coordination have a wide application
beyond supply chain management. For example, they can be applied to the analysis
of multi-principal multi-agent games in fields such as political economy, industrial
organization, and auction theory.

Sixth, the easy-to-describe and easy-to-implement heuristics and approximations
provide means for inventory management of large-scale systems.

Finally, the combination of the results developed in coordination and inventory
management has provided a basis to explore contract design among multiple firms

that manage distribution systems.
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Chapter 2

Contract Design in Multi-Principal
Multi-Agent Supply Chains

2.1 Introduction

In most modern supply chains a number of different organizations (“firms”) con-
tribute to the making and selling of products and services. In the eyes of the end
consumers some of these products and services may be substitutes and others comple-
ments, which naturally leads to payoff interdependencies, at least for the competing
firms downstream in the supply chain. Payoff interdependencies can also exist fur-
ther upstream as a result of the firms’ interactions with intermediate component
markets. Due to legal restrictions of “anticompetitive behavior,” horizontal interac-
tions between different upstream or different downstream firms are typically confined
to noncooperative market transactions, limiting the possibilities for explicit interfirm
coordination. In contrast to this, many verticol relations in a supply chain are gov-
erned by nonmarket contractual mechanisms which by their very nature allow a high
degree of interfirm coordination. Coordination in a supply chain is important since it
avoids efficiency losses due to double marginalization, which Spengler (1950) identi-

fied as a natural consequence of noncooperative behavior as long as the market price
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CHAPTER 2. CONTRACT DESIGN IN MPMA SUPPLY CHAINS 10

for end consumers reflects some monopoly power. Indeed, a supply chain is said to
be “coordinated” if it maximizes the aggregate net payoffs of all firms involved. Our
central research question is to identify contractual mechanisms that can be used to
coordinate multi-principal multi-agent supply chains. The latter terminology suggests
that supply chains — similar to firms (Jensen and Meckling 1976) — can be viewed
as a nexus of contracts in which principals (as the designers of the contracts) pro-
pose appropriate individually rational and incentive-compatible mechanisms to their
common agents. To capture some of the existing payoff externalities in supply chains
our model allows for a multitude of principals and agents, which engage in bilateral

vertical contracting.

2.1.1 Literature

Fuelled by an increasing trend to outsource certain productive activities, contract
design in supply chains has attracted great interest from practitioners and scholars
alike. Cachon (2003) provides an excellent survey of the extant literature. The pur-
pose of contract design generally consists of specifying a contractual mechanism that
coordinates a given supply chain while all involved firms maintain control over their
own actions. Most of the available results pertain to two-echelon single-principal
single-agent supply chains in which the agent takes a single-dimensional decision.
Coordinating solutions that have thus been proposed, including buy-back contracts
(Pasternack 1985), revenue-sharing contracts (Cachon and Lariviere 2002), quantity-
flexibility contracts (Tsay 1999), sales-rebate contracts (Taylor 2002), and quantity-
discount contracts (Jeuland and Shugan 1983, Moorthy 1987), generally consist of
parameterized reward schedules relating to the agent’s action (e.g., order quantity,

price, effort), as long as the latter is observable.! Here, in addition to admitting

!In models with asymmetric information the agent’s action may be hidden (“moral hazard”) or
either party may possess some private information (“hidden information”). We assume here that
outcomes are contractible in the sense that they are both observable and verifiable by a third party.
This presupposes a sufficiently high level of transparency in industries. It can be achieved (at least
approximately) if monitoring costs are sufficiently low or if the contractual output can be sufficiently
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multiple principals and multiple agents, which can be either upstream or downstream
in a two-echelon supply chain, we adopt a largely nonparametric approach with mul-
tidimensional actions.

In addition to the literature on serial two-echelon supply chains, there is some
work in operations management dealing with multiple upstream firms and a single
downstream firm (an “assembly system”), or, conversely, one upstream firm and mul-
tiple downstream firms (a “distribution system”). Carr and Karmarkar (2003) study
competition in multi-echelon supply chains with an assembly system structure. They
apply price-only contracts to achieve quantity coordination, i.e., the production quan-
tity of each supplier (upstream firm) equals that of the manufacturer (downstream
firm) who uses the suppliers’ outputs as its own input in fixed proportions. However,
their quantity coordination contract cannot achieve channel coordination. In a similar
spirit, Majumder and Srinivasan (2003) consider competing supply chains each with
a single supplier and multiple buyers (“supply trees”). The authors show that it is
possible to coordinate the individual supply trees using two-part tariffs (i.e., a linear
pricing schedule in addition to a fixed franchise fee). Bernstein and Federgruen (2005)
investigate a distribution system with competing retailers and random demand and
determine certain coordinating price-discount contracts. To the best of our knowl-
edge, we are the first to consider the contract design problem in a multi-principal
multi-agent framework in an operations management setting. Indeed, as Cachon
(2003) concludes, “[m]ore research is needed on how multiple suppliers compete for
the affection of multiple retailers, i.e., additional emphasis is needed on many-to-one
or many-to-many supply chain structures.”

In economics there has been work on principal-agent game in several directions.
Bernheim and Whinston (1986) investigate a game of “common agency” (contain-
ing multiple principals and a single agent) under complete information. They show

coalition-proof self-enforcing equilibria can be obtained by refining the set of Nash

well specified and measured between parties.
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equilibria. Their “weakly truthful equilibria” are guaranteed to exist and yield ef-
ficient outcomes. Segal (1999) considers a game with one principal and multiple
agents in which the agents’ payoffs are interdependent. The author shows that as a
result of the agents’ payoff externalities an efficient Nash equilibrium may not exist
in this game. Thus, when considering coordinating supply chain contracts, we need
to limit the structure of payoff interdependencies between agents to be separable in
each agent’s own and the other agents’ actions. The more recent work by Prat and
Rustichini (2003) studies a multi-principal multi-agent game (a “game played through
agents” ), much in the same vein as we do. They characterize pure-strategy equilibria
and provide necessary and sufficient conditions for the existence of an equilibrium
with an efficient outcome. Our approach somewhat generalizes the findings by Pratt
and Rustichini and focuses constructively on the design of general coordinating con-
tracts that can achieve an efficient outcome. In this we aim to bridge the gap between

the operations management framework and the economics literature.

2.1.2 Outline

The rest of the chapter is organized as follows. In Section 2.2 we first introduce the
general model and the underlying equilibrium concept. We then focus our discussion
on weakly truthful equilibria which yield efficient outcomes and thus coordinating
contracts. Based on Prat and Rustichini’s (2003) work we characterize weakly truthful
equilibria, guarantee existence, and show that our framework applies equally well to
two-echelon supply chain situations with supplier control or with buyer control. In
Section 2.3 we study efficient contract design. For this, it is sufficient to consider
a reduced contract design problem that expresses the equivalent original contract
design problem in terms of excess measures. In this framework we provide a number of
necessary and sufficient conditions for coordinating contracts. While strongest results
can be obtained under a minimum of payoff interdependencies, it is also possible to

solve the contract design problem in the very general case, as long as all principals’
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and all agents’ payoffs are concave. In Section 2.4 we discuss the application of
the general method to the coordination of supply chains and compare the results
to standard commercial contracts often used in practice. Finally, we conclude in

Section 2.5 with a discussion of the results as well as directions for future research.’

2.2 The Model

2.2.1 Preliminaries

Consider a setting in which principals can write outcome-contingent contracts with
a number of different agents. Let M = {1,...,M} and N' = {1,..., N} denote
the corresponding sets of M principals and N agents. After each principal m €
M (“she”) and each agent n € N (“he”) signs contracts with each other,? agents
noncooperatively implement an action (or “outcome”) r € X = &} x --- X Xn. The

m)M,N

n /mn=

outcome vector z = (x , contains each agent n'’s individual action vector z, =

(z},...,zM) € X, c RML which in turn is composed of M different L-dimensional
actions z'. His action set A}, is thereby a compact subset of Rf L which contains at
least one point to allow for the possibility of inaction. In a supply chain context it
is useful to think of a “trade” z7' as an L-dimensional vector of goods and services
flowing from agent n to principal m.

Each principal m designs a mapping t™ : X — 7™ from outcomes z to transfer
payments ¢"(z) directed at each agent n € . The choice of principal m’s transfer
payment domain 7™ thereby accommodates constraints reflecting the relationships
between principals and agents, and we assume that 7™ = T/™ x - - - x T, where each
T is either {0} or R, . If no contractual relationship exists between principal m and

agent n (cf. also Remark 3), then the n-th component of t™(z) could be constrained to

vanish, i.e., 7™ = {0}, otherwise 7™ = R. We assume in addition that principal m’s

2We allow for the possibility of “selective contracting” where some principals do not sign contracts
with some agents.
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Symbol Explanation

M=A{l,...,M} Set of Principals

N={1,...,N} Set of Agents

X=Xy x---x&n Set of Feasible Outcomes/Actions
T=T'x. - . xTM T =T"x...x T Set of Admissible Payments (7,* € {{0},R+})
c(x,T) Set of Continuous Functions f : X — T
= (™M | = (z,)), = (mﬁ)%’nNzl Feasible Outcome/Action (z € X)

t= ("M =t = (7 = (t7,t77) | Transfer Schedule (t € C(X,T))

A= (A?)ﬁ’ﬁ;l, A™ =% A7 A" =35 A7 | Excess Transfer Schedule

vm /™ /F™ Principal m’s Net/Gross/Excess Payoff
Un/tn/Gr Agent n’s Net/Gross/Excess Payoff
w=3 V"4t U, Total Surplus

Table 2.1: Some Notation.

transfer to agent n can be separated into direct and indirect reward components.

AssUMPTION 1 (TRANSFER SEPARABILITY) For any outcome x € X, the trans-
fert™(x) from principal m € M to agentn € N is separable, i.e., it can be represented
i the form

where 17, € C(X,, T,") and 7}, € C(X_,T7,) are appropriate continuous func-
tions mapping the outcome r = (x,,z_,) to agent n’s direct and indirect reward

respectively.

Assuming transfer separability renders each agent’s optimal action at the margin
independent of the compensation received by other agents. Each agent n cares about
his action z, € A}, and the sum of all transfers he obtains in equilibrium. His net
payoff is given by

Un(z;t) = un(z) + Y th(2), (2.1)

meM
where u,(z) is the payoff to agent n from the outcome = = (x,,z_,) when he takes

action z,, and all other players implement x_,,.
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Suppliers

Retailers
(Buyers)

Figure 2.1. General Two-Echelon Supply Chain Setup.

AsSUMPTION 2 (AGENT PAYOFF SEPARABILITY) Given any outcome x € X, each

agent n’s payoff can be written in the form

Un(Z) = Unn(Zn) + Un—n(T_pn),

where Upyn € C(X,,R) and up_—n, € C(X_n,R) are appropriate functions represent-
ing agent n’s self-generated payoff from his own action x,, and his externality payoff

through the other agents’ action x_, respectively.

Agent payoff separability together with transfer separability (Assumption 1) im-
plies that each principal, by changing one agent’s individual payoff, does not change
the actions implemented by other agents, since their marginal incentives are uncon-
nected. When selecting optimal remuneration schemes (contracts) for the different
agents, each principal cares about both her monetary payments and the agents’ ac-

tions. Let v™(z) be principal m’s gross payoff if action z is taken. If she offers the
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transfer schedule t™ = (¢7*,...,t%) and agents implement the outcome z, her net
payoff is

Vm(z; t™) = v™(z) — z t(z). (2.2)

neN

Our modelling framework is general enough to accommodate both positive and neg-
ative transfer payments corresponding to what we refer to as bottom-up (principals
downstream) or top-down (principals upstream) contracting (cf. Section 2.2.5). In
the terminology chosen by Grossman and Hart (1986) we will also refer to bottom-up
contracting as “buyer control” and to top-down contracting as “supplier control.” In
this context we consider as our leading example a two-echelon supply chain consisting
of S suppliers and R retailers (buyers) with retailers buying products from their up-
stream suppliers (cf. Figure 2.1).*> Depending on the balance of bargaining power in
the supply chain, the retailers could act as either principals or agents. In bottom-up
contracting when retailer (principal) m buys the quantity ™ of goods and services
from supplier (agent) n, we can expect t7 to be positive and our framework exactly
applies. In top-down contracting, when the supplier (principal) m sells a quantity vec-
tor z > 0 to retailer (agent) n, we might expect the transfer ¢ from principal m to
agent n to be negative, even though we earlier required that the payment domain 7,™
is a subset of R,. Nevertheless, we show in Section 2.2.5 that top-down contracting
can be simply accommodated in the given framework by converting transfers into
nonnegative payments ( “quantity discounts” or “rebates”) which are subtracted from
a large enough transfer (“undiscounted wholesale price”) in the opposite direction.
Hence, the distinction between buying and selling, between bottom-up or top-down
contracting, will prove insignificant for the results in this paper. In Section 2.4 we

discuss applications of both types.

3t & = {l,...,S5} is the set of suppliers and R = {1,...,R} is the set of retailers, then
(S,R) = (M, N) in the case of top-down contracting and (S, R) = (N, M) in the case of bottom-up
contracting.
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2.2.2 Equilibrium Concept

The sequence of events is as follows: First, each principal offers her vector of transfer
payment schedules to all agents simultaneously and noncooperatively. The transfer
payment schedules are publicly announced to all agents.* Second, the agents nonco-
operatively implement their most preferred actions. A pure-strategy equilibrium of

the two-stage game
G = {{M7N}7 {Vm(')7 Un(')}7 {C(XaTm)w Xn}}
is a subgame-perfect Nash equilibrium in which all principals and agents use pure
strategies.
DEFINITION 1 A pure-strategy equilibrium of the game G is a pair (£,2) € C(X,T) x

X in which (i) for everyn € N gwen any t € C(X,T) it s

Zn(t) € arg max Up(zn,T-n;t), (2.3)

TnEXp

and (ii) for every m € M given =™ € C(X,T~™) the relation

m V&™)t 2.4
Carg max VTEET,TT)ET) (2.4)

holds.

We limit our analysis to pure-strategy equilibria of G. If the equilibrium contracts
achieve coordination of the supply chain, it implements by definition an efficient

outcome (Cachon 2003).

DEFINITION 2 The outcome £ € X is efficient® if W(&) > W(z) for all z € X,

4The case in which contracting is bilateral and each agent is only informed about his own contract
terms with a particular principal is more delicate (cf. Segal and Whinston (2003) for an analysis of
such a situation with one principal and n agents).

5By “efficient” we mean that the aggregate benefits of principals and agents (constituting the
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where W(x) =3, cpr tn(2) + e v ().

The set of all efficient outcomes for a given supply chain (i.e., given the principals’
and agents’ payoff functions) corresponds thus to the set of maximizers of the total
surplus W on X, which by the Weierstrass theorem (Bertsekas 1995, p. 540) exists
and by Berge’s (1963) maximum theorem is compact valued. In what follows, we
assume that there is a consensus about which particular efficient outcome % is to
be implemented. In other words, parties should be able to communicate about (i.e.,
coordinate on) the outcome. In the special case when all parties’ payoff functions are
strictly concave (cf. Assumption 3 below) and the set of implementable outcomes X
is convex, there exists a unique efficient outcome Z.

Since we are considering a game with multiple principals, it is necessary to take
into account the possibility of coalition formation among principals. Note that such
coalitions may form noncooperatively, i.e., without binding contracts between the
principals. Such coalitional games have first been considered by Von Neumann and
Morgenstern (1944), who also coined the notion of a “stable equilibrium,” which is
such that all players want to join a coalition only if the resulting payoffs are not
dominated by any coalitional deviation. Bernheim et al. (1987) introduce (via a
recursive definition) the notion of a coalition-proof Nash equilibrium, which is self-
enforcing among the members of any coalition. As Bernheim and Whinston (1986)
demonstrate, to guarantee coalition proofness of a Nash equilibrium (in a game with
multiple principals and one agent) it is sufficient to guarantee that there are no prof-
itable coalitional deviations, which is achieved at what they term truthful equilibria.
Prat and Rustichini (2003), while restricting attention to efficient outcomes, apply
this notion to a game played through agents with multiple principals, analogous to

the one considered here. It is the latter definition that we choose to adopt.

producer system) are maximized ezcluding end consumers (on the product market) and further
upstream suppliers (on the component market), whose benefits we consider as exogenous to the
principal-agent system.
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DEFINITION 3 Principal m’s transfer t™ € C(X,T™) is weakly truthful relative to
the outcome £ € X if V™(Z;t™) > V™(z;t™) for allz € X.

If the principals’ equilibrium transfers are all weakly truthful relative to the out-
come Z (not necessarily assumed to be efficient), then no principal would prefer to
implement a different outcome with her transfer. Correspondingly, an equilibrium
where all the principals’ transfers are weakly truthful with respect to the same out-

come must be self-enforcing, i.e., coalition-proof as desired.

DEFINITION 4 A weakly truthful equilibrium (WTE) of the game G is a pair (£,%)
that is a pure-strategy equilibrium of G with outcome i and in which the transfer t™
of every principal m € M is weakly truthful relative to Z.

The notion of weak truthfulness is directly related to supply chain coordination,

since any outcome Z that is part of a weakly truthful equilibrium must be efficient.

PROPOSITION 1 An outcome % of a weakly truthful equilibrium (£,2) of G is efficient.

Since we are interested in supply chain coordination, we limit our attention to
weakly truthful equilibria, for which — it turns out — there exists a simple and useful

characterization.

2.2.3 Characterization of Weakly Truthful Equilibria

As Bernheim and Whinston (1986) and subsequently Prat and Rustichini (2003) in-
dicate, it is sufficient to consider nonnegative transfer payments when considering
weakly truthful equilibria. Nonnegative transfer payments are natural in a bottom-
up contracting situation with buyer control, as then typically positive payments are
made for any goods flowing from suppliers to buyers. Nevertheless, by a simple
change of variables it is possible to equivalently formulate the contracting problem
with nonnegative transfers in a top-down contracting situation with supplier control,
as is shown in Section 2.2.5. The following characterization of WTESs, which some-

what generalizes Prat and Rustichini (in the sense that we allow for separable agent
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payoff externalities), is later used to find contracts that implement a given efficient

outcome Z.

THEOREM 1 (CHARACTERIZATION OF A WTE) Under Assumptions 1-2 a pair (f, %)
arises in a weakly truthful equilibrium if and only if (i) it includes no indirect pay-
=0 for all (m,n) € M xN) and (i) the following three conditions

ments (i.e., i n—n

are satisfied:

V(E) = YA (Ea) 2 0™(E) = D (), (WT)

neN neN

for every principal m € M and every outcome x € X

Un,n(En) + Zt (£n) = Unn(2n) + Zt (AM)

meM meM

for every agent n € N with arbitrary action z, € X,,; and

Unn xn)+Zt (&n) = Jnax {unn mn)—}—Zt }, (PM)

iEM i#Em
for every principal m € M and every agent n € N.

The intuition of the equilibrium characterization in Theorem 1 is as follows: As a
consequence of Assumptions 1-2 principals cannot influence agent n’s actions through
transfers to different agents j # n. It follows that ¢, _,, must vanish so that only di-
rect reward components matter. The weak truthfulness requirement in Definition 3
can thus be rewritten in the form (WT). Given the principals’ equilibrium trans-
fer schedules £!,...,t™ the agents implement a Nash equilibrium. In other words,
the outcome £ = (£1,...,Zy) must be composed of element of the agents’ respec-
tive best-response correspondences, which by Assumption 2 is equivalent to requiring
that (AM) (“agent payoff maximization”) holds. Finally, in equilibrium each princi-

pal chooses her transfer schedules such as to minimize the cost of implementing the
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outcome £. In other words, since transfers are nonnegative by assumption, princi-
pal m has to pay agent n not more than this agent would obtain by implementing his
otherwise optimal action given that ¢]* = 0 and all other principals’ reward functions
stay in place. This is principal m’s “cost minimization” condition (PM) with respect

to agent n.

REMARK 1 As a consequence of Theorem 1 under Assumptions 1-2 at any WTE
the transfer from principal m to agent n depends only on agent n’s action. Thus, in
what follows we write ¢]'(x,) (instead of ¢, (x,) or £7}(z)) to denote this transfer.

Similarly we simply write u,(z,) instead of u, ,(z,) where possible.

2.2.4 Existence of a Weakly Truthful Equilibrium

Assumptions 1 and 2 ensure that externalities in the agents’ payoffs do not actually
influence their best actions. If one of these assumptions is not satisfied, then a
WTE of G may not exist. Indeed, Segal (1999) demonstrates in a common-agency
model with only one principal that there may not exist an efficient equilibrium when
externalities between agents are not separable. If all players’ payoffs are concave,

then a solution to the system (WT),(AM),(PM) without indirect transfers does exist.

AssuMPTION 3 (PAYOFF CONCAVITY) Principal m’s gross payoff v € C(X,T™)

and gent n’s gross payoff u, € C(X,,R) are concave for all (m,n) € M x N.

Prat and Rustichini (2003, Theorem 8) guarantee the existence of a weakly truth-
ful equilibrium under Assumptions 1-3. However, their existence proof, based on a
Banach-space generalization of Farkas’ Lemma (Aubin and Ekeland 1984, p. 144), is
highly nonconstructive and therefore offers no particular insights as to how to actually
design efficient contracts, the question of central practical importance. In Section 2.3
we provide a simple explicit equilibrium construction and thus resolve the question of
existence in a satisfying direct way. We also note that the payoff concavity (Assump-
tion 3) is not necessary for the existence of equilibria. In fact, some of our efficient

contract designs in later sections do not depend on this assumption.
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2.2.5 Standard Two-Echelon Supply Chain Modelling

At the end of Section 2.2.1 we have already pointed out that our model directly ap-
plies to bottom-up contracting and needs some slight modifications to accommodate
top-down contracting. For this consider a two-echelon supply chain with suppliers
(upstream firms) being the principals and the retailers (downstream firms) represent-
ing the agents. Note first that each supplier m’s gross profit function v™ and each
retailer n’s gross payoff function u,, is by assumption continuous on the compact set
of outcomes X and &), respectively, so that these functions are Lipschitz there. The
gross benefit (or revenue) that retailer n derives from z, is u,(z,). Each seller offers
a menu of contracts to each buyer. In a top-down contracting game the transfer pay-
ment goes from the buyers to the sellers, i.e., from the agents to the principals. In

this case we modify the payoffs of the buyers and the sellers as follows: First, choose

for each agent n a reference point #, = (%1,...,7¥) € A, and let
Un(Zp) = un(Ta) = Y WP AT(2 — E7), (2.5)
meM

where w* are appropriate positive constants and each A* € C (Ri, R) is convex and
such that
{2, 2;™) € Xy A2 — T7) > 0} = {Z,}.

nn
The functions A]" can be seen as functions that penalize deviations from the reference
point. The constants w]* and functions A} are chosen such that the slope around the
reference point is large enough (in absolute value) so that

Iy, = arg zl:lgﬁ U (@n).

In other words, given no transfer from any principal, agent n chooses %, as his strictly
preferred action. For instance, if Z7* is an interior local maximizer of u, on A, then

one might choose AT(z™ — ™) = ||z — Z™||2. In that case, if in addition the
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maximizer &, is global on X, then any positive constants w]* > 0 ensures that the

maximizer becomes strict. Defining principal m’s modified payoff by

0"(2) =0"(2) + Y WA (el - 27)
neN
ensures strategic equivalence of the game G in the modified payoffs with the original
game G. Indeed, note first that any efficient outcome Z of G is also an efficient out-
come of G and vice-versa, since total surplus W remains unaffected by the changes. In
addition, note that in the game with modified payoffs each agent n requires a strictly
positive transfer payment to implement any action other than Z,. Relation (2.5) to-
gether with the convexity of A™ implies that A7*(z™) is nonnegative for all feasible .

If we then consider the modified transfer
t (@) = th(zn) + W AT (2 — E7) > 0,

which is admissible (i.e., nonnegative) if ¢7* is, then the principals’ and the agents’ net
payoffs V™ and U, are identical in G and G. Note that for large enough wi, despite
the nonpositivity of ™ in the top-down contracting setting, the modified transfer #7

is always nonnegative (and thus admissible) in equilibrium.

REMARK 2 If X, = RML then with %, = 0it is possible to choose AT (z™—F™) = 2.

The resulting linearly augmented modified transfer
tr(@a) =t (zn) + wiay)

can be interpreted as (negative) quantity discounts t/*(z,) being offered by principal m

to agent n relative to an “expensive” wholesale price w)".

REMARK 3 (MissING LINKS) If a trading link between principal m and agent n in

the two-tier supply chain is missing (e.g., due to restricted international trade), i.e.,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. CONTRACT DESIGN IN MPMA SUPPLY CHAINS 24

when 7)™ = {0}, then agent n chooses his action z, independently of principal m.
More specifically, he selects an action z,, = (27, z,™) that maximizes his own payoffs,
given the proposed transfers by principals with trading links to him. As a result,
any efficient outcome & contains the component £*(Z;™) so chosen; moreover, by
principal m’s cost minimization (PM) her transfer ™ will vanish in equilibrium.

With this in mind, we can thus omit the special case of missing trading links in

the subsequent discussion, as it can be accommodated naturally in our framework.

2.3 Efficient Contract Design

In this section we study how efficient outcomes can be implemented in a supply chain
or other setting by an appropriate contract design. Our approach is nonparametric
and we are basically looking for a set of (nonlinear) transfers { = [7] that imple-
ment (f, Z) as a WTE. To accomplish this, we first simplify the problem of solving
the system (WT),(AM),(PM) by ignoring (PM) , which leads to a much simpler
equivalent “reduced contract design problem” to (WT)and (AM). Any solution to
the latter problem can then be mapped to a solution of the original problem by adding
appropriate constant transfers, such that the resulting equilibrium payment sched-
ules satisfy (PM) and the nonnegativity constraint. The flexibility in the design of
the contract depends substantially on how interdependent the payoffs in the supply
chain are. In the case of additively separable payoffs the flexibility is greatest. It
turns out that any efficient outcome can be implemented via a very customizable
outcome-contingent surplus-sharing contract (cf. Corollary 1). If in addition payoffs
are concave (i.e., Assumption 3 holds), then it is possible to implement efficient out-
comes using a simple affine contract. The situation becomes more complicated in the
presence of nonadditive payoff interdependencies, for which we discuss contracting

solutions in Section 2.3.3.
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2.3.1 Contract Design — General Results

Based on the characterization of weakly truthful equilibria, we now turn to the prac-
tical problem of designing contracts that implement an efficient outcome.® For this
we first consider a reduced contract design problem, the solution to which can be di-
rectly mapped to a solution to the original efficient contract design problem. Given
an efficient outcome £ € X, let F™(z) = v™(x) — v™(Z) denote principal m’s ezxcess
revenue from implementing z instead of Z, and let G,(2,) = Un(Zn) — un(z,) denote
agent n’s exrcess cost from taking an action z,, instead of Z,. If t™(z,) represents a
direct transfer from principal m to agent n contingent on his taking action z, € A,

then it is useful to consider the excess transfer,

A (@n) =ty (xn) — £7'(En), (2:6)

relative to agent n’s efficient action Z,. Thus, by only looking at deviations from the
efficient outcome # we can rewrite conditions (WT) and (AM) equivalently in terms

of excess measures, which yields

Fm—>" AT <0, (WT)
neN
for any principal m € M, and
Gn— Y AT >0, (AM?)
meM

for any agent n € N. In other words, at any efficient equilibrium of the underlying
game G there does not exist a more profitable outcome than & for any principal, and
any agent’s excess cost of implementing any action different from Z, outweighs the

excess transfer he could obtain, which thus keeps him from deviating. We call the

6 Any such outcome can be determined as a maximizer of W on X' (cf. Definition 2).
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problem of finding a matrix function
A = [A7] € O(X,RM*N),

whose elements satisfy the system (WT’),(AM’) of M + N inequalities on X, the
reduced contract design problem. Note that a solution to the reduced contract design
problem is generally not unique and does not represent an excess transfer of the
form (2.6) which by its very definition vanishes at £. The following result describes a
class of solutions up to a constant matrix (at &), so that without loss of generality it is
possible to restrict attention to solutions to (WT’),(AM’) that also satisfy A(Z) = 0,

a necessary condition for representing excess transfers of the form (2.6).

PROPOSITION 2 (%) Any solution A to the reduced contract design problem (WT’),(AM’)

satisfies

D AL(En) =) AT(E;) =0, (2.7)

1EM JeN
for all (m,n) € M x N. (ii) If A is a solution to (WT’),(AM’) and § € RM*VN s
a constant matriz, then A + & also solves the reduced contract design problem if and

only if

d s=>Y6r=0, (2.8)

1EM jeEN

for all (m,n) € M x N.

Proposition 2 implies that the excess transfer A(z) = A(zx) — A(%) (satisfy-
ing A(Z) = 0) is a solution to the reduced contract design problem, if only A solves the
system of inequalities (WT"),(AM’).” Thus, in everything that follows we only con-
sider solutions to the reduced contract design problem that satisfy A(Z) = 0 without
having to impose this condition as an extra constraint in the search for a solution. If

such an excess transfer matrix A has been found, then as a consequence of Theorem 1

"Note that § = —A(#) satisfies (2.8) as a direct consequence of (2.7).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. CONTRACT DESIGN IN MPMA SUPPLY CHAINS 27

the function

ta(zn) = A7 (2a) + a2,

with o™ € R, being some appropriate nonnegative constant, is a candidate equi-
librium transfer from principal m to agent n. The constant o) corresponds to the
payment contingent on the equilibrium outcome, i.e., t7(Z,) = o2

In addition to the reduction of the solution space to solutions that vanish at the
efficient outcome, we also obtain that the set of solutions to the reduced contract

design problem is convex.

PROPOSITION 3 Given any two solutions A and A to the reduced contract design
problem (WT’),(AM’), the convex combination AA + (1 — M)A is also a solution, for
any A € (0,1).

We next state the key result for the design of efficient multi-principal multi-agent

contracts, given any solution to the reduced contract design problem.

THEOREM 2 (EFFICIENT CONTRACT DESIGN) Under Assumptions 1-2, if the ez-
cess transfer matriz A = [AT] solves the reduced contract design problem (WT’),(AM’)
implementing the efficient outcome &, then a WTE of the multi-principal multi-agent
game is gwen by (f,%) with

f,':‘(xn) = A?(zm J7) — min A;”(xn,ﬂ;" (2.9)

Zn€An

and

AT (@n; I77) = A7 (2n) + I7(20) (Gn(xn) - Ai(xn)) (2.10)

1EM

for all (m,n) € M x N and arbitrary 97 € C(X,,[0,1]) satisfying >, .\ 0 =1.

The last result is essential for finding coordinating contracts implementing any
given efficient outcome . It allows for the solution of a reduced contract design prob-

lem (WT”),(AM’) instead of the original contract design problem based on (WT),(AM),
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and (PM). Any solution A of the reduced contract design problem can then be
mapped to a solution of the original problem by the outcome-contingent transforma-
tion (3.6)(3.7). The modified transfer matrix A = [A™] also satisfies the reduced
contract design problem (W'T’),(AM’). It is remarkable that under the transforma-
tion (3.6)—(3.7) the constant nonnegative shifts

a™(¥™) = — min AT(z,;97) >0 (2.11)

Tn€AXn

of the modified excess transfers AZ correspond exactly to the amounts transferred
from principal m to agent n in equilibrium. These amounts generally depend on the
outcome-contingent convex combination selected in (3.7). For each agent n € N the
principals are thereby in a conflict about who should pay him less, since the higher 977",
the lower principal m’s transfer to agent n in equilibrium. If for principal m the
weight U7 = 1, her equilibrium transfer to agent n is indeed as small as possible,
given the solution A to the reduced contract design problem (WT”),(AM’).

If all gross payoffs in the system are concave and differentiable, then we can state

sufficient conditions for a solution to the reduced contract design problem as follows:

PROPOSITION 4 Let all principals’ and all agents’ payoff functions be twice differen-
tiable. Under Assumptions 1-8 a twice differentiable excess transfer matriz A solves

the reduced contract design problem (WT’),(AM’) if

V2™ —-A™ <0 and V(v™—A™)(&) =0, (WT”)
for any principal m € M, and

V2 (up+0,) <0 and V(u,+ A)(%E,) =0, (AM”)

for any agent n € N, whereby A™ =37\ AT and Ay = 35, 04 A%
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Conditions (WT"”),(AM”) can be easily checked, which contributes to the practical
importance of Proposition 4. In what follows we sometimes use this result to obtain

coordinating contracts under a variety of setups.

2.3.2 Contract Design with Additive Payoffs

When payoffs are additively separable, the incentives in a supply chain system can be
easily disentangled, which leads to a simple implementation of any efficient outcome
by a broad variety of contracts. As we show in Section 2.4, the results obtained
here nest virtually all the extant results on supply chain coordination under complete
information with a single supplier and a single buyer.

Assumption 2’ (Agent Payoff Additivity) Fach agent n’s gross payoff u, is
additive, i.e., it can be written in the form un(xn) = Y, cp Y0(2R) for all z, € Xy,
whereby v € C(RE,R) for all (m,n) € M x N.

Agents’ gross payoffs are additive if their actions take place in different markets or
pertain to noncompeting product lines. Note that we do not require that the agents’
gross payoffs are separable with respect to each of the L components of an action

relevant to any particular principal.

ASSUMPTION 4 (PRINCIPAL PAYOFF ADDITIVITY) FEach principal m’s gross pay-
off v™ is additive, i.e., it can be written in the form v™(z) = > . wn(xn) for

all z € X, whereby n7* € C(RE,R) for all (m,n) € M X N.

Assumptions 2’ and 4 imply that each principal m’s excess payoff F™ and each
agent n's excess cost Gy can be rewritten as F™ = 3.\ F/™ and Gn = 35, 0 Gh,
respectively, where FIn(af") = nn(ai) — 73 (&) and Cm(el) = 4m(E7) — v ().
To achieve complete additive separation of the contract design problem, it is necessary
to impose that no externalities are introduced through infeasibilities with respect to

an agent’s implementation of a joint action for several principals.®

8Such infeasibilities could arise in the case in which the agent is a supplier with limited production
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Figure 2.2: Efficient Additive Solution to the Reduced Contract Design Problem.

AssUMPTION 5 (OUTCOME DECOMPOSABILITY) Any agent n € N can choose his
actions independently for each principal, i.e., his set X, of feasible actions can be
written in the form X, = X} x ... x XM

of RE.

where each X" is a conver compact subset

Outcomes are decomposable if the feasibility of each action z]* can be determined
in isolation, i.e., without taking agent n’s choices pertaining to principals other than m

into account. The following result characterizes efficient additive contracts:

THEOREM 3 (ADDITIVE SOLUTIONS TO THE REDUCED CONTRACT DESIGN PROBLEM)

Under Assumptions 1,2°,4,5 the excess transfer matriz A solves the reduced contract

design problem (WT’),(AM’) if and only if°
Fan) < Ap(ay) < GR(ar) (2.12)

for all ™ € X™ and all (m,n) € M x N.

capacity, so that when completing part of a job for one buyer (principal) not all of the production
capacity can be dedicated to another buyer. By contrast, outcome decomposability requires that
each agent can choose his actions independently for each principal.

9The “only if” part is with respect to all admissible excess payoffs F™ and G,,.
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As long as the equilibrium excess transfers lie between the principals’ excess prof-
its and agents’ excess costs, an efficient outcome can be implemented (cf. Figure 2.2).
Hence, any convex combination of excess profits and excess costs solves the reduced
contract design problem. Moreover, the convex combination itself can be made con-
tingent upon the realization of the outcome. Thus, depending on the outcome, the

principals might opt for a payoff based either more on costs or more on profits.

COROLLARY 1 (EFFICIENT SURPLUS SHARING) Under the assumptions of Theorem 3

the transfer matriz A(x;6) with

AR (zn 007) = () (me*(2) — mp (82)) + (1 = 03'(23) (9" (87) — v (22)

solves the reduced contract design problem (WT’),(AM’) for any matriz function 0 =
(0™ with 87 € C(X™,[0,1)).

For any solution A = [A"] to the reduced contract design problem specified in
the above corollary, relation (3.6) in Theorem 2 yields the corresponding equilibrium

transfer matrix £ = [f7].

COROLLARY 2 (ADDITIVE EQUILIBRIUM TRANSFERS) Under the assumptions of The-
orem 3 the only additively separable equilibrium contract implied by Theorem 2 im-
plementing the efficient outcome & is given by the transfers

tr(an) = max {37(z7)} — A (=) (2.13)

pekr

The additive equilibrium transfers in (2.13) correspond to full cost compensation,
which is the only possible additive equilibrium contract that always coordinates an
additively separable supply chain. Other contracts (many of which are used in prac-
tice, cf. Section 2.4) are thus not generally additive. This in itself is important: even

though it is possible to coordinate a multi-principal multi-agent supply chain using
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additively separable contracts (full cost compensation) (Corollary 2), additive sepa-
rability in the contracts is not necessary for coordination (the separability Assump-
tions 2’,4,5 notwithstanding). As before, the selection of the outcome-contingent
weights 67 and 97 influences the distribution of surplus within the supply chain.
As an alternative to the efficient surplus sharing in Corollary 1, the reduced con-
tract design problem may, under the additional assumption of payoff concavity (As-
sumption 3), also be coordinated starting with simple affine solutions to the reduced
contract design problem. The following result provides sufficient conditions and is

hereafter used to construct such contracts:

PROPOSITION 5 Let all principals’ and oll agents’ payoff functions be twice differ-
entiable. Under Assumptions 1,2°,3-5 a twice differentiable excess transfer matriz A

solves the reduced contract design problem (WT’),(AM’) if

VZrm < V2A™ < —V2y™  and  VA™(™) = Va™(ED), (2.14)

for all (m,n) € M x N.

Starting with a general parameterized affine contract, its coefficients can be di-

rectly determined using Proposition 5.

COROLLARY 3 (EFFICIENT AFFINE CONTRACTS) Under the assumptions of Propo-

sition 5 the affine excess transfer matriz A with

A () = (Vr (&), 2 — &7)

solves the reduced contract design problem (W1T’),(AM’).

Affine contracts seem attractive in practice, since they correspond to simple two-
part tariffs, essentially a constant wholesale price measured exactly in the agents’

action units (say, “quantity delivered” or “sales”) and a fixed transfer between the
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parties. It is possible to preserve affinity of solutions to the reduced contract de-
sign problem through the transformation (2.24) for all but one principal (since the
weights 97" sum up to one over m). It is important to note that even though affine
contracts may be simpler in practice to implement, they are generally not desirable,
since any principal is keen on capturing a share of the nonlinearity corresponding to
out-of-equilibrium transfers, in order to reduce her in-equilibrium transfer. The de-
sign of the out-of equilibrium transfers is thus essential for surplus extraction from the
agents. In Section 2.4 we examine some important standard supply chain contracting

schemes within our framework.

2.3.3 Contract Design with Interdependent Payoffs

Consider now the reduced contract design problem (WT’),(AM’) for the general case
in which there exist payoff interdependencies between principals and in which agents’
actions may not be decomposable, i.e., in which Assumptions 4 and 5 do not hold.
We show that merely under Assumptions 1 through 3 there is an affine solution to the
reduced contract design problem. Moreover, this solution can be easily determined

provided the payoffs are differentiable at the efficient outcome under consideration.

THEOREM 4 (AFFINE SOLUTION TO THE REDUCED CONTRACT DESIGN PROBLEM)
Let all principals’ and all agents’ payoff functions be differentiable. Given any effi-
cient outcome &, under Assumptions 1-3 the affine excess transfer matriz A = [A7]

with
v™(Z)

AT (zn) = ( oz,

s Tn, = &) (2.15)
solves the reduced contract design problem (WT’),(AM’) on X for all (m,n) € MXN.

The differentiability assumption in Theorem 4 can be relaxed, since by the Rademacher
Theorem (Magaril-II'yaev and Tikhomirov 2003, p. 160) payoff concavity (i.e., As-

sumption 3) already implies differentiability of the principals’ and agents’ payoffs
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Figure 2.3: General Efficient 2 x 2 Contract. [Note: for visualization purposes z;, z2
have been collapsed to one dimension each.]

almost everywhere. Thus to guarantee that (2.15) is well defined, only the differen-
tiability of the principals’ payoffs at the efficient outcome % (is needed along a path
to the boundary of X if £ € 8X, so that X needs to be locally path-connected in
that case).’® The solution (2.15) to the reduced contract design problem in con-
junction with Theorem 2 allows implementing any efficient outcome of the general
multi-principal multi-agent game G as a WTE. Which particular WTE (in terms of
the equilibrium transfer schedules) is chosen, influences the distribution of surplus
in the supply chain. There is thus some interest in finding all possible solutions to
the reduced contract design problem. In the simple case of two principals and two
agents, a complete set of solutions to (WT’),(AM’) can be easily obtained (cf. also
Remark 4).

OFven if a principal’s payoff is not differentiable at the efficient outcome, it is always possible to
select an appropriate element of the corresponding subdifferential.
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PROPOSITION 6 (GENERAL EFFICIENT 2 X 2 CONTRACTS) Let M = N = 2. Un-

der Assumptions 1-3 the excess transfer matrix A with

Ad(z1;61) = 61(z1) (Br(21) — d1(21)) + (1 — 61(z1)) (Ga(m1) — Af(z1))
A(m2;03) = 0y(x2) (pa(m2) — P2(22)) + (1 — O2(22)) (Ga(m2) — A3(2))

where (forn € {1,2})

¢n(zn) = max {F_n(xmx—m) - A:Z(x—n)} ’

T_p€X_pn

the functions 6,, € C(X,,[0,1]) are arbitrary, and the functions Al are chosen such
that

F2(561,1L'2) - Gl(fL'l) S Ag(IL’Q) — A%(Il) S Gz(l‘z) - Fl(xl,xg), (216)

for all x € X, solves the reduced contract design problem.

Payoff concavity (Assumption 3) is not necessary for the existence of excess trans-
fers A}, AZ that satisfy (2.16). Nevertheless, if Assumption 3 holds, then the existence
of affine excess transfers A?(z,) = (an, z, — £,) for n € {1,2} and appropriate con-
stants a, € RE (for L > 1) is guaranteed by the separating hyperplane theorem
(Berge 1963, p. 163).

COROLLARY 4 (EFFICIENT PARTIALLY AFFINE 2 X 2 CONTRACTS) If under the as-
sumptions of Proposition 6 the principals’ payoffs are differentiable at the efficient

outcome Z € int X, then the excess transfers

(2 . o3 (% R
_5:;(1—)—’331 — &) and Ag(:cz) = (6—3:(2,9:2 — Zq)

Aj(z1) =

together satisfy (2.16) for all x € X.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. CONTRACT DESIGN IN MPMA SUPPLY CHAINS 36

Note that it is possible to equivalently restate Proposition 6 and, correspondingly,
Corollary 4 so as to obtain analogous affine expressions for A? and Al instead of Al
and A3, effectively mirroring the form of “direct transfers” (from principal m to
agent n = m) and “cross-transfers” (from principal m to agent n # m) in the results

(cf. footnote 15).

REMARK 4 Building on the results obtained here, Strulovici and Weber (2004) pro-
vide a general representation of any solution of the reduced contract design prob-
lem (WT’),(AM’) in terms of outcome-contingent convex combinations of elements

of an extremal basis for this problem, which contains M + 1 excess transfers.

2.4 Supply Chain Coordination

We now show how the general results obtained in Sections 2.2 and 2.3 can be used to
construct coordinating contracts in two-tier multi-principal multi-agent supply chains
(cf. Figure 2.1). From our earlier discussions it is clear that the coordinating verti-
cal contracts are such that the principals’ transfers to the agents directly depend
on the suppliers’ multi-dimensional actions. For instance, in top-down contracting
(cf. Section 2.2.5) a supplier’s transfer to a retailer generally depends on the prod-
uct quantity ordered (quantity-dependent pricing), possibly applying discounts across
products and orders (“generalized tying”), and may contain clauses on the retailer’s
pricing policy (resale price maintenance) as well as provisions pertaining to actions
for other suppliers (such as exclusive dealing). In addition, some of the contractual
provisions may be contingent on the resolution of a random variable (such as de-
mand), e.g., in royalty schemes. Although ex-post provisions can be accommodated
in our framework, we emphasize that at least in the absence of renegotiation all the

contractual terms are constructed based on all parties’ expected payoffs. We thus
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obtain certainty-equivalent contracts which are ex-ante coordinating and may with-
out loss of generality contain ex-post provisions.!! However, ex-post provisions that
result in the same expected payoffs (or expected utilities in the presence of risk aver-
sion) are all equivalent, and thus we cannot expect specific ex-post design statements
from our theory, but are nevertheless able to integrate existing contractual schemes
that contain ex-post provisions (such as quantity-flexibility contracts) into a unifying
framework.

In order to connect our approach to the existing literature on single-principal
single-agent contracting, we first examine the different contractual provisions men-
tioned above and show how these generalize to multi-principal multi-agent environ-
ments. We then tackle a number of issues specific to multi-principal multi-agent en-
vironments generated by principal payoff externalities and non-decomposable agent

actions.

2.4.1 Standard Contractual Provisions

In his excellent review of vertical contracting Katz (1989) outlines six functions of
vertical contracts including quantity-dependent pricing, ties, royalty schemes, require-
ments contracts, resale price restraints, and resale customer restraints. We show
how our framework can accommodate each of these functions and examine practical
complete-information contracts that are often used in supply chain settings (Cachon
2003).

As our standard example we consider in this subsection a supply chain consisting
of N suppliers and M retailers who each sell all N end products in geographically
dispersed markets. In line with our main arguments so far we assume a bottom-up
contracting situation in which the retailers act as principals. The suppliers incur

two types of costs, the cost of capacity, and the cost of production after capacity is

117f & is a random variable and 77 (z,,,®) is an ex-post contingent contract between principal m
and agent n, then our theory makes statements about the certainty-equivalent contract t7*(z,) =
Er(z,,, o).
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available. For simplicity we assume that the cost of capacity is increasing linearly
in the installed capacity and that the cost of production is linear in the quantity
produced. The suppliers install component capacity = at a unit cost x,, > 0 prior to
the realization of random demand f),’f which is distributed on the support R, with the
cumulative distribution function H]". In our complete-information setup it is natural
to assume that both 27 and «, are known to the retailers. Upon observing demand
realizations the retailers place orders with the component suppliers, who then produce
the ordered components at a unit cost of ¢, > 0 and deliver as much of the orders as
possible given their capacity constraints. The retailers and the suppliers thereby trade
according to the supply contracts signed ez ante, i.e., before the demand has realized.
The retailers then sell the products to the end consumers at fixed prices p* > ¢, + &p,.
Unmet demand is lost without additional stock-out penalty and the unsold inventory
has no salvage value. Let s(z') denote the expected sales of product n (made from

component n) through retailer m,
s(ef) = Bmin {D7, a7} =af = [ 7 G)dy.
0

Retailer m’s gross payoff can be expressed in the additively separable form

v (z) = Y ps(ar),

neN

while supplier n’s gross payoff is given by

Un(@a) = = D (caS(@) + nt}y)
meM

and is additively separable as well. The system surplus W =3~ o™ + >\ upn

is strictly concave, and we obtain the classic newsvendor solution,

in = () (oot ),

PR —Cn
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as the unique efficient outcome maximizing total surplus in the supply chain system.
Assumptions 1,2’,4.5 are satisfied, so that by Corollary 1 (Efficient Surplus Sharing)

we obtain that for any 8™ € C'(Ry4, [0, 1}) the excess transfer

A7 (2 07) = 07 (@) N (=) + (1 = 607 (27)) G ()

n’’n

solves the reduced contract design problem (WT’),(AM’), where

M (ant) = o (s(2) — s(27))

are the excess profits and

G (an) = cn (s(ay’) — s(£77)) + i (2" — 27)

are the excess costs for each retailer m and product n respectively. The in-equilibrium

~

transfers o), which define the only additively separable equilibrium contracts, t* =

G + o, can be obtained from Corollary 2,

7= (CnS(E7) + KnZ) — min {c,s(Z) + KnTh'} = Cu8(E7) + K2l

zEXT

Q

These nonnegative equilibrium payments from principal m compensate agent n for the
largest possible excess payoff (in this case zero) he could achieve by not implementing
the efficient outcome; he thus obtains exactly his total cost, and the principal is able
to extract all surplus from the transaction.

Below we compare various standard “commercial contracts” £7(x,) proposed by
different authors and used in practice in single-principal single-agent supply chains
to the coordinating multi-principal multi-agent equilibrium contracts £7(z,,) in Theo-

rem 2. It is clear that the standard commercial contracts are thereby typically of the
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form £7(z™), i.e., payments from principal m to agent n typically depend only on ac-
tions of agent n for principal m. As can be seen from Corollary 2, the only commercial
contract of this separable form which coordinates the supply chain (by implementing
an efficient outcome as a WTE) is £™(2™) = G™ + o, which corresponds to the
direct cost compensation discussed above.

Nevertheless, by singling out one principal, say, principal M, in relation (3.7) of
Theorem 2 and setting 97" = 0 for all m € {1,..., M —1}, it is possible to implement
any solution of the reduced contract design problem (WT’),(AM’) in equilibrium for
all principals, except for principal M, who is allocated the entire beneficial “nonlin-
earity” in (3.7) through 9 = 1. In this way it is possible to extend a number of
commercial contracts £, well-known for coordinating one-to-one supply chains, to
the multi-principal multi-agent setting.!> In the following discussions of frequently
used commercial contracts we thus focus unless otherwise stated on the first M — 1

principals and on solutions of the reduced contract design problem. The resulting

WTESs can then be obtained by applying Theorem 2.

Quantity-Dependent Pricing

Nonlinear transfer schedules can serve both to price discriminate in situations with
asymmetric information (screening contracts) and to coordinate a supply chain. In our
complete-information setting we naturally limit our attention to coordination. Oren
et al. (1982) demonstrated the powerful role of two-part tariffs in quantity-dependent
pricing. In fact, as a direct consequence of convex analysis, as long as a nonlinear
pricing schedule is concave it can be represented as the lower envelope of an indexed
family of two-part tariffs. Jeuland and Shugan (1983) show that nonlinear pricing

schemes can coordinate a channel, and Moorthy (1987) points out that indeed this

12In line with our theoretical developments we present any commercial contract €7 in terms of
excess measures, relative to the transfer at the efficient outcome. We then compare it with the
general surplus sharing contract in Corollary 1. As long as the weights 8 in that contract are
not outcome-contingent, it is possible to equivalently state £* in terms of nonexcess measures and
obtain £7'(a7) = £7(a7) + B with B = 07w (3) — (1 — 677 (21) — o
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can be achieved using simple two-part tariffs. Our findings confirm that Moorthy’s
intuition carries over to multi-principal multi-agent environments (cf. also Remark 4).
Two-Part Tariff Contract. The transfer from principal m to agent n contingent

on expected sales s(z7) is
& (@) = wy' (s(ay) — s(87) + o'

From the efficient surplus sharing mechanism in Corollary 1 we obtain that with w* =
ptand 07 =1itis A7 + oy =&

Quantity-Discount Contract. Consider the commercial contract
&) = wy' (@) (s(2) — s(&7)) + o
From the efficient surplus sharing mechanism in Corollary 1 we obtain

W @l) = Op — (1 - 67) (m O )

s(z) — s(&7)
for any appropriate 67 € C(X,[1/2,1]). Note that for z7* < 2 the price w*(z) <
P is monotonically decreasing in z* (progressive discounts). Moreover, close to 7,

we have wT(z7) = (207 — 1), so that we restrict 67 to values in [1/2,1].

Ties

Given that each agent’s action is L-dimensional, it is possible for L > 1 that a
principal m’s equilibrium transfers are not additively separable in the different com-

13 In that case, the compensation for

ponents, p'y,..., T, , of agent n’s action.
different components of an agent’s action is linked, which amounts to a (generalized)
tying arrangement. Tying arrangements in this sense may arise naturally as a con-

sequence of (anti-) complementarities in an agent’s cost structure, as can be easily

13]f the transfer is twice differentiable, this corresponds to the situation in
which 8%7 /9x7 0z, # O for some j,1 € {1,...,L} with j # 1.
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seen from the coordinating contract [AZ‘] = [G™] in Corollary 2: tying occurs when-
ever BzGﬁ/Bmmjax;’fl # 0 for some 7,1l € {1,..., L} with j # . It also may be induced
by non-additively-separable principal payoffs. We emphasize that tying arrangements
under these circumstances are efficient in the sense of maximizing overall surplus of

the supply chain.

Royalty Schemes

In contracts with royalty schemes, the transfer payment between a supplier and a
buyer is a function of the buyer’s sales in the final goods market rather than based
on the amount of intermediary goods exchanged. In Section 2.4.1 we have already
dealt with some royalty schemes based on sales. Let us now discuss a number of
additional commercial contracts with royalty schemes that are commonly found in
supply chains, and that — as we show — can be used in multi-principal multi-agent
supply chains (except for one principal, as mentioned at the beginning of this section).
These contracts are prevalent in markets for goods with a relatively short shelf life,
such as periodicals, baked goods, or current car models.

Pay-Back Contract. One possibility for a supplier to coordinate a one-to-many
supply chain recognized by Pasternack (1985) is the pay-back contract,! in which
retailer m pays supplier n an amount of w]* per unit purchased, plus b per unit
remaining at the end of the season in order to incentivize the supplier’s capacity

investment. We thus obtain

& (@) = wy' (s(zy) — s(3)) + b [(an" — 237) — (s(z3) — s(E)] + e’

14The original setup is in terms of top-down contracting. For ease of exposition it is framed here
as a bottom-up contracting situation.
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Comparing coefficients of the above commercial contract with the efficient surplus
sharing mechanism in Corollary 1, we obtain
=1 - b and w; =p; + b (1 - p__%";f?) ,

provided that b € [0, x,). As noted at the beginning of the section, the retailers are
able under this scheme not only to coordinate the supply chain but also to extract
all surplus from the suppliers.

Revenue-Sharing Contract. Cachon and Lariviere (2002) discuss revenue sharing
as a way to coordinate supply chains in which reliable revenue monitoring is feasi-
ble, such as in the market for video rentals. Under such a revenue-sharing scheme

retailer m pays supplier n an amount of w]* per unit capacity installed, plus a frac-

tion ¢ € [0,1] of his revenue. The resulting commercial contract is of the form
Era) = wi (a7 — 27) + ¢y (s(an) — s(87)) + o

By comparing coefficients with the efficient surplus sharing contract in Corollary 1

we obtain
g = PP g m (1= ¢r)pe'sin.
P~ Cn Pp = Cn
provided that ¢ € [c,/p,1]. As before, in equilibrium the suppliers’ net payoffs
are zero and the supply chain is coordinated.
Quantity-Flexibility Contract. Tsay (1999) studies supply chain coordination with
quantity-flexibility contracts. Under a quantity-flexibility contract mechanism, re-

tailer m pays supplier n an amount of w]® per unit purchased and compensates the

supplier for unused capacity up to a fraction p* € [0,1] of total capacity installed.
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We thus obtain the following formulation of the commercial contract:

E(zn) = wn(min{al — s(27), P72} — min{&] — s(27), prn})

+wrt (s(zyt) — s(Zn)) + o (2.17)

By comparing coefficients with the efficient surplus sharing contract in Corollary 1

we obtain thus

zm

(W] = ca)s(z) = KnZ + Kn [ o Hi(y)dy

(pnm - cn)s(x?) - I‘C,,.’L‘,T

O (zn) =

b

and
knZyy (1= prH7 (L= PR)IR) o o KPP Ty
- s Swp S Py =
s(Z7) s(z7)
provided that p* € [M 1], where ™ is the upper bound of the capacity supplier

KnZh

n can install for retailer m. As before, in equilibrium the suppliers’ net payoffs are
zero and the supply chain is coordinated.

Sales-Rebate Contract. Taylor (2002) considers a sales-rebate contract for supply
chain coordination, under which retailer m pays supplier n an amount of w]* per unit
purchased and an extra rebate 7' per unit sold above a threshold ¢*. The resulting

(ex-ante) commercial contract is given by

wt (s(e7) = s(23)) if 277 < g7,

£r(al) = al+ "
wit (s(a) - s(2)) + i (@ — a7) - [3 H(y)dy), otherwise.

By comparing coefficients with the efficient surplus sharing contract in Corollary 1

we obtain

(Wl —c,)s(2) — Kpax® + 1 <$T — gy - fq?n H,T(y)dy)

(B — en)s(a7) — Rnaly

O (an) =

)
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with
gy )
s(am

s(@p) ~

for z* > ¢, and 6 = 1 with w]? = p}7' otherwise. As before, in equilibrium the

Cp +

suppliers’ net payoffs are zero and the supply chain is coordinated.

Requirements Contracts

We have already seen that coordinating agreements in a multi-principal multi-agent
supply chain are likely to make principal m’s equilibrium transfer £ to agent n con-
tingent on not only agent n's action z' for principal m but also his actions =™ for
the other principals. Indeed, as pointed out earlier, the coordinating contracts in
Theorem 2 generally exhibit this property at least for one principal (except in the
special case of full cost compensation in Corollary 2). Bilateral contracts containing
provisions that affect an agent’s payoff with respect to his behavior across different
principals are generally termed requirements contracts. In the extreme, requirements
contracts could involve ezclusive dealing arrangements, in which certain agents exclu-
sively trade with certain principals and are compensated accordingly. In cases where
agents each implement multiple actions, such as capacity orders and pricing deci-
sions, requirements contracts may also include resale price restraints (e.g., to achieve
a price maintenance level) or resale customer restraints (e.g., to guarantee territori-
ality and thus restrict agent competition detrimental to overall supply chain profit).
As a direct consequence of Theorem 2, to implement efficient outcomes in multi-
principal multi-agent supply chains, at least one requirements contract is generally

unavoidable, except possibly under additive payoffs and decomposable actions.

2.4.2 Nonstandard Contractual Provisions

Instead of adapting available commercial contracts to our framework as in the last

subsection, we now tackle issues specific to multi-principal multi-agent environments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. CONTRACT DESIGN IN MPMA SUPPLY CHAINS 46

For this, we first relax Assumption 5 and consider the case in which the agents’
actions are interdependent with respect to principals, in the sense that the feasibility
of each action 27 cannot be determined in isolation. That is, for agent n the choice
of 2 depends on his actions chosen for principals other than m. Next, we relax
Assumptions 2’ and 4 and discuss contract design in a supply chain with payoff

externalities.

Interdependent Actions

Let us consider a supply chain consisting of two upstream component suppliers and
two retailers who each sell one end product in geographically dispersed markets.
Again, in line with our main argument, we assume a bottom-up contracting scenario
in which the retailers act as principals. The retailers and the suppliers trade accord-
ing to supply contracts signed ex ante, i.e., before the uncertain demand is realized.
Each supplier has a limited installed capacity to be allocated to the retailers. For
simplicity we normalize the total capacity at each supplier to one. Thus, if 2] denotes
supplier n’s capacity allocation to retailer m, it is 1 + 22 = 1 and zi + 22 = 1. The
costs to install the capacities are assumed sunk, i.e., supplier n’s gross payoff is given
by u, = 0. We further suppose that additional capacity is a desirable resource which
both retailers prefer to have more of, and that the lead time for production is long,
so that suppliers need to set production quantities before observing the demand real-
izations. Once the quantity z' of product n is produced and delivered to retailer m,
the retailer sells the product to the end consumers at a fixed price p,. As in the last
subsection, the random demand D has the cumulative distribution function H™,
with mean p*. To simplify the algebra in this example, we assume that f);" is uni-
formly distributed on [0, 1]. Let s(z7*) denote the expected sales of product n (made
from component n) through retailer m, i.e., s(z') = E'min {[),T, x,’f} Retailer m’s

gross payoff can then be expressed in the form

V(z) =Y pls(al),

neN
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while supplier n’s gross payoff is given by u,(z,) = 0. The system surplus W =
Y omem U™+ D onen Un is strictly concave, and we obtain a unique efficient outcome,
21 = 22 = 2] = 22 = 1/2, maximizing total surplus in the supply chain system.
Since Assumption 5 is not satisfied, Corollary 1 (Efficient Surplus Sharing) cannot be
applied. Instead, we apply Proposition 6 and Corollary 4 to obtain the excess transfers

that solve the reduced contract design problem (WT’),(AM’). By Corollary 4 we have

z 1 zn 1
Ai:pl(—;——-Z) and A%=p2<—72+1>,

and from Proposition 6 we obtain

x! z! 1
A2 =6p <—($i)2 + 51> - (1-6)p; (71 - Z) )

and

1
z; 1

3 1
Aj = 0y <—(37§)2 + 573% - 5) + (1 —62)p2 (7 - Z) ,

for 0, € (X,,[0,1]). For simplicity we assume that the weights 6, are not outcome-
contingent, (i.e., are constant), and we let ¥} = 0 and 92 = 1 for n € {1,2}. The
in-equilibrium transfers o] which define the equilibrium contracts, can be obtained

from Theorem 2. We thus have

pa(l + 62)

1 oM 1
] = Q] = —, Q5 =
1 1 1 4

and
:D2(14—02), f0<8,< %’

5 ifl<6,<1.
These nonnegative equilibrium payments from principal m compensate agent n for
the largest possible excess payoff (in this case nonzero) he could achieve by not im-

plementing the efficient outcome. In equilibrium, the net payoffs to retailer 1 and
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supplier 1 are

Vl = (pl +p2 _ 02p2 and Ul = &,

and the net payoffs to retailer 2 and supplier 2 are

+p2)+6: ; 1 i 1

\ (71 Pi) 2Pz if0 <6, <32 . X if 0 <6, <3,
2 1 o1 P2(1+6, if 1

(B — g )pe, i 5 <6, <1, R+ e, f3<0<1,

respectively. In equilibrium, each supplier’s net payoff is strictly positive. When the
actions are interdependent, the retailers (principals) are not able to extract all surplus
from the transaction. This result is in contrast to the decomposable action case in
which the net payoffs to the suppliers (agents) are zero and the retailers (principals)
extract all the surplus. It is worth noting that since retailer 2 shares the nonlinearity
of the excess cost (92 = 1), in equilibrium, the net payoff of retailer 2 is strictly larger
than that of retailer 1. Moreover, both retailers as well as supplier 2’s net payoffs are
dependent on the choice of 8, which illustrates that surplus sharing in equilibrium

depends on .

Interdependent Payoffs

Let us now consider two cases of payoff interdependencies in a supply chain consisting
of two component suppliers and two retailers. In the first case the retailers each sell (in
geographically dispersed markets) two end products which can be either substitutes
or complements, i.e., a demand externality (or “product externality”) exists in each
market. In the second case the retailers sell their end products in a common market as
imperfect substitutes, which again as a result of a demand externality on the common
market (“market externality”) naturally entails a payoff interdependency between the
retailers.

Again, in line with our main argument, we assume a bottom-up contracting sce-

nario in which the retailers act as principals. The retailers and the suppliers trade
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according to the supply contracts signed ex ante. Given the contracts, supplier n
with infinite capacity decides on how much to produce and to deliver to retailer m,
i.e., . For simplicity we assume that the production cost is linear in the quantity
produced. Upon receiving the delivered products, retailer m sells the end product n
to the end consumers at a retail price p]” to clear the market. Given a unit production

cost ¢, > 0, supplier n’s gross payoff is given by

Up(zn) = — Z Cnmr.

meM

Product Externality. The two retailers each sell two end products in geographically

dispersed markets. We consider a linear demand of the form
Py (™) = a7 — b7y +d7aT,,

where a™ > 0,07 > |d™|. The constants d™ can be either positive or negative de-
pending on the products being either substitutes or complements. When the markets

are geographically dispersed, retailer m’s gross payoff can be expressed as

v(z) = ) p(am)ar

neN

The system surplus W =37 . v™ + > .\ u, is strictly concave, and we obtain

(a;n - cﬂ)an + (G’Tn - C—n)dm
20, — (dm)?)

=

mo_
n ’

as the unique efficient outcome maximizing total surplus in the supply chain system.
Assumptions 1-3 are satisfied, so that by Theorem 4 (Affine Solution to the Reduced

Contract Design Problem) we obtain that the excess transfer

A (@) = (ag) = 20027 4 2d72T, ) (27 — 7) = ea(a! — 277)
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solves the reduced contract design problem (WT’),(AM’), where the second equality
follows from the system optimality condition. The in-equilibrium transfers o', which
define the equilibrium contracts, can be obtained from Theorem 2. For simplicity we

let 91 =0 and 92 =1 for n € {1,2}. We thus have
art =c,m for me {1,2} and ne{1,2}.

These nonnegative equilibrium payments from retailer m compensate supplier n for
the largest possible excess payoff (in this case zero) he could achieve by not imple-
menting the efficient outcome; he thus obtains exactly his total cost and the principal
is able to extract all surplus from the transaction. Moreover, the payoffs are inde-
pendent of the sign of d™. That is, no matter whether the products are substitutes
or complements, the retailers extract all the surplus.

Market Externality. The retailers sell end products in a common market. We

consider a linear demand of the form
Py (x) = a’ — bzl — waa ™,
where a* > 0,0 > w, > 0. Retailer m’s gross payoff can be expressed as

v™(z) = ) p(z)ey

neN

The system surplus W = >\ v™ 43"\ un is strictly concave, and we obtain

m_ (07 = )b = (4, — cr)wn
" 20670 — (wn)?) ’

z

as the unique efficient outcome maximizing total surplus in the supply chain system.
We apply Proposition 6 and Corollary 4 to obtain the excess transfers that solve the

reduced contract design problem (WT’),(AM’). To keep the algebra in this example
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simple, we let 8, = 0 in Proposition 6. We thus obtain

A = cnlzy — 27) + w22y — 270, ™
for m € {1,2} and n € {1,2}. The in-equilibrium transfers o which define the
equilibrium transfers, can be obtained from Theorem 2. For simplicity we let 91 = 0

and 92 = 1 for n € {1,2}. We thus have

for m € {1,2} and n € {1,2}, where Z,™ is the upper bound of the production
quantity from agent n to a principal other than m. These nonnegative equilibrium
payments from principal m compensate agent n for the largest possible excess payoff
(in this case zero) he could achieve by not implementing the efficient outcome; because
of the competition between the two retailers in the end markets, he obtains more
than his total cost and both principals are thus unable to extract all surplus from the

transaction under these contracts.

2.5 Discussion

Supply chains with many participating firms are a ubiquitous reality. It may therefore
seem surprising that the coordination of such supply chains has received virtually no
attention in the existing literature. This lack of attention is most likely not due to
oversight but to the technical difficulties of supply chain coordination, which have
been partially overcome by recent advances in the economics literature. Illustrating
the additional complications, Cachon’s (2003) postulate that “[e]ach firm in a supply
chain must execute a precise set of actions to achieve optimal supply chain perfor-
mance” acquires a new meaning in multi-principal multi-agent supply chains, since

maximizing the firms’ overall surplus requires not only vertical coordination through
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contracts but also implicit horizontal coordination, however without the use of anti-
competitive practices. The noncooperative nature of the principals’ contract design
introduces a number of technical difficulties, and this may account for the current lack
of research in multi-principal multi-agent supply chain contracting, a significant gap
we hope to fill at least partially: as long as all agents’ actions are contractible, payoff
externalities between agents are additive, and all gross payoffs are concave, we have
provided a set of contracts that coordinate any multi-principal multi-agent supply
chain. More specifically, starting from a solution to a “reduced contract design prob-
lem” (Theorem 4) we have shown that it is possible to obtain coordinating contracts
that allocate surplus to the different participants in the supply chain by assigning
appropriate outcome-contingent weights in the simple transformation (Theorem 2)
leading to coordinating bilateral contracts in terms of (nonlinear) transfer payment
schedules. We emphasize that in contrast to most of the available results, even in
the literature on single-principal single-agent supply chain contracting, our approach
is entirely nonparametric: weighting functions are used solely to select particular
elements from the set of coordinating contracts.

In addition to filling a void in the theoretical literature on supply chain contracting,
our results have a number of interesting practical implications, of which we stress only
two. First, virtually all known (and used) commercial contracts can be employed by
(almost all) principals to coordinate multi-principal multi-agent supply chains, at
least if all payoffs are additively separable and the agents’ actions are not constrained
across principals. The results on single-principal single-agent supply chains are thus
naturally nested in our more general framework. However, we have shown that to
coordinate the supply chain in many cases at least one principal (any one with positive
weight 97 in Theorem 2) needs to propose a requirements contract which contains
provisions with respect to an agent’s actions for other principals. Second, affine
contracts — even though easy to write down — are generally not desirable to principals:

for any given agent n, the more a principal is able to promise out of equilibrium, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. CONTRACT DESIGN IN MPMA SUPPLY CHAINS 53

less she has to pay this agent in equilibrium! In other words, in-equilibrium transfers
are dramatically related to the out-of-equilibrium contract design. However, since
in order to enable supply chain coordination the total amount of out-of-equilibrium
promises is limited for each agent (to G,,), each principal has a vested interested to
capture as much of these feasible promises as possible. As a result, the allocation of the
(outcome-contingent) weights ¥7* (which sum to one over all m € M) is most likely
subject to negotiation, despite the fact that the actual equilibrium implementation
is by construction noncooperative and is thus not in conflict with anticompetitive
clauses.

The results obtained here are limited in the sense that they do not allow for non-
additive externalities between agents. As pointed out before, under such externalities
an efficient equilibrium may not exist and thus it may be impossible to fully coor-
dinate the supply chain; nevertheless, the situation with agent externalities remains
important in practice (e.g., in top-down contracting where suppliers control a number
of retailers that sell on a common market) and thus presents a promising direction for
further research. Another limitation, and thus an opportunity for further research,
lies in our nonexhaustive answer to the question of selecting “appropriate” coordi-
nating contracts out of the set of feasible coordinating contracts. Depending on the
situation this selection might be guided by aspects such as revenue extraction or
practical implementability. For instance, under customary compliance regimes in a
certain industry some contracts might be preferred to others; or, some contracts (e.g.,
the ones without requirements clauses) may allow for simpler monitoring given the
industry specifics. The last points us to another major research direction related to
multi-principal multi-agent contracting in which we foresee much activity: the relax-
ation of the full information (or full contractibility) assumption, allowing for moral

hazard and/or hidden information in the vertical relationships.
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2.6 Appendix A: Proofs

Proof of Proposition 1. Since {™ is weakly truthful with respect to the equilibrium

outcome £ we obtain by Definition 3 that for all x € X:

(@) - S (@) 2 (@) - 3 (). (2.18)

neN neN

By (2.3) we have that

un(£,8) + Y E(E) 2 un(z,8) + ) () (2.19)

meM meM

for all z € X. Hence, by summing up relation (2.18) over all m € M and rela-
tion (2.19) over all n € N we obtain that W(Z) > W(z) for all z € X. Thus, the

outcome % is efficient by Definition 2. ]

Proof of Theorem 1. Using the separability Assumptions 1-2 the corresponding
relation (2.3) can be equivalently rewritten in the form (AM). Principal m, given the
other principals’ transfer vector £~™, can induce agents to implement any outcome z €
X, if only she promises each agent n a transfer that is larger than the difference the
agent would obtain by implementing his otherwise preferred action. In other words,
to persuade agent n implement the outcome z,, which is part of her desired overall
outcome z = (z1,...,ZN), principal m’s transfer f?n(mn) to agent n as a reward for

action z,, needs to satisfy

f::fn(a:n) > Jnax {un(/{mx_n) + Zf;(nn,x_n)} - <un($) + zf:l(m)>

iEm i#£m
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where

R = max {unn(nn) + Zt /{n)}

Kn€Xn i #m
is agent n’s highest incremental (i.e., over and above what he obtains by simply free-
riding on the other agents’ actions) reward without principal m. As a consequence,

any equilibrium outcome Z needs to maximize principal m’s net payoff,

Vi, tm) = o™@) = Y (Er )+ (2on)

neN
> () - Y (Rx (o) - ( @)+ Y b x>))
neN i#m

so that

T € arg max{ v () + Z (unn z,) =t (Ton) + Zt :cn)> } (2.20)

neN i#m

Let us now consider principal m’s equivalent cost minimization problem. Given an

outcome F principal m solves

e %tn (&), (2.21)
subject to
ton(En) + tnn(@n) + D tho(En) 2 ton(@n) + tna(@a) + Dt (za),  (2.22)
i#Em i#Fm

for all z, € X,. This immediately implies that indirect payments to any agent are
never optimal, i.e., necessarily &?,-n = 0 for all n € N. In addition, one can verify

that any solution #” to the cost minimization problem (2.21)-(2.22) is such that

tAT,n(f’v:n) =R} — (un,n(jn) + Z &m(in))

i#Em
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and

tm (#,) < RD — (unn (&) + > T (xn) )

i#Em

for all z, € X,. By replacing k with the equilibrium outcome & we obtain

tEM

and

Unn(Tn) + Y T n(@n) < BT
eM

for all z, € A,,. The last two relations together are equivalent to (PM).

«<: Let (£,%) € C(X,T) x X be a pair that satisfies (WT), (AM), (PM) and be

such that there are no indirect transfer payments, i.e. = 0 for all (m,n) € M x

i ’IL ot 1
N. The inequality (WT) implies by that £™ is weakly truthful for any principal m €
M. Given Assumptions 1-2 it is clear that (AM) is equivalent to (2.3), i.e., given £
the action %, is a best response for any agent n € N. By summing up (AM) over

all n € N and adding (WT) we obtain

’Um(‘%) + Z (un,n("ﬁn) - f:z—n(j*’n) + Z E:z,n("i‘n))

neN i#m
>v"(2)+ ) (un,n(mn) — i )+ ffz,n(xn)>
neN i#m

for all principals m € M and outcomes z € &. The latter inequality is equivalent
o (2.20), which in turn implies (2.4). Thus, the pair (£,£) must be a WTE of the
game G. |

Proof of Proposition 2. (i) At the efficient outcome # we have that F™(Z) =
Gn(2s) = 0 for all (m,n) € M x N. Hence, the matrix A(Z) = [A}(Z;)] must be
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such that

3 AL(E,) S0 Y AT(E),

iEM JEN
for all (m,n) € M x N. Assume that there exists an index m € M such that
> N A;"(i“]) > 0. By separately summing up all the rows and summing up all the

columns of A(Z) we obtain

PIPITMCHEIED DY JFACHE

neN ieM meM jeEN
a contradiction. As a result >, AT2;) = 0 for all m € M. We can show
in an analogous manner that necessarily > ..., A% (&,) = 0, whence relation (2.7)
obtains. (ii) =: The continuous matrix function A satisfies (WT’),(AM’). Since in

addition (2.7) holds at Z and 0 is a constant matrix by assume, it must be true that

D hs0<) o7

€M JEN

for all (m,n) € M x N. Thus, as in part (i) we can conclude that relation (2.8)
necessarily holds. <: Substituting (2.8) into the reduced contract design inequali-
ties for A + ¢ yields the same inequalities as if we had set § = 0. Since A solves
the reduced contract design problem (WT’),(AM’) by assumption, the matrix func-

tion A + J constitutes also a solution to the reduced contract design problem. ]

Proof of Proposition 9. For any A € (0,1) we have that A (F™ — %"\ A™)+

1-2 (Fm - ZnEN Anm) <0<A (Gn - EmEM AZL) +(1-X) (Gn - ZmeM A?)
for any two solutions A = [A™] and A = [A™] to the reduced contract design prob-
lem (WT"),(AM’). |
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Proof of Theorem 2. Let & € argmaxycx W(z) be a given efficient outcome.

We first rewrite (PM) in terms of excess measures which yields

im(2,) = max {—Gn(xn) + ;ﬂa;(xn)} . (PM’)
Suppose that we have found an excess transfer matrix A = [A”*] that solves the re-
duced contract design problem (WT’),(AM’). To prove that the pair (£, &) with £7(z,,)
as defined in (3.6)-(3.7) constitutes a WTE, it is by Theorem 1 sufficient to show
that A™(z,) satisfies the system (WT’), (AM’) and (PM’). Consider first (WT?).
Since A satisfies (AM’), we have by (3.7) that A™ > A™, so that

-y Ap<Fm-) Ar<o.
neN neN

Thus, A™(z,,) satisfies (WT”). To show that it also satisfies (AM’), we simply note
that

Y Ar=c

memM

since .19 =1 on A, for all n € N. Then (PM’) becomes

() = max {(—an<xn>+ZA;<xn>) Ay xn)}—xmg{ Ar(an)}

€M

A

In other words, with o = t7(%,,),

t(xn) = ( ) +og = A(xn) - mé/{} A(3371) >0,

for all z, € X, and (m,n) € M x N. The equilibrium transfer matrix £ = [f] has
nonnegative entries and is thus an element of C(X,7). Hence, we have shown that

given any efficient outcome #, the pair (£7,2) with # as defined in (3.6) constitutes a

WTE. This concludes our proof. ]
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Proof of Proposition 4. By (WT”) the real-valued function F—A™ is concave
for any m € M. By (AM”) the real-valued function G,, — A, is convex for any n € N.
Moreover, since A(Z) = 0, we have that (F™ — A™)(2) = (G, — A,)(Z) = 0 for
all (m,n) € M x N. In other words, X x {0} and X,, x {0} are supporting hyper-
planes for the graphs of F™ — A™ and G, — A, respectively. u

Proof of Theorem 3. =>: Consider the outcome Z(z]') = (21, 2_") € X which
is obtained from % by replacing 7 with a feasible z7* € R%. Clearly, F™(Z(z™)) =

F(z*) and A™(Z(z]?)) = Al (x]?), so that by (WT?)

F () < A=) (2.23)

for all z* € R% such that Z(z™) € X. By Assumption 5 we have that Z(z™) € X
if and only if 2] € A*. Hence, the inequality (2.23) holds for any z* € X™ and
any (m,n) € MxN. In a completely analogous manner one can show that A™ < G™
for all (m,n) € M x N. <«: From (2.12) it follows trivially (by summation) that
both (WT’) and (AM’) are satisfied, i.e., that A solves the reduced contract design

problem. n

Proof of Corollary 1. We simply need to verify that relation (2.12) holds. But
this follows immediately since F* < 7 F*+(1-607)G2 < G for any admissible 6

with values in [0, 1], and

AR (g 07) = 031 (@) 7 (7)) + (1 = 6.2 (27) G (27),

which completes the proof. |
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Proof of Corollary 2. Under Assumptions 1,2’.4,5 Theorem 3 characterizes
all additive solutions to the reduced contract design problem (WT’),(AM’), so that
Corollary 1 describes all additive solutions. From Theorem 2 we obtain

B 0L, 0M 9™y = A™ ;0L ... 0M 9™ — min A(z,;6L,...,6M,9™),

rYn YU n n’ ‘YYn U n 1Yn U n
Zn€Xn

where

A ns Oy 021, 0) = AR (@0 070) + 077 (n) Y (Grleh) = An(eni b)), (2:24)
ieM

given any solution A™(-;67) to the reduced contract design problem (WT’),(AM’)
and any 07,9 € C(AX,, [0,1]) with >~ 97 = 1. From Theorem 3 the equilibrium
transfers £ only depend on z™ (generally) only if the modified excess transfers Am
in (2.24) depend exclusively on the outcome ] that directly relates principal m and
agent n. But this can only be achieved in general by setting A" = G, i.e., by set-
ting 6™ = 0 for all (m,n) € M x N. Thus, [A™] = [G™] which yields the additively
separable WTE described by the equilibrium transfers £ in (2.13) (which are also
nonnegative for all (m,n) € M x N). [ ]

Proof of Proposition 5. The claim follows essentially from Proposition 4.

Indeed, under Assumptions 4-5 we obtain that (WT”) is equivalent to
V2™ < V2A™ and VAT (:T) = Vam(zT) (2.25)

for all (m,n) € M x N. Similarly, Assumptions 2’ and 5 imply that (AM”) becomes

equivalent, to

VZA™ < V2™ and VAT(E™) = —VA™(E™) (2.26)

n
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for all (m,n) € M x N. Note that at any interior efficient outcome & we have
necessarily that Va*(27) — V(&%) = 0 which is consistent with the equalities
in (2.25)—(2.26). Thus, combining (2.25)-(2.26) we obtain from Proposition 4 that
relation (2.14) is sufficient for the excess transfer matrix A to be a solution to the

reduced contract design problem (WT’),(AM’). [ ]

Proof of Corollary 3. It is sufficient to verify that A satisfies condition (2.14)
in Proposition 5. For this, note first that V(V#*(7),z* — %) = Va(ZT) as
required. Furthermore, it is V(V7™(27), 2™ — £7) = 0 and, by Assumption 3,

V2rm < 0 < —V2y™ which completes the proof. ]

Proof of Theorem 4. Let us first show that the affine excess transfer A = [A]
with A as defined in (2.15) solves (WT”’). For this, note that (with v™/0z, =
OF™[0x,)

- m m oF™(& .
F™(z) — Z AT z,) = F™(z) — E(W(—),In — Iy) (2.27)

neN neN

vanishes at the efficient outcome, i.e., for z = £. Moreover, by Assumption 3 the last

expression is concave. If it is maximized at an outcome Z, then it has to satisfy

OF™(Z)  OF™(&)
ox, Oz, ’

(2.28)

for all n € M. But (2.28) holds for Z = £, so that by concavity of (2.27) we obtain
that & is a global maximizer of the left-hand side of (WT’). Hence, the inequal-
ity (WT’) is satisfied on X for all mm € M. Since total surplus W is maximized at

the efficient outcome &, we have that
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for all n € M. As a result, £, is a critical point of left-hand side of the inequal-
ity (AM’) which at this point also vanishes. Since the left-hand side of (AM’) is by
Assumption 3 convex, it is globally maximized at Z,. Hence, the inequality (AM’)

holds on X, for all n € N. [ ]

Proof of Proposition 6. Let us start by rewriting the reduced contract design

problem (WT’),(AM’) equivalently in the form!®

Fl(x1,22) — Aj(z1) < Aj(22) < Gofz2) — Aj(22), (2.29)
and

F?(21,22) = Aj(wn) < Af(m1) < Gi(w1) — Al(=), (2.30)

for all z € X. Note first that since (2.29) holds for all (z1,z2) € X1 X A, it can be

equivalently restated as

$2(x2) = max {Fl(asl, ) — Al (:vl)} < Aj(x2) < Golzs) — Al(x,), (2.31)

T1€EX]

which is independent of ;. Thus, as long as
Fl(xl,xQ) b Ai(a:l) S Gg(.’L‘Q) - Ag(l‘z) (232)

holds for all z € X, it is clear that (2.31) is satisfied if and only if for a given z; the
number A%(z;) lies somewhere between the right-hand and left-hand side of (2.32).
The latter is the case (for a continuous Al) if and only if we choose A}(:;6;) as in
Proposition 6 for some continuous function 8, defined on &, with values in [0,1]. In

a completely analogous manner we can show the necessity and sufficiency of A2(-; 6;)

15 Another equivalent set of inequalities is given by F! — Al < Al < Gy — A2 and F2 - A2 <
A2 < Gy — A} which leads to the different but equivalent formulation of Proposition 6 mentioned
after Corollary 4.
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as in Proposition 6, as long as
Fz(xl,xz) — A%(wz) < Gy(zy) — Ai(xl) (2.33)
for all z € X. Combining (2.32)-(2.33) the sum A% — Al needs to satisfy
F2(xy,22) — Gi(z1) < Ad(z2) — Al(z1) < Ga(zs) — FH(z1,22)

for all x € X. Since Z is by hypothesis an interior (global) maximizer of total

surplus W we have that there can never be any excess surplus, i.e.,

W(.’L‘) - W(Ii‘) = Fl(.’lfl,l'g) -+ F2(.’L‘1,.1'2) - Gl(.’L‘l) - Gz(iEg) S 0 (234)

for all z € X, which implies that (2.33) can always be satisfied pointwise (i.e., with-
out the continuity requirement on A), i.e., locally. By Assumption 3 we have
that F? — G, is concave and Gy — F! is convex on X. Hence, the separating hy-
perplane theorem (together with the fact that F2 — G' = G5 — F! at %) implies
that there exist constants a! and a? such that the continuous (and affine) func-
tions A%(z,) = (@, z, — Z) for n € {1,2} satisfy (2.34) on X. A simple application
of Proposition 2 concludes our proof by ensuring that the obtained solution to the

reduced contract design problem vanishes at the efficient outcome. ]
Proof of Corollary 4. By taking A%(z,) = (an,z, — &) (cf. the proof of

Proposition 6) we obtain from (2.16) that a, = 0F"™(£)/0z, = Ov™(Z)/0x, for n €
{1,2}. n
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2.7 Appendix B: Comparison with Available Re-

sults

In this subsection we provide two supply chain coordination examples related to
the current literature on supply chain coordination. One is a multi-principal one-
agent supply chain example considered by Carr and Karmarkar (2003). The other
is a one-principal multi-agent supply chain example considered by Majumder and
Srinivasan (2003). Although these two works have different research focuses from
this paper, we apply our contract design method to their setting to demonstrate how

supply chain coordination can be achieved.

B.1 Multiple Principals and One Agent

Carr and Karmarkar (2003) consider an assembly structure example consisting of
two component suppliers and one manufacturer. They apply price-only contracts
to achieve quantity coordination, that is, the production quantity of each supplier
(upstream firm) equal to that of the manufacturer (downstream firm). It is well
known that price-only contracts with double marginalization cannot achieve channel
coordination. We apply our contract design method to achieve channel coordination
in this assembly system. In illustrating the idea in Section 2.2.5 we assume a top-down
contracting situation in which the suppliers act as principals. The suppliers incur the
cost of production, which is linear in the quantity produced. Upon observing the
contract terms the manufacturer places orders with the component suppliers who
then produce the ordered components at a unit cost of ¢ > 0. The manufacturer
and the suppliers thereby trade according to the supply contracts signed ex ante, i.e.,
before the production has happened. After receiving the components from the two
suppliers, the manufacturer then produces with these components at an extra unit
production cost ¢; and sells the product to the end consumers at a retail price to clear

the market. In our setting the production quantity is naturally and automatically
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coordinated.

Let x be the production quantity of the manufacturer, who acts as an agent for
the two suppliers. His gross payoff is given by u; = [(a — bz) — ¢;]z. Supplier m’s
gross payoff is v™ = —c™z. The system surplus W = v! + v? + u, is strictly concave,

and we obtain the production quantity

—ci—cl—-¢?

2b

& = arg mea%{(a ~bx)z ~ (€ +ct + )z} = z

as the unique efficient outcome maximizing total surplus in the supply chain system,
which is larger than the production quantity (a—c; —c! —c?)/(6b) as obtained by Carr
and Karmarkar (2003, Proposition 1). Consequently, the efficient system surplus W=
(a—cy—c' —¢?)/(4b) is larger than their system surplus W = 5(a — ¢, — ' —¢?)/(36b).

To accommodate top-down contracting, we apply a linearly augmented modified

transfer with an “expensive” wholesale price w)'. Correspondingly, we define
iy = [(a — bz) — 1]z — (w} +wd)z, and " = —c"z 4wz

for m € {1,2}. Assumptions 1,2’,3-5 are satisfied and by Corollary 3 the affine excess
transfer
do™

Ap =" (o =) = (' - ")z — )

solves the reduced contract design problem. The in-equilibrium transfers o] which
define the equilibrium contracts, can be obtained from Theorem 2. For simplicity we

let 91 = 0 and 92 = 1. We thus obtain
8 =(wi—c)2 and aij= (wi—(a—b&—c —c"))d.

The transfers in the original system are shifted to t7* = {7 — w™2™. In this example,
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the actual in-equilibrium transfers are given by

13 and of=—(a—bi—c; ~ct)d.

af = —c

These negativity of the equilibrium payments means that the actual transfers are
from the agent (manufacturer) to the principals (suppliers). The net in-equilibrium
payoff to the manufacturer is zero and the principals are able to extract all the surplus
from the transaction. However, the sharing of the surplus between suppliers 1 and 2
depends on the choice of 9}. When 9} = 0, supplier 1’s net payoff is zero and all the

surplus is extracted by supplier 2.

B.2 One Principal and Multiple Agents

Majumder and Srinivasan (2003) consider a multi-echelon supply chain system where
some members in the chain procure complementary components from more than one
supplier. The authors study the effect of contract leadership and coordination and
show that two-part tariffs can coordinate the whole supply chain. Without loss of
generality, we consider a simple assembly structure consisting of two suppliers and one
manufacturer. In line with our main argument we assume a bottom-up contracting
scenario in which the manufacturer acts as a principal. The manufacturer and the
suppliers trade according to the supply contracts signed ez ante. Given the contracts,
supplier n with infinite capacity decides on how much to produce and to deliver
to the manufacturer, i.e., z,. We assume that the production cost is quadratic in
the quantity produced. Upon receiving the delivered components, the manufacturer
produces an end product at a unit production cost ¢! and sells the end product to
the end consumers at a retail price p to clear the market, with p = @ — bz and a is

big enough to keep system surplus nonnegative. Supplier n’s gross payoff is given by

() = — (“—%—’3 i bn:rn) |
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The manufacturer’s gross payoff can be written as

v!(z) = (a — br)z — c'=.

The (strictly concave) system surplus W(z) = v!(z) + uy(z) + u2(z) is maximized at

a—Cl—bl—bQ
2b+a1+a2

By =2y =8 =

as the unique efficient outcome. Assumptions 1-3 are satisfied, so that from Theo-
rem 4 (Affine Solution to the Reduced Contract Design Problem) we obtain that the

excess transfer described by

Al(z) = Ay(z) = (a — 2b% — M) (z — Z)

solves the reduced contract design problem (WT’),(AM’). The in-equilibrium trans-
fers o can be obtained from Theorem 2. Since }.,. .\ 9™ =1 we let 91 =1 and

obtain

an(g%)2

AL(z) = Gp(z) = un(2) —un(z) and of = —u,(8) = + b, &

for n € {1,2}. In equilibrium, supplier n obtains exactly his total cost and the

manufacturer is thus able to extract all surplus from the transaction.
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Chapter 3

Surplus Extraction In
Multi-Principal Multi-Agent

Supply Chains

3.1 Introduction

Recently, Weber and Xiong (2006) [W&X]! have discussed the noncooperative de-
sign of coordinating full-information contracts in multi-principal multi-agent supply
chains. The principals correspond to either buyers or sellers in a supply chain, and
they propose contracting solutions. Allowing for arbitrary continuous payoff func-
tions with externalities, they have provided a nonparametric characterization of such
contracts in terms of weakly truthful equilibria (WTEs) of the underlying contracting
game, in which first principals noncooperatively propose a set of contracts to agents,
and then agents noncooperatively implement an outcome.? Using this characteri-

zation, W&X provide a set of closed-form contracting equilibria that coordinate a

LChapter 3 and W&X both study efficient contract design in multi-principal multi-agent supply
chains. The difference is that W&X address agent payoff externalities explicitly.

2The concept of weak truthfulness has been introduced in a seminal paper by Bernheim and
Whinston (1986). It has been used in a multi-principal multi-agent setting (without any externalities)
by Prat and Rustichini (2003).

68
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two-echelon supply chain implementing any given efficient outcome as a WTE of the
contracting game. If the efficient outcome is unique, they show that it can be im-
plemented strongly in the sense that in an equilibrium, agents strictly prefer to take
coordinating actions over all other available actions.

Since multiple contract schemes exist to implement an efficient outcome, a natural
follow-up question is, how the principals can extract as much surplus as possible
from the agents. The focus of this chapter is to answer the question. This surplus
extraction problem has been first investigated by Strulovici and Weber (2004) in a
setting without payoff externalities between participants of the supply chain. Here
we show that the set of attainable equilibrium payoff vectors for principals is convex,
and that maximum surplus is extracted from the agents on that set’s Pareto frontier.

The rest of the chapter is organized as follows: In Section 3.2 we review the
efficient contract design solutions developed in W&X. In Section 3.3 we propose a
characterization on the Pareto frontier of the set of the principals’ attainable payoff
vectors. In Section 3.4 we describe how to compute the Pareto frontier. In Section 3.5
we discuss the application of our general method to the coordination of a differentiated
Cournot Oligopoly. Finally, we conclude in Section 3.6 with a discussion of the results

as well as directions for future research.

3.2 Efficient Contract Design

Using essentially the same setup as in W&X, we consider a setting in which prin-
cipals can write outcome-contingent contracts with a number of different agents.
Let M ={1,...,M} and N = {1,..., N} denote the corresponding sets of M prin-
cipals and N agents. After each principal m € M (“she”) and each agent n € N

(“he”) sign contracts with each other, agents noncooperatively implement an action

M,N

mn=1 Contains

(or “outcome”) z € X = & X -+ - x Xy. The outcome vector z = (')

ny*"

each agent n’s individual action vector z, = (zL,...,zM) € X, C Rf", which, in
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turn, is composed of M different L-dimensional actions z)'. The action set &, is a
compact subset of Rﬂ‘_/’ L that contains at least one point to allow for the possibility of
inaction.

In the first stage of the contracting game, each principal m designs a mapping ™ :
X — RY from outcomes z to nonnegative transfer payments ¢7*(z) directed at each
agent n € N3 These (geherally nonlinear) payment schedules are proposed nonco-
operatively by the principals to the agents. In stage two, each agent n implements an
action z,. Agents can exert externalities on each other, i.e., each agent n cares about
the implemented outcome z = (z,,2_,) and the sum of all the transfers he obtains

in equilibrium. His net payoff is given by

Un(a;t) = tn(z) + 3, t7(2), (31)

meM

where u,(z) is the gross payoff to agent n from the outcome z = (z,,z_,) when he
takes action z,, and all other players implement z_,,.

When selecting optimal remuneration schemes (contracts) for the different agents,
each principal cares about both her monetary payments and the agents’ actions.
Let v™(z) be principal m’s gross payoff if action z is taken. If she offers the transfer

schedule t™ = (t7*,...,t%) and agents implement the outcome z, her net payoff is
V™ (z;t™) = v™(z) — Z tr(z). (3.2)
neN

The only critical assumption we make in this paper is that all payoff functions V™

and U, are continuous. Together with the compactness of X this guarantees the

31t is not critical that transfer payments be nonnegative, only that there is a known lower bound,
reflecting the fact that the principals cannot inflict infinite out-of-equilibrium punishments on their
agents. We assume here for sake of discussion that the worst each principal can do to an agent is
not to pay him at all.
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existence of an efficient outcome,

£ € argmax W (z), (3.3)

so that the supply chain can actually be coordinated.* The function

W)=Y V™x)+ ) Unz)

meM neN

corresponds to the total surplus, i.e., the sum of all payoffs in the supply chain. In or-
der to use the results of W&X regarding the characterization of the set of equilibrium
contracts, it is useful to formulate the payoffs in terms of excess measures relative
to the payoffs that would be obtained at an efficient outcome Z. For simplicity we
assume here that the efficient outcome % is actually unique, in order to avoid coor-
dination issues related to the selection of the efficient outcome itself. Principal m’s

excess revenue from implementing z instead of % is
F™(z) = v™(z) — v™(%)

and agent n’s excess cost from taking an action z, instead of Z,, given the other

agents’ out of equilibrium actions z_,, and in-equilibrium actions £_,, is
Gn(z) = up(Z) — un(z).
Similarly, the ezcess transfer

A (z) = () = & (2),

4 We use the following definition of (uniform) continuity: a function g : X — R is continuous
on X if, given any x € X, for any e > 0 there exists a § = 6(g) > 0 such that € {€ € X : || —z| <
§} = |9(2) — g(x)| < €, where || - || is a given norm on the Buclidean space RMNL, Note that
according to this definition any function is continuous when X is discrete.
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is paid from principal m to agent n as the difference in compensation for helping
to implement an outcome z instead of the efficient outcome . W&X characterize
WTEs for the multi-principal multi-agent game and show that any solution A =

[A™] € C(X,RM*N) t0 a reduced contract-design problem of the form

F™z) = Y AT(z) S0 < Gulz) = Y Al(z), (R)

JEN iEeEM

for all (m,n) € M x N and all z € X can be directly mapped to a WTE of the

original efficient contract-design problem. In fact, if we consider the solution set
R ={A e C(X,R™¥N): A solves (R)}
then A € R if and only if there are functions ¢™,~, € C(X,R,) such that

2ien A7 () = F™(z)+¢™(2),

| (3.4)
ZieM An(z) = Gn(w) - 'Yn(w)a
for all (m,n) € M x N and all z € X, and
Y @)+ Y ve) = Q) (3.5)

EM JEN

on X, where

corresponds to the total surplus deficit in the supply chain (Theorem 2 in W&X).
In particular, one can show that the set R is convex (W&X, Lemma 3). From our
preceding remarks it is clear that R # 0 and that it typically contains more than one
element, since the N + M inequalities in (R) are generally not enough to pin down an

N x M solution matrix A. If [R| > 1, the principals can (and in practical situations

SMinus the total surplus deficit, —{2, corresponds to the total excess surplus, which by the defin-
ition of the efficient outcome Z in (3.3) must be nonpositive, so that Q > 0.
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do) have different preferences regarding which solution to choose, as the distribution of
surplus may vary substantially among different solutions. In our modelling framework
below, the A € R is chosen so that the corresponding vector of in-equilibrium net
payofls to the principals lies on the Pareto frontier. Given this choice, all gains from
coordination are exhausted and the principals appropriate surplus from the agents
that cannot be increased for one principal without making another principal worse
off.

The reduced contract design problem (R) embodies the fact that each agent max-
imizes his payoffs given the actions of all other agents, and that each principal prefers
the efficient outcome # given the transfer schedules offered by the other principals. In
addition, the WTE requires that, in equilibrium, principals minimize their expendi-
tures in the sense that each principal m pays an agent n exactly the difference between
what this agent could gain by ignoring principal m (and obtaining an amount of zero
from her) to implement his mosf preferred action, and the cost for agent n of choos-
ing the efficient action for principal m. This additional “principal cost minimization”

requirement can be written in terms of our excess measures as follows:
th(2) = Jnax {—Gn(xn,:?:_n) + ; Al (zy,, i_n)} . (PM)
Fm

We denote by
C={A € C(X,RM*N): A solves (R) and (PM) } C R

the set of solutions to the complete contract design problem, consisting of (R) com-
bined with (PM).6 The following key result maps any A € R to a solution of the
complete contract-design problem A € C, which results in a WTE of the overall

contracting game.

5Recall from W&X that (R) and (PM) are equivalent to the characterization of a WTE.
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PROPOSITION 7 (EFFICIENT CONTRACT DESIGN; W&X, THEOREM 3) If the ezx-
cess transfer matriz A = [A™] € R solves the reduced contract-design problem (R)
implementing the efficient outcome &, then a WTE of the multi-principal multi-agent
game is given by (t,2) with

£ (@97, 0n) = A7 (5 97, 60) — min {A::‘(xn, & O + O, 00, /(7 + 9n))}
(3.6)

and

AT (97, 6n) = A7) + I (2)(1 — On()) <Gn(w) - AZ(?E)) ec (37

iEM

for all (m,n) € M x N, 6, € C(X,,[0,6,]) with
) — A . s P at D >
6, = sup {Hn € [0,1] ?éljlatn(:r,ﬁn,en) > O}

and arbitrary 97 € C(X,,[0,1]) satisfying 3 e, 0% (2) = 1.

The function 6,, can be interpreted as the “strength” of the implementation from
the agents’ point of view. For 6, = 0, which is always feasible, the implementation
of the efficient outcome is weak in the sense that all agents are indifferent to any
particular action z, € A,,. Since a strong implementation represents an added cost
to the principals, which can be made arbitrarily small by reducing 6,,, we assume
here without any loss in generality for our discussion that 8, = 0. Then the constant

nonnegative shifts

™97 = — min A™(zp, E_n;9™) >0 (3.8)

Tp€EXn
of the modified excess transfers A? correspond exactly to the amounts transferred from
principal m to agent n in equilibrium. As discussed in W&X, these amounts generally
depend on the outcome-contingent convex combination selected in (3.7). Generally,

for each agent n € N the principals are in conflict about who should pay him less,
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since the higher 97, the lower principal m’s transfer to agent n in equilibrium. If for
principal m the weight 97 = 1, her equilibrium transfer to agent n is indeed as small
as possible, given the solution A to the reduced contract-design problem (R). This
conflict of interest is not resolved as part of the contracting game; it is a consequence
of the multiplicity of coordinating equilibria. The multiplicity can be restricted to

the Pareto frontier of the principals’ payoff set, which is the focus of Section 3.3.

3.3 The Pareto Frontier of the Principals’ Payoff

Set

3.3.1 Primitives

We first establish that the set V of attainable payoff vectors for the principals is

convex.

The Payoff Attainability Set

Based on Proposition 7 we can represent the set C of solutions to the complete
contract-design problem as the range of a suitable transformation T' of solutions to

the reduced contract-design problem (R). More specifically, if for any

9=[0r] € ©={0=[07] € C(X,R™¥N): ) "di(z) =1}

ieM
we set
T(A,9) = |AD(z) + 97 () (Gn(x) -y AZ(-’E))} )
€M
then it is

C={T(A,9): (A,9) € R x O} =T(R,0).

In other words, the range of T'(-, ©) over its domain R constitutes the solution set C

of the contract-design problem (R),(PM). Interestingly, this range does not depend
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on being able to use all elements of ©. The following result establishes that in fact

any one element is enough to represent all elements of C using elements of R.

PROPOSITION 8 (INVARIANCE) For any 9 € ©, we have T(R,9) =T(R,0) =C.

We can therefore, without any loss in generality, choose ¥ € ©, such that 9 = 1/M.
For any A € R we denote the corresponding element of C by T'(A), dropping the
explicit dependence on 9. Proposition 8 ensures that T(R) = C.

Consider now the set V of attainable payoffs for the principals, where
V={(V1(A),... VM () V™ (A)=v™(#)+ 5, ming, e, {T (Aen,3-n))LAER,mEM},

and

T (AR) = A7) + o7 (Gnu) -y A:;m)

€M
for all z € A. The following key result establishes that the set of all attainable

equilibrium payoff vectors for the principals is convex.

PROPOSITION 9 (CONVEXITY) The (nonempty) set V is convexz.

Remarkably, the convexity of V is independent of any assumptions on the payoff
functions (other than continuity). It is a consequence of the convexity of R, the set
of solutions to the reduced contract-design problem (R), together with the concavity
induced by the minimization in expression (3.8) for the in-equilibrium transfers from
principals to agents.

To further describe the set V using the primitives of the contracting problem, we

provide the following bounds on any given principal’s equilibrium payoffs.
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PROPOSITION 10 (PRINCIPAL PAYOFF BOUNDS) The set V is bounded; any given
principal m’s equilibrium net payoff V™ = V™) in a WTE implementing the effi-

cient outcome I satisfies

Tn€Xn

Z min {F™(Zp,E_n)} V™ —0™(2) < ;zflel}\fln {Qzn, Zon) + F™(@0, 8-0n)},

where Q(:z:) =W(z) - W(z).

The lower bound for V™ is achieved when the slack variables ©¢™(Zn,Z-y) and
Y (Zn, E—n) in (3.4) vanish for all (m,n). Similarly, the upper bound is tight when

O(Tn, Z—p) = 0 for all i #£ m.

3.3.2 Special Case: Common Agency

We now consider the important special case when N = 1, so that there is a single agent
that contracts with all M principals, a situation referred to as common agency. In that
setting it is possible to sharpen the general results and obtain explicit expressions.
In particular, we discuss the interesting and somewhat counterintuitive phenomenon
that all principals may be able to simultaneously obtain their maximum possible

payoffs, which we therefore term a win-win scenario.

LEMMA 1 (MAXIMUM PRINCIPAL PAYOFF) Under common agency, principal m’s

mazimum ottainable equilibrium payoff is

Vm:v()—l-mm{G]:cl ZF’xl}

T1€EX
i#Fm

The intuition for this result is as follows. It is clear that principal m’s maximum

payoff V™ is attained at any outcome

&M € arg mln {Gl (z1) — Z:FZ :L'l)}

i#£m
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with an excess transfer A = [AT'] € R such that AT(£™) = G1(€™) =5, F*(¢™) and
AL (E™) = Fi(¢™) for i # m. This implies that necessarily

G1E™) =T iepm ALE™)=C1E™) =T i AHE™) = AT (€™)=C1E™) = Liem F* (€™)-AT(E™)=0,

and hence

T (AE™) = AT(E™) = G1(E™) = Y Fi(E™).
i£m

By the cost-minimization condition (PM) we know that principal m’s in-equilibrium
transfer to agent n in (3.8) depends on that agent’s best action in the (hypothetical)
situation when principal m “removes” herself from the game (i.e., sets all her transfers
for all possible outcomes to their minimum value, zero). Naturally, the agent’s best
action £™ in principal m’s absence is generally different from his equilibrium action.
This leads to a surprising result: if, for all m # 4, the agent’s action £™ (determin-
ing principal m in-equilibrium transfer to the agent) does not influence the agent’s
action & (determining principal ’s in-equilibrium transfer to the agent), then the
principals can coordinate their contract profile in a way that allows all principals to
obtain their maximum possible payoffs. Correspondingly, a win-win scenario is such
that
ym=ym

for all m € M, ie., each principal obtains her maximum attainable payoff. The
following result provides necessary and sufficient conditions for a win-win scenario to

exist under common agency.

LEMMA 2 (WIN-WIN SCENARIO) Let N =1 (common agency). (i) A win-win sce-

nario exists if

F™(z) > Q&™) + F™(E™) (3:9)

for allz € X\ {{™} and all m € M. (it) If a win-win scenario exists, then (3.9)
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must hold for all z € {€',... &M} \ {¢™} and all m € M.

Intuitively, a win-win scenario exists if the excess payoff of any principal m (eval-
uated at “appropriate” outcomes x # £™) exceeds the excess payoff of that principal
(evaluated at £™) by at least the total supply chain deficit (also evaluated at £™).
Condition (3.9) cannot be satisfied for all z € X'\ {¢™} if €™ is not either an effi-
cient outcome or an isolated point. The sufficient condition of part (i) of Lemma 2 is
therefore of practical use only if the action set is discrete. An example in Section 3.5

demonstrates that a win-win scenario can be obtained under less stringent conditions.

3.4 Computing the Pareto Frontier

Since the set of the principals’ attainable payoff vectors is convex and bounded by

Propositions 9 and 10, in equilibrium the principals select points of the Pareto frontier
P={veV:v<v€eV = v=7i}

Let V(A) = (VY(A),...,VM(A)) denote the payoff vectors obtained by a solu-
tion T(A) € C to the complete contract design problem for some A € R. Then,
if V is an element of the Pareto frontier (or its closure P), there exists a vec-

tor A= (A, ..., AM) with "M M =1 such that

V= sup {(A-V(A)}. (3.10)

We now discuss the numerical implementation of obtaining a Pareto frontier. Recall

that

Vm(A) = v™(2) +Z min {T7(A(@n, £-n))},

TR€A,

and

T(A(2) = A7) + 2= ( )= DAL x))

€M
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Finding the Pareto frontier of the principals’ in-equilibrium net payoffs amounts to

solving the following problem:

MN s 4
max 7 N

lapllap) 4=t
st M AL+ Mg — AP) < G,
M Al <@, (3.11)

S AP > P
(mn)e{1,...,M} x{1,...,N},

for A € R, in the unit M-simplex. The variables ¢"* = —a" in problem (3.11) can be
interpreted in terms of amounts transferred from agent n to principal m, for instance
as discounts off a large enough base amount (e.g., a wholesale price), guaranteeing
that the actual transfers ¢ remain nonnegative (cf. footnote 3).

Problem (3.11) is fundamentally a variational problem, since the optimization
variables A correspond to (continuous) functions mapping the set of feasible out-
comes X to real numbers. Nonetheless, by discretizing the set X', the variational
problem (3.11) can be converted to a linear program. More specifically, if we let a
represent a vector of minimum elements of X for each coordinate of RMNL and b
the corresponding vector of the maxima, then X C [a,b]. For the numerical solution
of (3.11) we restrict attention to the finite grid

k-(b-a)

XK={x::1:=a+ 7

eX+eke{0,..., KN for some € € (—%,%]MNL}’

for a sufficiently large integer K > 1 (the grid-size). Note that the grid Xx can also
be used when X is discrete. In nondegenerate cases the set X contains on the order
of (K + 1)MNL discretization points £[k] for
- MNL 2-(b—a) 5
keK= IL‘G{O,...,K} :a-l-—‘?(———-EXK

. Instead of A we can then consider 67*[k] = A (Z[k]) for all z € K. With this (3.11)
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becomes a linear programming problem that can be solved using standard optimiza-
tion software such as Matlab. Varying p in increments results in a (discretized)

approximate Pareto frontier.

3.5 Supply Chain Contracting Examples

We now study several examples to illustrate how our framework can be applied to
study issues of surplus extraction while coordination is implemented in a common-

agency supply chain setting.

3.5.1 Constrained Capacity

Consider a supply chain consisting of one upstream component supplier and two
retailers who each sell one end product in their respective, geographically dispersed
markets.” We assume that the retailers act as principals, i.e., initiate the contracts.
The supplier has only a limited installed capacity that can be allocated to the retailers,
which we normalize to one for simplicity. Thus, if 2] denotes the supplier’s capacity
allocation to retailer m, we assume that z} +2z? = 1. The supplier’s cost for installing
the capacity is assumed sunk, i.e., her gross payoff is u; = 0. We further suppose that
additional capacity is a desirable resource of which both retailers prefer to have more,
and that the lead time for production is not negligible, so that the supplier needs
to set production quantities before observing demand realizations. The sequence of
events is as follows: The retailers and the supplier sign supply contracts before the
uncertain demand is realized. The supplier decides on how much capacity to allocate
to each retailer and also how much to produce for each retailer. The retailers and the
supplier trade according to supply contracts signed, and the quantity z7* is produced

and delivered to retailer m. Then random demand is realized and each retailer sells

"This example is similar to the interdependent action example in W&X (2006). While they
consider a two-supplier two-retailer supply chain and apply an efficient partially affine contract to
coordinate, here for simplicity, we consider only a one-supplier two-retailer supply chain.
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the product to the end consumers at a fixed price p. To simplify the algebra in this
example, we assume that the random demand D™ is uniformly distributed on [0, 1]
and p = 1. The gross payoff to retailer m is v™(2™) = p(—(2T)% +3z7"/2) as assumed
in Chapter 2. Applying efficient partially affine contracts to obtain the excess transfers
that solve the reduced contract design problem (R), we obtained in Chapter 2 that in
equilibrium, the net payofls to retailer 1, retailer 2, and supplier 1 are Vi=V2= %
and U; = % In equilibrium, the supplier’s net payoff is strictly positive. Therefore,
with efficient partially affine contracts, the retailers (principals) cannot extract all the
surplus from the transaction. In contrast, when we apply our methods in Sections 3.3
and 3.4, the Pareto frontier can be found be solving the linear programming problem
defined in (3.11) with Matlab; we find that the Pareto frontier has one point with
(V1,V?) = (0.5,0.5).

This example illustrates that by applying our framework, the retailers’ equilib-
rium payoffs are on the Pareto frontier of their attainable payoff set. We can design
coordinating contracts to maximize the retailers’ attainable equilibrium payoffs over
all the possible coordinating contracts. Implicitly, this also answers the question of

how the retailers can select from multiple coordinating contracting profiles.

3.5.2 Supply Chain Contracting in a Cournot Oligopoly

We now illustrate how the manufacturers in a multi-principal multi-agent Cournot
oligopoly, where M > 2 manufacturers (principals) supply differentiated goods to
N > 1 retailers, select a coordinating contracting profile. A similar version of this
example is discussed in W&X to illustrate how to design coordinating contracts in a
multi-principal multi-agent supply chain. As noted in W&X, “[t]his is an archetypical
supply chain contracting problem of which many practical instances can be observed
(such as Coke and Pepsi supplying their products to a retail chain).” Instead of
considering a symmetric system as in W&X, in our approach here the manufacturers

and the retailers can be asymmetric. Furthermore, their coordinating contracts based
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on surplus sharing are only a subset of all possible coordinating contracts. They only
answer the question of how to find contracting profiles that coordinate the supply
chain. The natural follow-up questions are, first, how the manufacturers can extract
as much surplus as possible from the system through coordination contract design,
and, second, how the surplus can be divided among the manufacturers. We aim to
answer these two questions here, and begin with a review of the assumptions. Assume
that each manufacturer m produces its goods at a marginal cost ¢™ > 0. Each retailer
n sells the quantities 27 it orders from manufacturer m on a common market at the

price

) == X (a7 475

JEN iAm
The constant 8 € (—=1/(M — 1),1) indicates the degree to which the products are
substitutes (8 > 0) or complements (8 < 0), and the constant y™ > ¢™ defines
the market potential. Since this is a top-down contracting problem, we introduce
base wholesale prices w paid from the retailers to the manufacturers and assume that

w™ > ¢™. Manufacturer m’s gross payoff (before discounts) is thus

m

q

™z w) = w™ Zm;” - " Zx;’"“) ,
JEN jEN

where ¢ > 0 indicates the degree of economy of scale. To simplify the computations

in our numerical experiments we assume that ¢' = ¢ = q. The retailer’s gross payoff

(before discounts) is

Uun(z;w) = > (p'(z) — w)zk,.

iEM
Naturally, total surplus W(z) = 3,y v*(z;w) + 3 ;e ws(; w) is independent of w
and is maximized at the unique efficient outcome z. Without loss of generality, we
assume that the retailers’ action set is restricted to all nonnegative order quantities
not exceeding twice the maximally plausible “monopolistic’ order quantity u’ — ¢,

which would never be exceeded: That is, the retailers’ feasible action set [0, u! —c!] x
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K=1 K=2 | K=4 | K=8 | K=16

p<05 p=05 p>0.5
v 0 0.7208  1.0026 | 0.9401 | 0.9401 | 0.9401 | 0.9401
v2 | 1.0026 o0.2818 0 0.0026 | 0.0026 | 0.0026 | o0.0026
[i] 0 0.0599 | 0.0599 | 0.0599 | 0.0599

Table 3.1: Sensitivity of Pareto Frontier w.r.t. Discretization.

-+ x [0, uM — cM] is closed and bounded, i.e., compact, as required by the framework
outlined in Section 3.2.

We concentrate the numerical experiments on common agency with two manufac-
turers and one retailer. In these situations, we assume that the marginal production
costs are constant, i.e., ¢ = 1. We consider u! = 3 and u? = 1 to account for
different market potentials for the two products, and ¢! = 1.0, ¢ = 0.5 to account for
different unit production costs. We use Matlab to solve the linear programming prob-
lems in (3.11) to obtain the Pareto frontiers, and hence we are able to characterize

the Pareto frontiers of the manufacturers’ attainable payoff sets.

Common Agency

In this subsection, we focus on the case of common agency with M =2 and N = 1.

The Pareto Frontier

We first study how different discretizations of the feasible action sets impact the
Pareto frontiers and hence the surplus extraction by the two manufacturers. To do
this, we fix 8 = 0.2, w! = w? = 5, and vary p' from 0.1 to 0.9 with an increment of
0.1. Let K represent the grid-size over [0, u* — ¢].

Table 3.1 shows our numerical results of the Pareto frontier with respect to differ-
ent degrees of discretization. We observe that as long as K > 1, the Pareto frontier
has one point with V! = 0.9401 and V2 = 0.0026. Therefore, for the rest of study
with N =1, we fix K = 2.

Next we study how the base wholesale price w impacts the Pareto frontier. As

discussed in W&X, we need to “transform a top-down contracting situation (with
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wl =1,w2 =05 w? =1 wl =2
w! = 1.9 wl =2 w? = 0.5 w? = 0.6
p < 0.5 p=0.5 p > 0.5 p < 0.5 p=0.5 p> 0.5 p < 0.5 p=0.5 p>05
vi 0 0.0013 0.0026 0.9 0.9018 0.9026 0.9401 0.9375 0.9386 0.9401 0.9401
72 3.0026 0.0013 [ 0.0026 0.0008 0 0.0026 0.0026 0.0015 0 0.0026
viyv? 0.0026 0.9026 0.9427 0.9401 0.9427
Uy 1 0.1 0.0599 0.0625 0.0599

Table 3.2: Sensitivity of Pareto Frontier w.r.t. Base Wholesale Prices.

arbitrary bounded transfers paid from agents to principals) into our standard bottom-
up contracting framework (with nonnegative transfers paid from principals to agents)
by interpreting outcome-contingent variations of a transfer schedule from an agent to
a principal as a nonnegative variable discount that the principal offers to the agent,
off a sufficiently high outcome-contingent ‘base transfer schedule’ from that the agent
to the principal.” The questions are, first, how high does the base wholesale price
need to be; and, second, how does the base wholesale price impact the division of
surplus between the manufacturers and the retailer. The experiments that follow aim
to answer these two questions. In this set of experiments, we fix 8 = 0.2, K = 2, and
vary p* from 0.1 to 0.9 with an increment of 0.1.

Table 3.2 shows our numerical results. When w = ¢, i.e., the base wholesale prices
are equal to unit production costs, the Pareto frontier is a straight line. The total
payoffs to the two manufacturers are 0.0026 and the payoff to the retailer is 1. When
we fix w? = pu? = 1 for w! > 2, the Pareto frontier has one point independent of w?
when w! is large enough (> 2). The total payoffs to the two manufacturers are 0.9427
and the payoff to the retailer is 0.0599. When we fix w! = 2, for w? > 0.6, the Pareto
frontier has one point independent of w? when w? is large enough (> 0.6). The total
payoffs to the two manufacturers are 0.9427 and the retailer’s payoff is 0.0599. Thus,
we demonstrate that when w! > 2/3u! w? > 0.6u2, the base wholesale prices are
large enough. On the one hand, the manufacturers can use the vehicle of w to extract
as much payoff as possible from the system. On the other hand, the manufacturers

are unable to extract the full surplus, no matter how large w is, when the products
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are substitutes.

We next study how the degree to which the products are substitutes or comple-
ments impacts the Pareto frontier, with 8 > 0 accounting for substitutes and 8 < 0
accounting for complements. In this set of experiments, we fix K = 2, w! = 3,w? = 1,
and vary p* from 0.1 to 0.9 with an increment of 0.1.

When 8 > 0, i.e., when the two products are substitutes, the in-equilibrium
net payoff to the retailer is strictly positive and nondecreasing in 3, while the in-
equilibrium net payoff to the manufacturers are nonincreasing in 3. We also observe
that the Pareto frontier has one point. The percentage of the surplus of the manu-
facturers over the total system surplus is 93.75%, and thus the manufacturers cannot
extract all the surplus. The division of surplus between the manufacturers and the
retailer is independent of the vector A in (3.10). Therefore, we conjecture that the rea-
son is that both the manufacturers can obtain their maximum attainable payoffs. As
shown in Lemma 1, the maximum attainable equilibrium payoff of manufacturer m is
Vm = v™(£) + ming, ex, {G1 (1) = i F ’(xl)} This is actually what happens in
this example. Take 8 = 0.2 for example. With p! = w! =3, p? =w?=1,and ¢! =1
and ¢? = 0.5, we have £ = (0.9896,0.0521) and &' = (0, ﬁz_ﬁ),ﬁz = (“12;61,0). Hence,
by Lemma 1, V! = 9! + G1(£') — F2(€!) = 0.9401 and V2 = 92 + G1(£%) — F}(¢?) =
0.0026. In our numerical study, we do have V! = V! = 0.9401 and V2 = V2 = 0.0026.
Therefore, in our example, each manufacturer is able to obtain her maximum attain-
able payoff independent of A in (3.10). We further demonstrate that the necessary
conditions in Lemma 2 are satisfied. That is, when each manufacturer obtains her
maximum attainable payoff, it is F™(£%) > Q(€™)+ F™(€™). In this example, we have
FUED) — (QEY) + F1(€Y)) = 1.0599 > 0 and F2(£1) — (Q€?) + F2(£2)) = 0.1224 > 0.
Therefore, the retailer’s action ¢* does not influence the retailer’s action £2. It is
possible that the manufacturers can coordinate their actions in such a way that each
manufacturer obtains her maximum possible payoff, and thus, the Pareto surplus di-

vision between the manufacturers and the retailer is independent of A. The Pareto
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frontier has one point. Unfortunately, this example cannot demonstrate that the

sufficient conditions in Lemma 2 are satisfied.

25

em—— () 2
= = p-04

24 mem——.. ), 6
st ()8

Figure 3.1: Sensitivity of Pareto Frontier w.r.t. § when 8 < 0 (Complements).

Figure 3.1 shows the sensitivity of the Pareto frontier with respect to the degree
of complements. When 8 < 0, the Pareto frontiers are straight lines with 45 degree
slope. This is because when the products are complements, the principals can extract
all the surplus, and we have V14+V2 = W. The total surplus of the two manufacturers
is increasing in the absolute value of 3. The more the products are complements, the
higher the system surplus and hence the higher the total surplus distributed to the
manufacturers.

Finally, we study how a different production cost structure (namely, through
economies of scale) influences the Pareto frontier. We study two cases with § = 0.2
(substitutes) and 8 = —0.2 (complements). Here we set K = 4 and vary p! from 0.1
to 0.9 with an increment of 0.1. Figures 3.2 and 3.3 show the Pareto frontier varying

with respect to ¢ for substitutes and complements respectively. We observe that for
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substitutes, the Pareto frontiers have one point, and the manufacturers cannot ex-
tract all the surplus except for ¢™ = 0.25. For complements, the Pareto frontiers are

straight lines, and the manufacturers can extract all the surplus.

18- —Vi
~-=-V2

1.6
1.4 1
1.2 1

Payoffs

0.8
0.6
0.4
0.2 +

.........
-

Figure 3.2: Sensitivity of Pareto Frontier w.r.t. ¢ for Substitutes.

In summary, when the products are complements, the Pareto frontier is a straight

line, with the manufacturers extracting all the system surplus.

3.6 Discussion

W&X provide a set of closed-form contracting equilibria that coordinate a two-echelon
supply chain implementing any given efficient outcome as a WTE of the contracting
game. In this work we provide an answer to the question of surplus extraction, i.e.,
among all the coordinating contracts, what contracts would enable the principals to
extract as much as surplus as possible from the agents. To achieve that, we first show
that the in-equilibrium net payoffs of the principals can be completely determined by
the solutions to the reduced contract-design problem (R) since the operator mapping

solutions of (R) to solutions of the full contract design problem (R),(PM) can be
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Figure 3.3: Sensitivity of Pareto Frontier w.r.t. ¢ for Complements.

made independent of the parametrization in W&X. We then derive the primitives
of the principals’ payoff attainability set V and demonstrate that V (generated by
all coordinating WTEs of the contracting game) is convex. We also show that it is
possible that in a win-win scenario every principal gets what she can possibly hope
for, provided that all the other principals cooperate.

By numerical study we can obtain the Pareto frontier for general multi-principal
multi-agent supply chains by solving linear programming problems. In our numerical
example of Cournot Oligopoly, we also implicitly address the question of surplus
division among the principals and the agents. When the products are substitutes, the
Pareto frontier has only one point, which is the mostly likely outcome of cooperative
pre-play communication. When the products are complements, the Pareto frontiers
are straight lines with 45 degree slope.

In a general case, the division of surplus between principals and agents in a coor-
dinated supply chain depends on which particular profile of equilibrium contracts is
selected by the principals. To fully resolve the multiplicity problem®, one needs to ad-

dress the question of surplus distribution among principals after it has been extracted

8As suggested by Martimort (2006), this multiplicity problem is a common feature of multi-
contracting problems and therefore leads naturally to a coordination problem for principals.
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from agents, which is a worthwhile future research challenge. Since the principals’
payoff attainability set is convex, in future research one can apply cooperative bar-
gaining theory to arrive at predictions of which principal-efficient allocation(s) are

the most likely outcome of cooperative pre-play communication.

3.7 Appendix: Proofs

Proof of Proposition 8. Fix any A € R and any 9, J € ©. To prove the claim, we
only need to show that there exists a A € R such that T(A,9) = T(A, ). Since 9 is

in © and thus the element of a simplex, the nonnegative constant

pa(9,9) = min_{d7/97}

me{i:9%, >0}

is well defined for any 9,9 € ©. Thus, by setting

A=[a7] =

AZL + (";T - pn(ﬁa&)é‘;n) <Gn(x) - Z A;(m))]

1EM

we can guarantee that A € R, i.e., A solves (R). First we show that A satisfies the
second inequality in (R), corresponding to the agents’ payoff maximization problem.

For this, we notice that by the construction of A one obtains that
St Y& - (6.0~ T 50
ieM €M ieM

for all n € NV, and

Gn(z) — Z A:Z(:L’) = Pn (Gn(x) - Z A;(:E)) >0

1EM 1EM

The inequality holds because by assumption A € R, i.e., A indeed satisfies the second
inequality in (R), so that G,(z) — ¥, s A%(z) > 0 (by its definition, p, > 0). Next
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we show that A also satisfies the first inequality in (R). By the definition of p, we
have 9™ > p,9™ and hence A > A™. Since by assumption A € R and thus A

satisfies the first inequality in (R), it is

"(z)— Y AP < F™z) - Y AM(a)

JEN JEN

for all m € M and all x € X. Therefore, AT also satisfies the first inequality (R).
Finally, we have that

T(A,9) = |A™ 9™ (GH—ZAQN

iEM

_ ar s @m— o (Gnm ¥ A:xa:)) . (an 3 A:;)}

1EM ieM

= |Am 4 9m <Gn—ZAi>

EeM
);

¢o<

= T(A,
which concludes our proof. [ ]

Proof of Proposition 9. Given any A € R, principal m’s in-equilibrium net

payoff is given by

V™(A) =o™ Z min {77 (A(zn,Z-5))} -

Zn€Xn

The mapping V™ : R — R is concave. Indeed, comsider A, A € R. Then by the
convexity of R the convex combination AA + (1 — M)A is also in R for any X € (0,1).
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Furthermore,

UmOA+(A-NA) = v™@)+ Y min {TPOA@ ) + (1~ VA, 3-0)) |
= @)+ Y min {XT7(A(n3-n) + (1= NP (A0, 3-0) }

> AV™A) + (1= N)V™(A),

so that

A

VA, VA eV = XV™A)+(1-NWV™MA)<VOA+1-NA)eV

for all A € (0,1), which implies convexity of V.

Proof of Proposition 10. Fix any m € M. Principal m’s payoffs cannot
decrease if she obtains 9™ = 1 for all agents n € N. Fixing the corresponding ¥ € ©,

we obtain that

A 9) =A% + (Gn - AZ) > T (A, 9)
1EM

for any dee. Hence,
VMA) -v™(E) = ;zﬂne%, {T7(Alzn, 2-n))}

= Zzinel}\}n {A:;n(xm"%~n) + (Gn(xm-'i'—-n) - Z Ai(xnyi—n)) }

iEM
= min { > AT, dn) + Y (Gn(xn,:ﬁ_n) - Z A;(xn,gz_n)> }
neN neN ieM

= min {Fm(xn,fi_n) + @™(Tn, Z-n) + Z 'yn(zn,i‘-n)}

€X
* neN
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Since the slack variables ¢™ and 1, are nonnegative, it is
V™(A) —v™(z) > min {F™(Zn, &)}
z€
On the other hand, using relations (3.4) and (3.5) we have that

VT(A) —v™(2) = inelgé{F (Tn,Z—n) + (m"’z‘")+9(x"’x‘")_i§4‘p(x"’z‘")}

= gég(] {Q(wn,af:_n) + F™ (%, &—pn) — Z <pi(scn,:%_n)}

iEm

IA

gg? {9z, &-n) + F™ (@0, E-n)},

which concludes our proof. [ ]

Proof of Lemma 1. In a WTE, the net payoff to principal m under common

agency can by virtue of (3.8) be written in the form
V™(A) = v™(&) + min T™(A(z1))
Z1€X1
with

Ty (A(®) = AT () + - (Gl(x) -2 (x)) !

iEM

where A € R,m € M. Since A € R, AT solves (R), so that
AP <G =Y A <G —) F
i#m i#Em

The first inequality is by (R) equivalent to Y, A% < Gy, and the second inequality is
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equivalent to —AT* < —F™. Therefore,

Vm(A) —v™(@) = min {A;n(xl) + (Gl(ml) -y Ag(x1)> /M}

T1€EX ieM

<  min ATY(z4)

T1€EX]
< i - g
< min {Gl(l'l) ZF (581)} ;
i#£m
which concludes our proof. [ |

Proof of Lemma 2. (i) When (3.9) is satisfied, we can set
AT(E™) = Gi(6™) = ST FHE™ = Q(E™) + F(E™) = F™(E™),

and Al(E™) = F*(¢™) for all m € M and all i 5 m. At all other points z; # &™ for
all m € M, we let AT (z1) = F["(zy). Clearly A7 (z) satisfies the first inequality
in (R). Since G1(z1) = X jepm A4(x1) = Gi(z1) — Djeps Filz1) = Q(21) > 0, AT (21)
satisfies the second inequality in (R). And thus AJ* € R. Next, we observe that

AT (z1) + (Gl(wl) - ZA’i(wl)) /M 2z AT (z1) = F™(21) 2 AT'(E™") = QE™) +F™(E™).

The first inequality following from the second inequality in (R), the second in-
equality holds by the construction of AT*(z;), and the last inequality is implied
by (3.9). Therefore, the above construction of A enables the agent to choose ac-
tion €™ when principal m removes herself from the contracting game for all m €
M. By Lemma 1 each principal obtains her maximum attainable payoff in equi-

librium. (ii) By Lemma 1, principal m’s maximum possible payoff is obtained at

E™ = argming, cx, {Gl(xl) =D itm Fi(:cl)} with

AT(E™) = Gi(€™) — Y_Fi(E™), (3.12)
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Aj(g™) = Fi(g™), (3.13)
Gi(€™) = DAl =0 (3.14)
ieM

for all 7 # m. Since by assumption, principal m gets her maximum attainable payoff,
then it is actually in the agent’s best interests to take the action £&™ when principal

m removes herself from the contracting game, i.e., at any points z; other than £™,

T (A(zy)) = AT(x1)+<G1 (z1) ZN x1>
> T"(AE™)
= APE™) + (Gl €M =D A (&"0)
- apE -

= aem - FiEn) (3.15)

i£m
for m € M. In particular, (3.15) must hold for z; = &%, i # m, i.e.,

TM(AE) = ATE) + (Gl &) - ZN ¢ ) /M = AT(E) = F™(£)
ATE™) = (§m)+F’"(€’”)

v

for all m € M and all ¢ # m, which concludes our proof. ||
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Chapter 4

Stock Positioning for Distribution

Systems with Service Constraints

4.1 Introduction

The present chapter addresses inventory allocation in a distribution system subject
to service-level constraints. The objective is to satisfy end customer demand while
minimizing the inventory holding cost by optimally allocating inventory among the
warehouse and several retailers. In the retail industry, service levels are among the
most important performance metrics. In a recent survey (Chain Store Age 2002),
respondents rank customer fill rate as the number-one metric used for inventory man-
agement. Cohen, Desphande and Wang (2003) provide various examples from two
different industries, namely semiconductor and military supply chains, to illustrate
the practical importance of service constraints in multi-echelon systems.

In particular, we study a distribution system with one warehouse replenishing
multiple non-identical J retailers. Stochastic demands arrive at the retailers only.
Each retailer satisfies demand through on-hand inventory, if there is any. Otherwise,
unsatisfied demand is backordered at each location. The warehouse allocates inven-

tory to the retailers on a first come first served basis. Inventory in the distribution
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system is reviewed continuously. Each location follows a base-stock policy, that is,
a one-for-one replenishment policy based on local inventory information. The ware-
house replenishes from an outside source with ample supply. Each shipment requires
a leadtime but no fixed costs. Each location incurs a holding cost. The retailers are
subject to service-level constraints. We focus mainly on fill-rate type service-level
constraints, e.g., the fraction of demand met from on-hand inventory. The data is
assumed stationary and the time horizon is infinite. The objective is to minimize the
total average holding cost subject to service-level requirements at the retailers.

A distribution system with service-level constraints at the retailers is a funda-
mental structure for many supply chains. We provide an algorithm that provides
an optimal base-stock level at each location while ensuring that fill-rate service-level
requirements are satisfied. Distribution systems can be very large in practice. For
example, GM service parts distribution center manages 5 Million parts across 8000
dealers (see Cohen et al 2003 for other examples). Hence, optimal solutions may not
be tractable for large-scale systems. Computational improvements can thus be very
important. We establish monotonicity results and bounds on base-stock levels that
help to improve the computational requirement for the algorithm. These bounds also
help to develop heuristics that are computationally very fast.

We propose two heuristics to determine base-stock levels in a distribution system.
The triple-search heuristic (TSH) considers three feasible stock positioning strate-
gies and selects the best. An extensive numerical study (over 530 tested problem
instances) has found that this heuristic’s cost is on average 1.18% more than the best
base-stock policy’s cost. It is computationally fast, and hence amenable for real appli-
cations. The newsvendor heuristic (NVH) solves 2J newsvendor problems to allocate
inventory across the distribution system. The idea is based on decomposing the distri-
bution system into J two-location serial systems by restricting the warehouse to keep
separate stocks for each retailer. Next the NVH solves a single newsvendor problem

per location of the decomposed system. The heuristic’s cost is 18% more than that
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of the best base-stock policy in our numerical study. This NVH is not as accurate as
the TSH, but it is computationally much faster and simpler to use and describe. The
only advanced knowledge required to apply this heuristic is the newsvendor formula-
tion taught in any operations management course. The computational efficiency also
enables one to analyze large-scale systems that manage thousands of SKUs. Finally,
the NVH also provides a step for developing a closed-form approximation, i.e., the
newsvendor approximation.

Next, we propose three closed-form approximations. The main purpose of these
approximations is to predict the system’s performance. Our tests show that all the
three approximations perform this task fairly well. Using these approximations we
provide insights into stock positioning and quantify, for example, how logistic post-
ponement or consolidation of retailers affect the distribution system’s performance.
Compared to the optimal solution and the heuristics, these approximations require
much less data and are easier to describe to practitioners.

An obvious one-to-one relationship between a service-constrained model and a
backorder-cost models does not exist for multi-echelon inventory systems (see, for ex-
ample, Boyaci and Gallego 2001 for a discussion on serial systems). Hence, since the
1970s two separate streams of research have evolved: one dealing with backorder-cost
problems and another one dealing with service-constrained problems. For example,
several authors study serial systems with backorder costs (Clark and Scarf 1960,
Gallego and Zipkin 1990, Chen and Zheng 1994, Shang and Song 2003, and refer-
ences therein). Yet, several other researchers also study serial systems with service
constraints (Boyaci and Gallego 2001, Axsater 2003 and Sobel 2003). Researchers
have been addressing service-constrained models and backorder-cost models sepa-
rately because (i) the service-constrained systems have significant practical relevance,
(ii) yet they are computationally and analytically difficult to deal with even for a
single location model, and (iii) they cannot be addressed by a simple conversion to

backorder-cost models. Diks, de Kok and Lagodimos (1996) provide a comprehensive
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review of service-constrained inventory models. Next we briefly review the literature
on service-constrained models.

The multi-echelon literature studies four fundamental topologies: single location,
locations in serial, assembly systems, and distribution (arborescent) systems.! The
literature on service-constrained inventory control problems mainly studies a single
location problem. Cohen, Kleindorfer and Lee (1988a) develop a greedy heuristic
to minimize expected costs subject to a fill-rate type service-level constraint for a
periodic-review inventory system with fixed costs, priority demand classes, and lost
sales. Bashyam and Fu (1998) propose a gradient-based simulation method to com-
pute (s,.5) inventory control policies in systems with random leadtime and a service
constraint. Agrawal and Seshadri (2000) consider a fill-rate constrained (Q,r) inven-
tory problem. They develop distribution-free bounds for the policy parameters and
provide an algorithm to obtain those policy parameters.

Another group of researchers studies multiple-locations in which only the last lo-
cation faces a service constraint. Boyaci and Gallego (2001) develop an optimal
algorithm to obtain base-stock levels for a serial system. This algorithm could be
computationally complex for a system with more than two stages. Hence, they
also provide efficient heuristics. Sobel (2003) presents formulas for the fill-rate of
a periodic-review serial system that follows base-stock policies. Cohen, Kleindorfer
and Lee (1988b) and Cheng, Ettl, Lin and Yao (2002) consider assembly systems and
a configure-to-order environment, respectively. They provide algorithms that allocate
inventory across the systems to satisfy the service constraints for the final products.

Relatively little work exists in the literature on distribution systems subject to
service requirements at various demand points. Rosenbaum (1981) provides one of
the earliest works that considers service-level relationships in a continuous review
distribution system. She develops a heuristic to determine the service level a cus-

tomer receives given a combination of warehouse and retailer service levels. Schwarz,

!Axsiiter (1993) and Federgruen (1993) provide a comprehensive review for the extensive
backorder-cost inventory models.
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Deuermeyer and Badinelli (1985) consider continuous review replenishment policies.
The authors approximate the retailer fill-rates and expected warehouse delay and
maximize system fill-rate subject to an investment constraint on system safety stock.
We are unaware of any work that provides an algorithm to optimally determine base-
stock levels in a distribution system subject to service requirements at each retailer.
Note that a service-constrained distribution system is substantially different from a
service-constrained serial system and a backorder-cost distribution system. In this
chapter, we build on the recent developments in multi-echelon inventory systems and
address this fundamental supply chain structure. Throughout the paper we provide
additional references.

The rest of the chapter is organized as follows. In Section 4.2, we describe the
model and provide some properties of optimal base-stock levels. Using these proper-
ties, we propose an algorithm to obtain optimal base-stock levels for a distribution
system subject to service-level constraints. In Section 4.3, we develop two heurisitics:
the triple-search heuristic and the newsvendor heuristic. In Section 4.4, we provide
three closed-form approximations. In Section 4.5, we conduct an extensive numerical
study, and report the accuracy of the heuristics and the performance of the approx-
imations. In Section 4.6, we investigate the relationship between the backorder-cost
models and the service-constrained models. In Section 4.7, we conclude the paper
with a discussion on how these heuristics and approximations contribute to theory

and practice.

4.2 The Model

We consider a distribution system with single warehouse supplying multiple retailers.
Let J denote the number of retailers. The warehouse is indexed by j = 0, and the
retailers are indexed by j = {1,...,J}. All locations are allowed to carry inventory.

The local holding cost at retailer j is h; per unit of on-hand inventory. Due to value
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added operations, holding inventory at the retailers is more expensive than holding
it in the warehouse, and hence, h; > hg. Stochastic demands arrive at the retailers.
Demand is satisfied through on-hand inventory, if there is any. Otherwise, unsatisfied
demand is backordered at each location. Only the retailers are subject to service-
level constraints. Inventory is reviewed and replenished continuously. Each location
follows a local base-stock policy. The warehouse replenishes from a source with ample
supply. Whenever the inventory position? at location j > 0 falls below s;, it orders
from its immediate upstream location to bring its inventory position back to s;. The
warehouse satisfies retailers’ orders on a first come first served basis®. Shipments from
an upstream location arrive at the downstream location after time L;. Demand at
each retailer j is independent and follows a Poisson process {D;(t),t > 0} with rate
A;. Hence, the warehouse’s demand process is Poisson with rate Ag = > 550 Aj-

The state of the system is defined by B;, the backorders, and by I;, the on-hand
inventory at each location j = {0,...,J}. Welet By, denote the number of backorders

for retailer j at the warehouse. Following a top-down approach, we have

By = [Do~ so]",
Iy = [so— Dot
B; = [(Boj(s0) + D;) — s4]",
= [s; — (Boj(s0) + D;)I*-

o

where [y and D; are lead-time demand at the warehouse and retailer j. Bo; + D;

can be interpreted as the effective demand at retailer j. Because By; and D; are

independent, By; | By is binomial with parameters By and 6; = ‘;\?é

The type of service-level constraint we consider here is the limit probability of

2Inventory position equals on-hand inventory plus inventory on order minus backorders.

3This is also called a local control system in which each location’s decision is only based on
its local inventory information. The local control has an advantage of decentralized management
among different organizations or within different departments in a large organization. In addition,
it simplifies the analysis and it is a fair policy which is commonly used in practice.
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having positive on-hand inventory at retailer j, that is,
PT‘(BOj(So) + .Dj < Sj).

Because we assume Poisson demand processes, this limit probability is equal to the
long-run fraction of demand that sees a positive inventory level at retailer j, which is
also defined as fill rate.

The objective is to minimize the total average inventory holding cost subject to
fill-rate type service-level constraints.

min hoE[So —_ D0]+ + Zj)O hjE[Sj - (BOj(SO) + Dj)]+

50,81y,

subject to Pr(Byi(so) + D; <s;) 2 8;, Viedl,..,J},

(4.1)

where 3; represents a pre-specified fill-rate for retailer j. Here, we ignore the pipeline
inventory holding cost because this cost is a constant in the steady-state.

Given the base-stock level so at the warehouse, the distribution of By; can be
obtained. Hence, given sg, the distribution system separates into J single-location

problems subject to the service-level constraints as follows.

minsj hjE[Sj — (B()j(s()) -+ Dj)]+
subject to Pr(Bo;(so) + D; < s;) > B;

(4.2)

for j € {1,...,J}.

These single-location problems are simpler to solve than the original problem in
(4.1) because By; depends only on sy, and h;E[s; — (By;(se) + D;)|* is increasing in
s;. Hence, the optimal base-stock level at retailer 7 is the minimum one that satisfies

its service-level constraint. We define

57(s0) = min{s; : Pr(Bo;(so) + D; < s;) > B} (4.3)
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4.2.1 Properties of Optimal Base-Stock Levels

Here we provide some monotonicity results and discuss the analytical relationship
between the fill rates and the base-stock levels. These results enable us to obtain
bounds on the optimal base-stock levels, and to develop heuristics that improve the
computational time required to obtain the optimal cost and base-stock levels at each
location.

The following lemma shows that increasing the warehouse base-stock level provides

higher fill-rates at all the retailers. We defer all the proofs to the appendix.

LEMMA 1 Pr(By;(so) + D; < s;) < Pr(Boj(so+ 1)+ D; < s;) for any j > 0.

Next we investigate the impact of moving one unit of inventory from the warehouse
to a retailer, a location closer to end customers. The next lemma proves that moving
one unit of stock from the warehouse to retailer j does indeed increase the fill rate at

retailer j for a distribution system.

LEMMA 2 Pr(Byj(so) + D; < sj+1) > Pr(By(so + 1)+ D; < s;) for any j > 0.
Let sé- denote the minimum base-stock level necessary to satisfy the fill-rate re-

quirement at retailer j when the warehouse has infinite supply, that is,
= s%(00) = min{s; : Pr(D; < s;) > B;}. (4.4)

Similarly, we define s} as the minimum base-stock level necessary to satisfy the fill-

rate at retailer j when the warehouse holds zero inventory, that is,
sj = 53(0) = min{s; : Pr(Bo;(0) + D; < 5;5) > B}, (4.5)

By;(0) has Poisson distribution with mean A; Ly because Pr(Bo; = m) =y, .. Pr(Bo; =

m | By = n)Pr(Bp =n) = %e"\j“. Hence, By;(0)+ D; has Poisson distribution

n>m

with mean \;(Lo + L;).
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Note that it is computationally straightforward to obtain 32 and s}, i.e., to increase

s; from 0 until (4.4) or (4.5) is satisfied. Finally, we define
se(81,--,87) = min{sqe : Pr(Bo;(s0) + D; < s;) = B;,V§ > 0}. (4.6)

Next we use Lemmas 1 and 2 to establish a relationship between the warehouse

base-stock level so and the retailer base-stock level s;’s.

PRrROPOSITION 1 For all 7 > 1, we have
1. 85(81y0y 85+ 1,0, 87) < 85(51, 00 Sy veey SI),
2. s3(s0+1) < s3(s0),
3. sk < s3(sp) < 8%,
4. s3(s0) < s3(so+ 1)+ 1.

The first and second parts of the proposition demonstrate that the warehouse stock
and the retailer stocks are complementary for satisfying the service-level constraints
at the retailers. To satisfy a given service requirement 3;, when the warehouse carries
more inventory, the retailer j optimally carries less inventory. Similarly, if any retailer
carries additional inventory, the warehouse’s optimal base-stock level will be kept at
the same level or reduced. The third part shows that the optimal base-stock level at
any retailer is bounded. These bounds are very easy to compute. The fourth part
implies that a unit of stock closer to the end customer provides a better protection
against demand uncertainty.

Next, we obtain an upper bound s} for the optimal base-stock level at the ware-
house. From Part 1 of Proposition 1, we know that the less inventory the retailers
carry, the more stock is needed at the warehouse. Hence, by setting the base-stock

level s; at each retailer j equal to its lower bound sé., we obtain the upper bound s§
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as follows.
s§ = min{so : Pr(Bo;(so) + D; < s}) > f;,Vj > 0}. (4.7

PROPOSITION 2 [t is sj < sp.

Note that the above properties play an important role in establishing a fast al-
gorithm to obtain the optimal base-stock levels and the resulting cost. They also
enable us to develop efficient heuristics in addition to providing insights into stock

positioning in a distribution system.

4.2.2 Optimal Solution

The total average holding cost in (4.1) is not necessarily convex in so. Hence, we
search over all possible values of sy to find an optimal solution. To simplify this
search, we use the results on the upper bound for the optimal base-stock level at the
warehouse sy from the previous subsection. Recall also from (4.2) and (4.3) that given
a base-stock level sy for the warehouse, the optimal base-stock levels for the retailers
are obtained by solving independent single location problems. Let ¢* be the optimal
total average holding cost and s* = (s§,sf, ..., %) be the corresponding base-stock

levels. The following algorithm is used to obtain c¢* and s*.

SET ¢* = large number
FOR so = 0 to s
SET ¢ — hoE[lo]
FOR j=1,..,J
s3(so) « min {s; : Pr(By;(s0) + D; < s;) > f;}
¢ c+ hiE[s}(s0) — (Boj(so) + Dj)]*
END
IF ¢ > ¢ THEN ¢* « ¢; 5§ « s0; 5} — 5%(50)

END
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The computational complexity of this algorithm is O(J?) for fixed retailer de-
mand rates A;’s. In the rest of the paper, we present and evaluate heuristics and

approximations for the above service constrained distribution system.

4.3 Heuristics

4.3.1 Triple-Search Heuristic (TSH)

This heuristic considers three possible base-stock levels for the warehouse. Recall
that once sg is set, the heuristic solves J single-location optimization problems as in
(4.2).

The heuristic first sets sg = 0. Recall from the discussion after (4.5) that By;(0)+
D; has Poisson distribution with mean A;(Lo + L;). Hence, the resulting single-
location optimization problems are of newsvendor type. The optimal retailer base-
stock levels and corresponding costs can be computed using a simple spreadsheet.
Note that this strategy stocks all inventory at the retailers and no inventory at the
warehouse.

Next, the heuristic sets s = E[Dy]. In other words, it allocates zero safety stock
to the warehouse and simply keeps enough inventory to satisfy the expected total
replenishment orders from all retailers.

Finally, the heuristic sets so = s§, as s is defined in (4.7). Recall from Proposi-
tion 2 that this base-stock level is the maximum quantity ever needed for the ware-
house. In other words, the heuristic allocates maximum inventory to the warehouse
and the minimum necessary inventory to the retailers to satisfy the fill-rate require-
ments.

The TSH considers the above three feasible ways to allocate inventory to the
distribution system and chooses the one that yields the lowest cost. Gallego, Ozer and
Zipkin (2003) also propose a heuristic that considers three possible ways to allocate

base-stock to the warehouse. The resulting optimization problems in their backorder
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cost model paper and in our service constrained model, e.g., (4.1) and (4.2), are related
but different. The computational complexity of this heuristic is O(J). Hence, it is

computationally much faster than the optimization algorithm given in Section 4.2.

4.3.2 Newsvendor Heuristic (NVH)

Here we propose a heuristic that obtains base-stock levels for each of the J locations
by solving newsvendor problems. To do so, we first decompose the distribution system
into J two-location serial systems by restricting the warehouse to keep separate safety
stock for each retailer. We let Dy; and sg; denote demand and the base-stock level
at the sub-warehouse in the resulting jth two-location serial system for which the
optimization problem is given by

min hoE[so; — Do;I™ + h;Els; — (D + (Doj — s0;) )"

504,85 (4.8)
subject to Pr({(Do; — so;)* + D; < s5) > 3;.

Next we define a backorder cost b; = beLjhj for each retailer j. Using these
backorder costs, we convert each of the two-location service-constrained serial systems
to two-location serial systems with backorder costs at the retailers, i.e.,

min - hoB[so; ~ Doj]™ + h;Elsj — (Dj + (Doj = s0;) )" + b E(D; + (Doj = 505)* — s;)]*.
(4.9)
To obtain the optimal base-stock levels for the above serial system requires one to

solve a recursive algorithm (Gallego and Zipkin 1999). In particular,

Ci(s) = E{(hj —ho)(s — Dj)* + (bj + ho)(s — D;)7}, (4.10)
s; = argminC(s),

Coj(s) = E{ho(s — Doj)* + Cj(min[s — Do;, s3])}, (4.11)
s = argmin Coy(s).
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Note that the last location’s optimal base-stock level is obtained by solving the
newsvendor problem in (4.10). Hence, the optimal base-stock level for the last loca-
tion of the resulting two-location serial system is given by

b; + ho

s; = min{s: Pr(D; <s) > Y }.

(4.12)

However, to obtain the upstream location’s optimal base-stock level requires one to
solve the recursive equation in (4.11). Instead, we solve a newsvendor problem. To
do so, instead of charging the holding cost rate hg to excess inventory in the first
stage and adding the cost of the second stage C;, we charge the approximate holding
cost rate

Ly L,
= h. J
Lo+ 1L, °+L0+L,~

hos hj, (4.13)

to excess inventory. The idea is based on adding the holding cost as the product
goes through the warehouse and the retailer without delay and then dividing by
the total leadtime that it spends before reaching the end customer. We charge this
approximate holding cost to any excess inventory in the upstream echelon that faces
demand uncertainty over the leadtime Ly + L; and the penalty cost b;. The resulting

problem has a newsvendor-type cost structure of

é’oj(s) = mgin E[hoj(s - Dj)+ + bj(S - Dj)_], (414)

sp; = arg msin Co;(s) (4.15)

where D; is Poisson with rate \;(Lo + L;). The optimal echelon base-stock level is

given by

e : M b;
so; = min{s: Pr(D; <s) > b, +Jh0j}' (4.16)
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Substituting b; and hg; into (4.12) and (4.16), we obtain

1— 8,
3; = min {s : P'I'(Dj < s) >1- '—‘—;fg—‘} s (4'17)
L+ 2%
s¢; = min{ s:Pr(D; <s)> ! (4.18)
G = : j > T :
y 1+(%_1)(1—1ﬁﬁ%—z)

Given these echelon base-stock levels?, one can obtain the local base-stock level at the
sub-warehouse j as so; = max(s§; — s, 0). Similarly, the base-stock level at retailer j

is = min(s§;, s5). Zipkin (2000, pg. 306) provides a discussion on the equivalence

J
of these local and echelon base-stock levels for serial systems.

In summary, the newsvendor heuristic sets the warehouse base-stock level as
sYVH = ;>0 50; and the retailer base-stock levels as sMVH for j > 0. The follow-
ing proposition shows that the retailer base-stock levels obtained by the newsvendor

heuristic are no less than the lower bounds for the optimal base-stock levels s} at each

retailer.

PROPOSITION 3 sNVH > sk for j > 0.

Note that the base-stock levels s§v VH are solutions of simple newsvendor problems.
Hence, this heuristic for the distribution system can be implemented with a simple
spreadsheet. The NVH is inspired by the heuristic developed for a serial system with
a backorder cost by Gallego and Ozer (2005).

4For a two-location serial system, the local base-stock level of the downstream location is the same
as its echelon base-stock level. Hence, with abuse of notation, we use s§ to denote both base-stock
levels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. STOCK POSITIONING WITH SERVICE CONSTRAINTS 110

4.4 Approximations

4.4.1 Newsvendor Approximation (NVA)

Here we approximate customer demand at each retailer with a Normal distribution
and hence simplify the newsvendor heuristic. This approximation yields closed-form
solutions for the resulting base-stock levels and the total average holding cost.
Recall that s§ is the optimal solution to the problem in (4.10). We approximate
D; with a normal distribution with mean A;L; and standard deviation \/m 5 Then

the base-stock level at retailer j can be written as

sV = ML+ ' (W)V ML, (4.19)
1-8;

= - 4.20

P; . hj’i%o- (4.20)

Similarly, recall that sj; is the solution to the problem in (4.14). We also approxi-
mate D; with a normal distribution with mean \;(Lo + L;) and standard deviation

vV Aj(Lo + Lj). Then the echelon base-stock level at sub-warehouse j is

sor = N(Lo+ L)+ @7 (n3) 4/ As(Lo + Ly), (4.21)
1

N = 1 2 Y
1+ (ﬁ_j -Ha- Lj+0L0 1+—°—-,,4_,,0)
J

(4.22)

The resulting total average inventory holding cost for the distribution system is

c =) [1 _15],’%' = LOiOLj(hj - ho)J ¢(25)1/Ai(Lo + Ly), (4.23)

7>0

where z; = &~ 1(n;).

The approximate base-stock level at the warehouse is s)V4 = 3~ 350 max(sgi¢ —

5 A Poisson distribution with parameter ) is approximately normal for large A. The approximating
normal distribution has mean g = X and variance 02 = . It is typically the case that such
approximations are less accurate in the tails of the distribution.
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NVA

\ Ne
j .

= min(sfl¢, s]

siVe, 0). The base-stock level at retailer j is s

Next we illustrate how to use such a closed-form approximation to gain transparent
insights on key factors affecting distribution system design and stock positioning. In
the following discussion, we assume that the parameters satisfy b,—ihLo, =n; > 0.5 for
7 > 0. In other words, the resulting safety stocks at the sub-warehouses are always
nonnegative.

Effect of Cost Parameters Consider the role of holding costs in stock posi-
tioning. Note from (4.19) and (4.20) that as 2—‘; decreases, 1; decreases and the
base-stock level at retailer j decreases. Similarly, note from (4.21) and (4.22) that
as Z—’-; decreases, 7; increases, the echelon base-stock level, and hence the stocking
amount at the warehouse increases. As hg — 0, s; — sé. In this case, large amounts
of inventory can be carried at the warehouse and hence retailer § only needs to protect
itself against demand uncertainty within the L; time units, as also shown in Part 2
of Proposition 1. As ',;—‘J’ decreases, 7); increases, when n; > 0.50 by assumption, z;
increases and ¢(z;) decreases, hence ¢ decreases as can be seen from (4.23). This
observation is consistent with our intuition that delaying the value-added operations
from the warehouse to the retailers reduces the total average holding cost.

Note from (4.17) and (4.18) that when none of the retailers add any value to the
final product, that is, h; = ho for j > 0, then for the newsvendor heuristic, we have
8% = 00, 85; = min{s : Pr(D; < s)>8;} = s%. so; = max{sf; — 55,0} = 0, and hence
sNVH — . S;_VVH -

= min{sg;, s5} = min{s¥, oo} = s¥. Similarly, for the newsvendor

approximation, we obtain s'V4 = 0, s;y va

= s?.

Effect of Lead Times Consider the effect of leadtimes on stock positioning and
the total average cost. The base-stock level at retailer j increases with its own lead-
time L; but is independent of the warehouse leadtime Lo. Fixing Lo, the system
stocking amount also increases in Lo + L;. Keeping the total leadtimes from the

outside supplier to the retailers Lo + L; fixed, the base-stock level at retailer 5 de-

creases with the warehouse leadtime Ly. On the other hand, the warehouse stock
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level increases in Ly. When n; > 0.5, the overall system cost in (4.23) decreases in
Ly, which corresponds to the benefits of logistic postponement. A careful look at the
approximate cost also suggests that locating the warehouse closer to a retailer with a
larger demand rate achieves greater system cost reduction (because the system cost
in (4.23) is proportional to the square root of A;(Lo + L;)).

Effect of Service Levels Finally, (4.19) and (4.21) show that both the retailer
base-stock levels and the system stock level increase in the required service level §;.
The warehouse base-stock level can be increasing or decreasing in 3;. However, when
n; > 0.5, the average cost is always increasing with 3;.

The above closed-form solutions reveal in a transparent way how stock positioning
in a distribution system is affected by (i) the ratio of the value-added operations,
i.e., the echelon holding costs at the warehouse and at the retailers, %}, (ii) the
warehouse and retailer leadtimes, and (iii) the target fill-rates 8;. Note also that
the impact of changes in system parameters can be quantified using these closed-
form approximations. For example, leadtimes can be reduced by a new processing or
tracking technology. The approximation enables one to carry out back of the envelope
analysis to address the impact of a new technology on the distribution system cost
and stocks. Through a numerical study, we will illustrate later that such analysis
yields essentially the same results as one would obtain by using the optimization

algorithm in Section 4.2.

4.4.2 Normal Approximation (NA)

Here we apply a normal approximation directly to the original problem in (4.1).
In particular, we approximate the leadtime demand D; by a normal distribution
with mean A;L; and variance A\;L;. We let ¢ denote the standard normal density
function, ® the standard normal cumulative distribution function, ®° the standard
normal complementary cumulative distribution function, ®' the standard normal

loss function, and ®? the standard normal second-order loss function. The normal
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approximation at the warehouse yields

E[By) = ®'(z0)vX Lo, (4.24)
E[Bg] = 2(1)2(20))\0L0+E[B0], (425)

Ell) = ®'(—20)voLo,

where 29 = (so — AoLo)/v AoLo.

Recall that 6; = ';\TL For each retailer j,
0

E[Boj] = 6,E[Bo),
V[Bos] = 0;(1—8;)E[Bo] + (8;)°V[Bo],

where E[By] and V[By| can be obtained from (4.24) and (4.25). Then By; + D;, the
effective demand at retailer j, can be approximated by a normal distribution with

mean and variance

>

i = E[Bo]+ AL,

>
[N ¢

= VI[By] + NL;,

because By; and D; are independent. Therefore, the normal approximation for retailer

j yields

ElL] = <I>1(——zj)6j = 2;0; + 0; (z — z;)¢(2)dz,

2=z

where z; solves ®(z;) = §;. Given so, the base-stock level at retailer j can be approx-
imated by

s3(s0) = fi; + 2;7;.

The total average inventory holding cost reduces to a function of so only, which can
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be written as

c(s0) = ho®*(—20)V/doLo + ¥ _ h;@'(~2)6
3>0
We optimize this function numerically. In our numerical study, after obtaining the
optimal base-stock levels, we truncate up the fractional values. Note that this approx-
imation, though easy, requires one to optimize over s¢ to allocate inventory among
the warehouse and the retailers. On the other hand, the newsvendor approximation

does not require one to carry out any optimization at the retailers.

4.4.3 Distribution-Free Approximation (DFA)

For a distribution system with service-level constraints, we set b; = Tg%;hj for >0
and by = ijl 6;b;. We regard the warchouse as a single location with Poisson
demand of rate A\gLg, unit overage cost hg, and unit underage cost by; each retailer j
as a single location with Poisson demand of rate \;L;, unit overage cost h;, and unit
underage cost b;. Applying a distribution-free bound (Gallego and Moon 1993) to
these single location problems, we obtain closed-form expressions for the base-stock

levels at the warehouse and the retailers as follows.

s; = NLj+ = \/)\L< 1~ﬁ \/——1) for j >0,
g

/ b /
S = A0L0+'2-\/ AoL()( 'h—(;— b—::) .

Furthermore, we obtain a closed-form solution for the total average holding cost as

¢t =+ oLo hOZMJl +Zh\/)\L1/ 5
J

i>0

Note that none of the above equations require one to estimate demand distributions.
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4.5 Numerical Study

This section reports the performance of our heuristics and approximations. We also
provide some insights into stock positioning issues for a distribution system with
service-level constraints. First, we compare the optimal solution to our heuristics and
report the percentage error &; = %=2* for i = {TSH, NVH} for 530 problem instances.
The parameters are chosen to reflect a wide range of situations such as short and long
leadtimes, cheap and expensive holding costs, low and high customer-service levels.

We study two sets of experiments with local holding cost h; = 1 for j > 0. In the
first set of experiments the retailers are identical. This set includes two subsets, for
both we consider Ly € {0.10,0.90} with L; = 1 — Lo for j > 0 to address systems
with different degrees of risk pooling at the warehouse, and hy € {0.3,0.9}, which
corresponds to adding 30% and 90% of the value to the item at the warehouse. First,
we test 80 instances with J € {2,4,8,16,32}; A = {16,64}; 3; € {90%,97.5%}.
Second, we address the impact of different service levels on the optimal solutions
and the heuristics. To do so, we consider 40° additional experiments with §; €
{20%, 30%, 50%, 90%, 95%, 99.9%}, J € {2,4}; X0 = {16}.

In the second set of experiments the retailers are non-identical. We consider
Ly € {0.10,0.25}, hy € {0.3,0.9}, J € {2,4,8,16,32}, Ao € {16,64}. There are 40
possible combinations. For each combination we generate 10 instances by generating
randomly L; and B3; according to independent uniform distributions. The ranges
for these two parameters are L; € [0.10,0.25] and §; € [90%, 97.5%]. We also test
the heuristics for hg = h; = 1.0. Table 4.4 also includes 10 non-identical retailer
experiments for hg = h; = 1.0 cases with Ly = 0.10 and L; and §; randomly generated
from the uniform distributions described above. We study 410 instances of non-
identical retailer case for each heuristic. Note that unequal leadtimes have the same
effect as unequal demand rates at each retailer. Similarly, the relative importance of

holding costs at each retailer is different because of the randomly generated service

6Note that 8 experiments with 3; = 90% have been included in the first subgroup.
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level requirements.
In total, we have tested each heuristic for 530 experiments with all possible para-

meters that are critical for a distribution system.

4.5.1 Performance of Heuristics

Table 4.1 reports the performance of the triple search (TSH) and the newsvendor
(NVH) heuristics for the first subgroup of identical retailer experiments. Table 4.2
reports the performance of TSH and NVH for the second subgroup of identical retailer
experiments when changing 3;. Table 4.3 summarizes the performance for the second
set of non-identical retailer cases. A close examination of the averages shown in this
table reveals the environment for which each heuristic performs better. Table 4.4
provides specific experiment instances for non-identical retailer cases with J = 2.
Table 4.5 provides experiments with non-identical retailers with J = 4.

For the TSH, the average error over 530 experiments is 1.18% and the standard
deviation is 4.87%. The TSH provides optimal solutions for 378 experiments. The
performance of the triple search heuristic is better under shorter leadtime and lower
holding costs at the warehouse. The average error term for the TSH is 0.37% for
Lo = 0.1 among 270 experiments and 1.02% for Ly = 0.25 among 200 experiments.
Keeping everything else equal, either increasing the number of retailers J or decreasing
the demand rate Ay reduces the error terms and the error deviation. In addition, the
error terms decrease in the retailer service levels. When 8; = 99.9%, the TSH always
yields the optimal base-stock levels, and the worst case occurs when 8; = 20%,J =
2,hg = 0.90, Ly = 0.90. On the other hand, with Ly = 0.10, the TSH obtains the
optimal base-stock levels for all the 20 experiments when (3; changes from 20% to
99.9%. Overall, the TSH yields solutions very close to the optimal solutions.

For the NVH, the average error term and the standard deviation are 18.16%
and 17.76%, respectively. The NVH provides close-to-optimal solutions when the

warechouse leadtimes are small. When Lo = 0.1, the average error term over 270
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experiments is 9.85%. However, the error gap increases when the warehouse leadtimes
are large. This increase is because the distribution system gains significantly from risk
pooling. However, by assuming that the warehouse keeps stocks separately for each
retailer, the NVH disregards the risk pooling effect. In terms of the impact of retailer
service levels, based on the 40 experiments, there is no obvious pattern on how the
error terms changes with respect to the retailer service levels for the NVH. We can
however observe that the error terms are the smallest when §; = 99.9%. Note also
that the NVH does not necessarily guarantee that fill-rate requirements are satisfied.
However, we encountered only one infeasible case out of the 530 experiments.
Computational Complexity. The optimization algorithm for obtaining optimal
base-stock levels and the backorder-cost heuristic take the longest time (less than 60
minutes) followed by the triple search heuristic (less than 1 minute) using a Pentium
IV processor. The newsvendor heuristic requires the shortest time (less than a few

seconds).

4.5.2 Performance of Approximations

We also investigate how well the approximations predict the performance of the sys-
tem dynamics. To do so, we study whether changing the system parameters under
these approximations has the same effect on the system cost as under the optimal base-
stock policy. We use regression to compare the approximation costs to the actual op-
timal costs. For the purpose of comparison we vary one parameter at a time and keep
all the other parameters fixed. For example, to see how well the Newsvendor Approx-
imation (NVA) predicts the influence of relative magnitude of warehouse leadtimes Lg
on the total average cost, we fix Lo + L; = 1.0, Ao = 16,J = 2, 8; = 90%, ho = 0.50
and change only Lo. Next, we calculate the coefficient of determination R? of the
newsvendor approximation costs and the optimal costs.

In Table 4.6 we report the coefficients of determination R? for the Newsvendor

Approximation(NVA), the Normal Approximation(NA), and the Distribution-Free
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Approximation (DFA). We observe that the resulting R?s are all close to 1. The
performance of NVA is slightly better than NA, which is better than DFA. Hence,
our approximate solutions are consistent with the optimal solutions in the sense that
approximate solutions change in the same direction and relative magnitude as the

optimal solutions when changing a system parameter.

4.5.3 System Design Issues

The simplicity and the consistency of the closed-form approximations allow one to
evaluate different system design strategies without solving an optimization problem
or applying an optimization algorithm. In this section, we illustrate how a distribu-
tion system manager can apply these closed-form approximations to evaluate system
design strategies. All the three approximations yield similar results. For simplicity
of computation in the following discussion we focus only on the newsvendor approxi-

mation.

Demand Aggregation

Suppose a distribution system manager is able to aggregate demand from several
retailers to one retailer. She is interested in evaluating how the aggregation reduces
the total system inventory costs. Consider a distribution system with eight retailers
and the following system parameters: ho = 0.5,h; =1, Lo = 0.5 and L; = 1 for j > 0.
This distribution system’s approximation inventory holding cost is 15.92 (resp., the
optimal cost is 16.41). When the demand can be aggregated to be satisfied from
two retailers, the approximation system inventory holding cost reduces to 7.96 (resp.,
the .optimal cost reduces to 8.02). The percentage decrease in the approximation
inventory cost due to demand aggregation is 50% (resp., 51.13%).

This analysis can be easily extended to carry out sensitivity analysis on the benefits
of demand aggregation as in Figure 4.1.

We observe that the relative benefits (percentage change) of stage consolidation
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Figure 4.1: Impact of Demand Aggregation.

is robust with respect to the changes in system parameters 8;, ho, Lo and L;. For
example, when 3; = 0.90, the total average inventory costs for J=8 and J=2 are
19.10 and 9.55 respectively, which is a 50% cost reduction. When 8; = 0.99, the total
average inventory costs for J=8 and J=2 are 28.83 and 14.42 respectively, which is
also a 50% cost reduction. This observation is consistent with the cost function in

(4.23). Keeping other system parameters fixed, ¢(J) is in proportion to v/J. Hence,
d7=2) — /2/8 = 0.50.

(I=8) —

Note that the manager can quantify the cost benefits of demand aggregation fairly
accurately by using the closed-form newsvendor approximation instead of having to
solve the optimization algorithm in Section 4.2 or knowing anything about convolu-
tions or Poisson distribution. The only advance knowledge required to obtain these

results is the concept of “bell-shaped” demand distribution (Normal distribution),

which is taught in any level operations courses.

Logistic Postponement

A manager can also estimate the cost benefits of a logistic postponement strategy
using the newsvendor approximation. Consider, for example, a distribution system
with J = 2,A¢ = 16,hg = 0.50,h; = 1.0. What is the inventory cost reduction
(percentage change) due to changing Ly = 0.1 to Ly = 0.9 while keeping Ly +

L; =1, ie., locating the warehouse much closer to the retailers? Approximately, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. STOCK POSITIONING WITH SERVICE CONSTRAINTS 120

average inventory holding cost reduces from 22.39 to 14.27, which is a 36.27% cost
reduction. This analysis can be extended to study the sensitivity of the benefits of

logistic postponement to other system parameters, as illustrated in Figure 4.2.
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Figure 4.2: Impact of Logistics Postponement.

We observe that the cost benefit of logistic postponement increases in the fill
rates. In particular, the percentage cost reduction due to logistic postponement across
different fill-rate requirements ranges from 33.71% for 3; = 0.86 to 39.57% for 3; =
0.999. This observation suggests that when the retailers have different service-level
requirements, it is more cost effective to locate the warehouse closer to the retailers
with higher service-level requirements. We test this conjecture through a stylized
numerical example. Consider a distribution system with two retailers. Retailer 1
has a fill rate of 95% and retailer 2 has a fill-rate of 99%. Before the postponement
strategy is implemented, Lo = 0.10 and L; = L, = 0.90. The total inventory-related
cost is 12.80. Two options exist to implement logistic postponement. One is to locate
the Warehouse closer to retailer 1, in which case L; = 0.10 and L, = 0.40, which
results in a system cost of 9.48, a 25.96% cost reduction. The other option is to
locate the warehouse closer to retailer 2 in which case Ly = 0.40 and L, = 0.10,
which results in a system cost of 6.41, a 49.97% cost reduction.

As for the warehouse holding cost, we observe that the cost benefits of logistic
postponement decreases in hy while keeping h; = 1.0. For hg = 0.10, the inventory

cost reduction due to postponement is 73.47% while for hy = 0.95 the cost reduction is
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3.27%. This result suggests that logistic postponement is most cost effective when the
relative value added at the warehouse (the upstream stage) is low. Finally, consistent
with our observation from Subsection 4.5.3, the relative benefit (percentage change)
of logistic postponement is insensitive to the change of number of retailers. The

percentage change remains 36.27% across different J values.

Delaying Value-Added Operations to Retailers

A manager can shift value-added activities from the warehouse to the retailers through

process redesign or re-engineering. Next, we quantify the benefits of such strategies.

To do so, we keep h; = 1.0 and change hy from 0.90 to 0.50. We plot the results in
Figure 4.3.

h0=0.90
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h0=0,50
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Figure 4.3: Impact of Delaying Value-Added Operations to Retailers.

We observe that as the fill rates increase, the cost reduction due to delaying value-
added operations is increasing from 2.95% for 8; = 0.86 to 3.72% for 3; = 0.99. This
result indicates that it is more cost effective to delay the value-added operations to
the retailers with higher fill-rate requirements. The cost benefits are insensitive to
the change of J. For instance, the cost reduction is 3.28% for both J =2 and J = 32.

Now consider the impact of warehouse leadtime and retailer leadtimes on the
strategy of delaying value-added operations to the retailers. We first keep L; = 0.9
and let Lo change from 0.1 to 1.0. The cost reduction (percentage change) increases
from 3.28% to 38.53%. Next, we fix Ly = 0.1 and change L; from 0.1 to 1.0. The

cost reduction (percentage change) decreases from 17.56% to 2.98%.
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Finally consider the impact of logistic postponement on the strategy of delaying
value-added operations to retailers. To do so, we fix Ly + L; = 1.0 and change Lo
from 0.10 to 1.0. Our numerical tests indicate that significant cost benefits of de-
laying value-added operations to the retailers can be achieved when combined with
the logistic postponement strategy. For instance, when Ly = 0.10, the approximate
system inventory holding cost is approximately 11.57 for hg = 0.90 and 11.19 for
ho = 0.50. Hence, delaying value-added operations to the downstream stages re-
duces cost by 3.28%. On the other hand, when Ly = 1.0, thé cost reduction is
38.53%, i.e., (10.71 — 6.59)/6.59.

Increasing Service Levels at the Retailers

Here we investigate how the retailer service-level requirements affect the system in-
ventory cost. To do so, we carry out some sensitivity analysis on cost changes when
one increases the customer fill-rates from 95% to 99%. We plot the results in Fig-

ure 4.4. First, consistent with our intuition, we observe that the system costs increase

Bj=0.99
18 18 - 18 18
M‘ Bj=0.99
" 181 JEDUEDUDEDS e 14 B9 14
12 14 12 12
10 R S S 1] 0 —* . B, Pi=0.99
N oo Sae S 4
Bj=0.95
§ 8 % " Bt % 4 T Bi09s Ze k‘*‘\'\.
8
[ 6 6
4 8 Bi=0.95
4 41 4
2 2 24 2
° v 0 ; . ' . [ v v . y [ v : r v y
0 02 04 08 08 1 g5 02 04 08 08 10 00 02 04 06 08 10 00 02 04 08 08 10
Warehouse Holding Cost (hj=1.0) Warehouse Leadtime (L}=0.90) Retaller Leadtime (L0=0.10) Warehouse Leadtime (LO+L}=1.0}

Figure 4.4: Impact of Fill-Rate Requirements.

in the retailer service-level requirements. Second, we observe that the percentage in-
creases are relatively insensitive to all the other system parameters. For example,
the percentage increases vary from 28.42% for hy = 0.1 to 29.17% for hy = 0.95;
the percentage increase stays at 28.8% when we change J from 2 to 32; and fixing
L; = 0.90 and changing Ly from 0.10 to 1.0, the percentage increase is decreasing

from 28.78% to 26.77%. Note that the analysis is based on the cost ratio, not on the
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absolute cost value. The absolute values might be different.

Comparing System Design Strategies

Finally we illustrate how one can apply the Newsvendor Approximation to compare
system design alternatives under budget constraints. Consider a scenario when a
manager needs to increase the customer fill rates from 95% to 99.5% for a distribution
system with J = 8, X\p = 16, hg = 0.5, h; = 1.0, B; = 95%, Lo = 0.1 and L; =
0.90. The manager would like to keep the total holding cost at least the same while
increasing the fill rates. She has an option of locating the warehouse closer to the
retailers while keeping Lo + L; = 1.0. The Newsvendor Approximation suggests a
postponement strategy with Ly = 0.69 and L; = 0.31 to achieve 99.5% fill-rates at
the retailers without incurring additional holding cost, i.e., the retailer leadtimes L;
need to be reduced from 0.90 to at least 0.31, or equivalently, Lo needs to be increased

from 0.10 to 0.69.

4.6 Connection with the Backorder-Cost Model

A service-constrained model can be equivalently written as a backorder-cost model
only for a single location problem with one-for-one replenishment. To be more exact,
one can obtain the optimal base-stock level for the service-constrained model from a
backorder-cost model by setting the penalty cost b = l—f—ﬁh, where h is the unit holding
cost 7 (Zipkin 2000). However, Boyaci and Gallego (2001) conclude that a similar
conversion does not yield a one-to-one relationship for a multi-echelon serial system.
Van Houtum and Zijm (2000) present an overview of possible relations between a
backorder-cost model and a service-constrained model.

Similarly, an alternative solution methodology to obtain the base-stock levels for

the service-constrained distribution system is to convert the problem to one with

"For discrete demand distributions, the optimal base-stock level for the service-constrained model
is the optimal base stock level of the backorder-cost model plus 1.
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backorder costs at each retailer, henceforth the backorder-cost (BC) method, and
develop solution methodologies for the resulting backorder cost case. In particular,

one can set the backorder cost b; at retailer j as

b = 1 f" 7 h; (4.26)
and convert the service-constrained problem into a distribution system with backorder
costs at the retailers. The exact solutions discussed, for example in Axsater (1990),
can be used to obtain the optimal base-stock levels.

Next we investigate the connection between the service-constrained model and the
backorder-cost method for a distribution system. Our numerical study indicates that
the backorder-cost model leads to insufficient fill rates at the retailers. However, for
a slightly different type of service-level constraint - limit probability of nonnegative
inventory (PONI) 8, that is, Pr(Boj(so) + D; < s;), the backorder-cost method can
guarantee that the service-level requirements at the retailers are satisfied. We refer
the optimization problem in (4.1) that uses the PONI type service-level constraints as
the PONI model. The algorithm, heuristics and approximations discussed throughout
this chapter can be also applied to the PONI model. The following proposition

characterizes the relationship between the PONI model and the backorder-cost model.

PROPOSITION 4 The base-stock levels obtained by the backorder-cost method are fea-
sible for the PONI model. The total average inventory costs calculated from the
backorder-cost model are strictly larger than the optimal total average costs obtained
by the PONI model.

This proposition proves that the backorder-cost method results in (1) feasible
base-stock levels for the PONI model and (2) strictly higher total system costs for

the PONI model. In other words, using the backorder-cost method never yields an

8Boyaci and Gallego (2001) also uses a PONI service-level constraint to study the relationship
between a service-constrained model and a backorder-cost model in a serial system and concludes
that the backorder-cost heuristic incurs significant costs.
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optimal solution for the PONI model. Note that Boyaci and Gallego (2001) illustrate
by numerical experiments that using the backorder-cost model can be costly for a
PONI-constrained serial system. Here, we prove analytically that a backorder-cost
method is costly for a distribution system.

A better understanding of the relationship between the service-constrained models
and the backorder-cost model requires a numerical study. Table 4.7 reports the per-
formance of the backorder-cost method for both the fill-rate constrained model and
the PONI model for 400 non-identical retailer experiments outlined in Section 4.5.
In most cases, the backorder-cost method leads to insufficient fill rates for the fill-
rate constrained model, and incurs significantly high costs for the PONI constrained
model. This result also supports the need for developing methodologies for inventory

management in service-constrained distribution systems.

4.7 Discussion

A distribution system with service-level constraints at each retailer is a fundamental
structure for many supply chains. We provide an algorithm that optimally determines
base-stock levels at each location. Often distribution systems can be very large in
practice. Hence, computational improvements can be very important. We establish
monotonicity results and bounds on the base-stock levels that help improve the com-
putational requirement for the optimization algorithm. These bounds also help us to
develop two heuristics and three approximations.

A heuristic or an approximation is appealing if it passes all or some of the following
tests: (1) Is it close to optimal? (2) Is it simple to describe and use? (3) Can it be used
to test system design issues accurately? (4) Is it robust? A similar discussion can be
found in Zipkin (2000, pg 205). Focusing narrowly on the first criterion leads to a gap
between practice and theory. However, realizing this gap, researchers have started to

develop easy-to-use and robust heuristics and approximations that are insightful (see,
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for example, Lee, Billington and Carter 1993, Gallego, Ozer and Zipkin 2003, Cohen,
Deshpande and Wang 2003, and references therein). Next we clarify separately the
contribution of each of our heuristics and approximations along these dimensions and
their contribution as a whole.

The TSH is the most accurate heuristic with an average error term around 1%.
This result suggests that considering three important stock levels at the warehouse
yields close-to-optimal solutions. The longest computational time required to solve
a problem instance considered here was less than one minute (with a Pentium IV
processor). Hence, the TSH is amenable for application. The NVH is computation-
ally the cheapest heuristic because it is based on solving 2J number of newsvendor
problems. This heuristic yields an average error term of 18%, which is not as small
as that of the TSH. However, it is computationally much faster than the TSH. The
longest time required to solve a problem instance was less than a few seconds. It
also passes tests 2, 3, and 4 very well. For example, the only advanced knowledge
required to use this heuristic is the newsvendor model, which is taught in any opera-
tions management course. This heuristic also provides a step towards establishing the
newsvendor approximation which is in closed-form. Finally, we develop two additional
closed-form approximations that require less data and reveal important relationships
between stock-positioning and fill-rate requirements. These approximations are ro-
bust and simple to describe. They can be used to address system design issues. Note
that the distribution-free approximation does not require one to estimate demand
distributions, which are often very difficult to obtain for a system without demand
history. Hence, all the three approximations pass tests 2, 3 and 4. These approxi-
mations also help us to understand the drivers of system dynamics in a transparent
way.

Given the above discussion, the heuristics and approximations presented in this
chapter contribute to both research and practice in various ways. Some provide

very efficient, computational means to obtain close-to-optimal solutions. Others are
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robust, easy-to-use and can provide insights into system design issues. Given the
computational requirements for optimal algorithms, close-to-optimal and fast heuris-
tics plus simple approximations can enable better management of large-scale systems.
Hence, the results of this chapter also provide a step towards bridging the gap be-
tween theory and practice. A large-scale system may look like an arborescent system
with more than two levels. Such systems can be decomposed into two-level distrib-
ution systems by judiciously allocating decoupling inventories. Next the decoupled
distribution systems can be addressed using the methodologies developed in this chap-
ter. However, it is impossible to obtain the optimality gap (or the error term) of an
allocation strategy for such an arborescent system because the optimal base-stock
allocation is unknown as of today. The system manager can perhaps compare the

cost of any base-stock allocation strategy to the existing system’s performance.

4.8 Appendix A: Proofs

Proof of Lemma 1. We first show that Pr(By;(so) < s;) < Pr(By;(so+ 1) < s;).

PT‘(B()j(S() + 1) < Sj) EDO[P’I'(BO]‘(S() + 1) < 3]') | [Do — (30 + 1)]+]

= P’I"(Do S80)+P7‘(D0=80+1)
+Ep,[Pr(Boj(so + 1) < s5) | Do > so + 1]
= Pr(Dg <sp)+ Pr(Dg=3s0+1)

+ZPT(ZXJ < Sj)P’I‘(D() =sp+1 +’l.)

i=1 =1
> Pr(Dg < so) + Pr(Dg = s+ 1)Pr(X; < s;)
oo i+1
+3 " Pr(>_X; < 5)Pr(Do = so +1+1)
i=1 ij=1

= P"‘(DO SSO)+PT(D0=S()+1)PT‘(X1 <Sj)
+ Z Pr(ZXj < 85)Pr(Dg = sp +m)
m=2 i=1

= EDO[P’I'(BOJ'(S()) < S]') l [Do - So]+]

= Pr(Boj(so) < s;),
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where X represents an independent Bernolli random variable with parameter 6;.
The first and second equalities are by definition of a conditional expectation. The
third equality results from the relation between a binomial random variable and a
Bernoulli random variable. The inequality follows because Pr(X; < s;) < 1 and
PT(Z:;=1 X; < sj) > PT(Z;: X; < s;). Given this result, we write

PT‘(B()]'(S()) +Dj < Sj) = EDj [P’I‘(Boj(So) +Dj < Sj) | Dj]

= ZPT(BOj(SO) < 85— 'i)P'r(Dj = 1)
i=0

< > Pr(Byj(so+1) < s; —§)Pr(D; =)
=0

= PT(B()J'(S() + 1) -+ Dj < Sj),

the inequality follows from the above. |
Proof of Lemma 2. We first show that Pr(By;(so) < s;+1) > Pr(By,(so+1) <
s;). Let B' = By(so), B = Bo(so + 1), and X represents an independent Bernolli
random variable with parameter §;. We have
BI

EpPr(s;+1-» X;>0|B')

=1

PT‘(BOJ'(S()) <s;+ 1)

Pr(B=0)+Pr(B'=1)+ iPT'(Sj +1-— XZ:XJ- > 0)Pr(B’' =)

=2 j=1
oo i—1

= Pr(B=0)+) Pr(sj— > X;+1-X;>0)Pr(B =)
i=2 j=1

Pr(B=0)+ iPr(sj - in > 0)Pr(B’ =1)

=2 j=1

v

= Pr(B=0) +§:Pr(sj - iZ—fXj > 0)Pr(B=1i~-1)
i=2 j

J=1

= i Pr(s; — in > 0)Pr(B =m)
m=0 j

J=1
= PT(B()j(So + 1) < Sj).

The first equality follows because By; | B’ has a binomial distribution. The second

equality is by definition of a conditional expectation. The third equality is from
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Pr(B=0)=Pr(Dy—so—1<0)+Pr(Dy—so—1=0)=Pr(B'=0)+Pr(B' =1).
The inequality is by the definition of Bernoulli random variables. The fourth equality
is because for ¢ > 2, Pr(B' = i) = Pr([Do — so]t = i) = Pr(Doy = so + 1) =
Pr(Dy—sp—1=1i—1)= Pr([Dy—so— 1]t =i¢—1) = Pr(B =i —1). Given this

result, we write

P’I'(BOJ'(S()) —+ Dj <85+ 1) = EDj[PT'(BOj(SQ) + Dj < 85+ 1) l D]]

= ZPT(BOJ'(SO) <s;j+1—19)Pr(D; =1)
=0

> > Pr(By(so+1) <s;—i)Pr(D; =)
=0

= P’T’(B()j(.So + 1) -+ Dj < Sj).

The inequality follows from the above. [ ]

Proof of Proposition 1. For a particular j and base-stock levels s;, let sy I =
min{sy : Pr(Bo(so) + D; < s;) > 3;,Vi # j} , so; = min{so : Pr(By;(so) + D; <
;) > B;}, and sp; = min{sp : Pr(Bo;(s0) + D; < s; +1) > B;}. Clearly, so; > sp;.
By the definition of s} in (4.6),

55(81, .0y 85+ 1,...87) = max{sy”, o} < max{sy?, s0;} = 55(51, ey 85y eory 7). (4.27)
To prove Part 2, We first note that
P’I'(Boj(S() -+ ].) + Dj < S;(SQ)) 2 PT(BOj(So) + Dj < 8;(80)) Z ,Bj. (428)

The first inequality follows from Lemma 1. The second inequality is by definition of
s3(s0) given in (4.3). Again, from the definition of s}(so + 1) and (4.28), it must be
true that s3(so + 1) < s3(so). Otherwise, s3(so + 1) > s7(s0), which contradicts the
definition of s7(so + 1).

Recall that s} = s}(co) and s} = s3(0). Part 3 follows directly from Part 2.
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We prove Part 4 by a contradiction argument. Assume that s¥(so) > s}(so+1)+1.

From the definition of s}(so), we have
P?"(Boj(So) + D]’ < S;(S() + 1) + 1)) < ,Bj. (429)

From Lemma 2, we have Pr(By;(so)+D; < s}(so+1)+1) > Pr(Bo;(so+1)+D; < s}(so+1)) >

B;, the second inequality is by definition of s3(so). These inequalities contradict (4.29),

which concludes our proof. |
Proof of Proposition 2 follows from Proposition 1

Proof of Proposition 3. We first prove that s} > sé-. This relation follows by

hj—ho

1 — (1 — B;) = B;. The inequality holds in equality only when ho = 0, that is, when

e : : o e l . l_ﬂ.
the way s is set in (4.17) and by the definition of s; in (4.4) because 1 — r,-;L >

the warehouse is used for rerouting of incoming inventory.

We next show that s§; > s3. Similarly, this relation follows by the way sj; is

set in (4.18) and by the definition of s% in (4.5) because 1 >
3 1+(ﬂLj‘1)(1‘Lf-+’L_oT;’f— Qo)
-1+—(ﬂiq = ;. The inequality holds in equality only when Lo = 0, that is, when the
2

warehouse is located close to the outside supplier with sufficient supply. Finally,

s;-VH = min(sf;, s5) > min(sf;, s;) > min(s¥, s}) > s

The first two inequalities follow from our previous proofs. |
Proof of Proposition 4. The backorder cost method solves the following opti-

mization problem.
s grllin . hoE[So - D()]+ + Z hjE[Sj - (Boj (So) -+ Dj)]+ + ijE[(Boj(So) + Dj) - Sj]+(.4.30)
TR 7 3>0 i>0

We first show that by solving the backorder-cost model and obtaining the base-
stock levels, one can obtain a feasible solution for the PONI-constrained model. Let
(80, 81, ..., §5) denote the optimal base-stock levels for the backorder-cost model with

b;’s defined as in (4.26), and let (3o, §1,...,5;) denote the base-stock levels for the
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PONI-constrained model.
Given a fixed sg, by definition

gj(So) = min{sj : PT(BQj(SQ) + Dj < Sj) Z ,33}

Given s, the optimization problem in (4.30) can be simplified to solve the following

J single-location problems.
min h;Efs; — (Bo;(s0) + D;)]" + b E[(Boj(s0) + D;) — 51"
for j=1,...,J. Hence,

§j(30) = min{sj . PT(Boj(So) + Dj S Sj) Z J = ﬁ]} (431)
b; + h;

The last equality is by the definition of b; in (4.26). Given the same base-stock level
so at the warehouse, the effective demand at retailer j, Bo;(so) + Dj, has the same
distribution in both models. Therefore, §;(so) = §;(so) for all > 0. Note that by
setting so to §o in (4.31), we obtain Pr(By;{(5) + D; < §;) > B;. This result shows
that base-stock levels (8o, ..., 5s) yield a feasible solution for the PONI-constrained
model. Hence, the backorder-cost model yields a solution that costs at least as much
as the solution obtained by the PONI-constrained model. Next we show that the
backorder-cost model never yields an optimal solution for the PONI model.

Plugging 5;(so) into the objective function in (4.1), we obtain

J

f(s0) = hoE[so — Dol* +» _ h;E[3;(s0) — (Bo; + D)I*

Jj=1

J
= hoElso — Dol* + > _ h;E[3;(s0) — (Bo; + D;)]*.

=1

The equality follows because §;(so) = §;(so) for all 5 > 0 as we described in the above

discussion. Similarly, given the same so, plugging 3;(so) into the objective function
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of (4.30) yields

J
g(s0) = f(s0) + D> _ b;E[(Bo; + D;) — §;(s0)]"
j=1
Let p(so) = Zj=1 b;E[(Bo; + D;) — §;(s0)]*, and thus we have g(so) = f(so) +
p(s0). Now we prove that g* = min,, g(so) is larger than f* = min,, f(so). Since by

definition 3y = argmin f(so) and §p = argmin g(s,), then

g* = 9(%0) = f(50) + p(30) > F(30) = f(50) = S

The first inequality follows because p(sp) is strictly positive, and the second inequality
follows because by definition f(so) achieves its minimum at §,. Therefore, the optimal
total average holding cost of the backorder-cost model is strictly larger than the

optimal cost obtained by solving the PONI-constrained model. ||
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4.9 Appendix B: Tables

I5=01,L; =09
Optimal TSH NVH
J 80, 84 c* 50,87 CTSH Y% $0, 84 ENVH %
2 1,12 9.04 1,12 9.04 06.00 2,12 9.64 6.64
4 1,7 13.12 1,7 13.12 0.00 0,8 16.13 22.94
8 0,5 24.18 0,5 24.18 0.00 0,5 24.18 0.00 5
16 0,3 32.37 0,3 32.37 0.00 0,3 32.37 0.00
32 0,2 48.52 0,2 48.52 0.00 0,2 48.52 0.00
B =90%, hg = 0.3
2 1,12 9.17 1,12 9.17 0.00 0,13 10.13 10.47
4 1,7 13.24 1,7 13.24 0.00 0,8 16.13 21.83
8 0,5 24.18 0,5 24.18 0.00 0,5 24.18 0.00
16 0,3 32.37 0,3 32.837 0.00 0,3 32.37 0.00
32 0,2 48.52 0,2 48.52 0.00 0,2 48.52 0.00
B; = 90%, ho = 0.9
2 1,14 12.9 1,14 12.9 0.00 2,14 13.52 4.81
4 0,9 20.05 0,9 20.05 0.00 0,9 20.05 0.00
8 0,6 32.05 0,6 32.05 0.00 0,6 32.05 0.00
16 0,4 48.07 0.4 48.07 0.00 0,4 48.07 0.00
32 0,3 80.06 0,3 80.06 0.00 0,3 80.06 0.00
8; = 97.5%, ho = 0.3
2 1,14 13.02 1,14 13.02 0.00 0,15 14.03 7.76
4 0,9 20.05 0,9 20.05 0.00 0,9 20.05 0.00
8 0,6 32.05 0,6 32.05 0.00 0,6 32.05 0.00
16 0,4 48.07 0,4 48.07 0.00 0,4 48.07 0.00
32 0,3 80.06 0,3 80.06 0.00 0,3 80.06 0.00
B; = 97.5%, ho = 0.9
L6=005,L; =01
2 18,3 5.32 18,3 5.32 0.00 22,3 6.68 25.56
4 18,2 7.32 18,2 7.32 0.00 28,2 10.51 43.58
8 13,2 12.61 13,2 12.61 0.00 32,2 19.69 56.15
16 21,1 16.41 21,1 16.41 0.00 32,2 35.68 117.43
32 14,1 29.31 14,1 29.31 0.00 64,1 45.32 54.62
8; = 90%, hg = 0.3
2 15,4 6.98 18,3 7.71 10.46 18,4 9.64 38.11
4 18,2 9.71 18,2 9.71 0.00 20,3 15.44 59.01
8 13,2 13.14 13,2 13.14 0.00 16,3 23.77 80.90
16 21,1 20.42 21,1 20.42 0.00 16,2 31.78 55.63
32 14,1 30.09 14,1 30.09 0.00 0,2 48.52 61.25
B; = 90%, hg = 0.9
2 19.4 7.63 19,4 7.63 0.00 24,4 9.27 21.49
4 18,3 11.24 18,3 11.24 0.00 28,3 14.48 28.83
8 19,2 15.64 19,2 15.64 0.00 32,3 27.68 76.98
16 14,2 29.13 14,2 29.13 0.00 48,2 40.48 38.96
32 9,2 57.01 9,2 57.01 0.00 64,2 77.28 35.56
B; = 97.5%, ho = 0.3
2 19,4 10.54 19,4 10.54 0.00 20,5 13.43 27.42
4 18,3 13.63 18,3 13.63 0.00 20,4 19.43 42.55
8 19,2 18.54 19,2 18.54 0.00 24,3 31.04 67.42
16 14,2 29.92 14,2 29.92 0.00 16,3 47.76 59.63
32 9,2 57.06 9,2 57.08 0.00 32,2 78.24 37.12
B; = 97.5%, hg = 0.9

Table 4.1: Optimal and Heuristic Solutions: Identical Retailers (Ao = 16).
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Lo=01,L; =09
Optimal TSH NVH
Bj 30, 35 o* 50,8; CTSH % $0,8; CNVH %
20% 1,6 0.94 1,6 0.94 0.00 0,7 1.33 41.49
30% 0,7 1.33 0,7 1.33 0.00 0,8 2.23 67.67
50% 1,8 2.69 1,8 2.69 0.00 0,9 3.42 27.14
90% 1,12 9.04 1,12 9.04 0.00 2,12 9.64 6.64
95% 1,13 1095 ]1,13 1095 000 | 2,13 1156 5.57
99.9% | 1,18 208 | 1,18 208 000 | 2,18 21.49 3.02
ho=103,J=2
20% 0,3 1.39 0,3 1.39 0.00 0,3 1.39 0.00
30% 4,3 2.54 4,3 2.54 0.00 0,4 3.13 23.23
50% 3,4 4.28 3,4 4.28 0.00 0,5 5.64 31.78
90% 1,7 13.12 1,7 13.12 0.00 0,8 16.13 22.94
95% 1,8 1696 1,8 1696 0.00 4,8 18.37 8.31
99.9% 0,12 32 0,12 32 0.00 0,12 32 0.00
ho=03,J=14
20% 1,6 1.06 1,6 1.06 0.00 0,7 1.33 25.47
30% 0,7 1.33 0,7 1.33 0.00 0,7 1.33 0.00
50% 1,8 2.81 1,8 2.81 0.00 0,9 3.42 21.71
90% 1,12 917 (1,12 917 000 | 0,13 1013 10.47
95% 1,13 1107 | 1,13 11.07 0.00 0,14 12.06 8.94
99.90% | 1,18 2098 [ 1,18 2098 ©.00 | 0,19 22 4.86
ho=0.9,J=2
20% 0,3 1.39 0,3 1.39 0.00 0,3 1.39 0.00
30% | 0,4 313 | 0.4 313 000 | 0,4 313 0.0
50% 3,4 5.19 3,4 5.19 0.00 0,5 5.64 8.67
90% 1,7 1324 | 1,7 1324 0.00 0,8 16.13 21.83
95% 1,8 1708 | 1,8 17.08 0.00 0,9 20.05 17.39
99.90% | 0, 12 32 0,12 32 0.00 0,12 32 0.00
ho=09,J=
Lo=00,L; = 0.1
20% 9,2 059 | 13,1 073 2373 ] 14,1 0.95 61.02
30% 11,2 109 | 15,1 1.19 9.17 | 14,2 2.08 90.83
50% 14,2 2.08 14,2 2.08 0.00 18,2 3.5 68.27
90% 18,3  5.32 18, 3 5.32 0.00 | 22,3 6.68 25.56
95% 17, 4 6.83 24,3 7.29 6.73 22,4 8.65 26.65
99.9% 21,6 12.32 21,6 12.32 0.00 28, 6 14.48 17.53
ho=03,J=2
0% 19,1 08 [ 0,1 09 000 | 12,1 17 889
30% 11,1 1.4 11,1 1.4 0.00 16 ,1 3.03 116.43
50% 15,1 2.69 15,1 2.69 0.00 20,1 4.33 60.97
90% 18,2 7.32 18 ,2 7.32 0.00 | 28,2 10.51 43.58
95% | 16,3 1034 | 16,3 1034 000 | 28,3 1448  40.04
99.9% 23,4 16.96 | 23 4 16.96 0.00 32,5 23.68 39.62
hp=03,J=4
20% 9,2 0.64 13,1 1.26 96.88 8,3 1.02 59.38
30% 4,5 1.18 0,7 1.33 1271} 10,3 1.83 55.08
50% 11,3 2.36 14,2 2.87 2161 12,3 297 25.85
90% 15,4 698 [ 18,3 771 10.46 | 18,4 9.64 38.11
95% 17,4 8.75 14,6 9.92 13.37 | 18,5 11.62 32.80
99.90% | 21,6 1633 | 21,6 1633 000 (24,7 21.04 28.84
ho=0.9,J=2
20% 9,1 0.95 9,1 0.95 0.00 4,2 1.08 13.68
30% 11,1 1.6 1,1 1.6 0.00 8,2 2.44 52.50
50% 10, 2 3.49 15,1 3.79 8.60 8,3 5.12 46.70
90% 18, 2 9.71 18,2 9.71 0.00 20,3 15.44 59.01
95% 16,3 11.81 | 16,3 11.81 0.00 | 20,4 1943 64.52
99.90% 23,4 2214 | 23,4 22.14 0.00 32,5 34.24 54.65
hp=0.9,J=4

Table 4.2: Impact of Fill Rates: Identical Retailers (A\g = 16).
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TSH NVH
# Experiments | mean STDEV | mean STDEV
J=2 80 1.25% 2.86% | 10.08%  5.30%
J =232 80 0.53% 0.81% | 14.29% 5.76%
Ao =16 200 047% 1.61% | 11.83% 6.53%
Ao =64 200 098% 1.84% | 15.73% 6.07%
Ly=0.10 200 0.44% 1.31% | 10.43%  5.09%
Ly =025 200 1.02% 2.05% | 17.13% 6.21%
ho = 0.30 200 0.52% 1.46% | 12.91% 4.14%
ho =0.90 200 094% 1.97% | 14.65% 8.27%
Table 4.3: Summary Statistics for Heuristic Solutions: Non-identical Retailers.
L ] Optimal TSH NVH
Li,L2 81,52 50,51,52 c* 80,381,592 cTSH /€ | 50,851,592  cNvH %€
0.231, 0.200 | 0.966, 0.955 | 4,6,6 706 | 4,6,6 796 000 | 7,6,5 833 465
0.243,0.230 | 0.972,0969 | 5,6,6 818 | 56,6 818 000| 7,6,6 899  9.90
0.181, 0.121 | 0.940, 0.911 4,5, 4 6.09 4,5, 4 6.09 0.00 6,5, 4 7.06 15.93
0.169, 0.135 | 0.935, 0.918 6,4, 4 6.06 6,4, 4 6.06 0.00 6, 5, 4 7.05 16.34
0.229, 0.131 | 0.965,0.916 | 4,6,4 662 | 4,6,4 662 000 | 66,4 759 1465
0.217,0.227 | 0.958,0.963 | 4,6,6 794 | 4,66 794 000| 6,66 893 1247
0.250, 0.250 | 0.975, 0.975 6,6, 6 8.49 6,6, 6 8.49 0.00 8,6,6 9.19 8.24
0.192, 0.159 | 0.946, 0.929 55,4 6.26 5,5,4 6.26 0.00 7,5, 4 7.06 12.78
0.140, 0.145 | 0.920, 0.922 5,4,4 5.78 54,4 5.78 0.00 6,4, 4 6.22 7.61
0.226, 0.104 | 0.963, 0.902 5,6,3 6.42 56,3 6.42  0.00 7,6, 3 7.23 12.62
Ao = 16, hg = 0.30, Ly = 0.25
0.122, 0.242 | 0.911, 0.971 7,8,15 11.88 ] 6,9,15 1192 034 | 4,10,17 12,97 9.18
0.121,0.236 | 0.911, 0968 | 5,9, 15 1122 | 88 14 1205 7.40 | 3 10,17 12.25 9.18
0.204, 0.145 | 0.952,0.923 | 5,13,10 1049 | 8,12,9 11.31 7.82 | 2,15,12 11.51 9.72
0.164, 0.111 { 0.932, 0905 | 8, 10,7 9.73 8,10, 7 9.73 0.00 | 2,13, 10 9.93 2.06
0.245, 0.202 | 0.972, 0.951 | 5,16, 13 13.31 | 8, 15,12 14.13 6.16 | 2,18,15 14.33 7.66
0.123, 0.232 | 0.911,0966 | 7,8 14 11.21 7,8, 14 11.21 0.00 | 3,10,17 12.33 9.99
0.223, 0.187 | 0.962,0.944 [ 6, 14,12 1245 | 6,14,12 1245 0.00 | 2,16,14 12.54 0.72
0.129, 0.127 | 0.914, 0.913 599 8.53 8, 8,8 9.34 9.50 | 2,11, 11 9.54 11.84
0.223, 0.171 | 0.961, 0.936 | 6, 14,11 12.00 | 6,14,11 12.00 0.00 | 2, 16,13 12.09 0.75
0.123, 0.176 | 0.912,0.938 | 7,8, 11 10.01 6,9, 11 10.05 0.40 | 4,10,13 11.09 10.79
Ao = 64, hg = 0.90, Lo = 0.10
0.100, 0.185 | 0.900, 0.942 1,4,5 6.15 1,4,5 6.15 0.00 0,4,6 6.17 0.33
0.120, 0221 | 0.914,0961 | 1,4,6 663 | 1,4,6 663 000 | 0,57  7.62 1493
0.188,0.172 | 0.944,0.936 | 1,55 656 | 1,55 656 0.00] 0,66 754 14.94
0.153, 0.234 | 0.926, 0.967 1,56 7.33 1,5,6 7.33 0.00 0,5 7 7.34 0.14
0.223, 0.212 | 0.962, 0.956 1, 6,6 7.94 1,6, 6 7.94 0.00 0,7,6 7.94 0.00
0.126, 0.229 | 0.913, 0.964 1,4,6 6.60 1,4,6 6.6 0.00 0,5, 7 7.58 14.85
0.207,0.177 | 0.953,0939 | 2,55 736 | 1,6,5 736 000| 0,6,6  7.36  0.00
0.146,0.102 | 0.923,0.901 | 2,4,3 546 | 2,4,3 546 000 | 0,54 547  0.18
0.114, 0.155 | 0.907, 0.927 1,4,5 6.28 1,4, 5 6.28 0.00 0,55 6.29 0.16
0.122,0.125 | 0911,0912 | 1,44 547 | 1,4,4 547 000 | 0,55 645 17.92
Ao =16, hg = 1.0, Lo =0.10

Table 4.4: Instances for Non-identical Retailers with J = 2.
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*

J c* CNA enva  cpra | Lo c CNA CNVA  CDFA
2 8.02 6.67 7.96 18.00 | 0.10 9.09 7.62 9.55 18.78
3 9.64 7.90 9.75 20.70 | 0.20 8.88 7.44 9.16 18.97
4 11.64 8.94 11.26 22.97 | 0.30 8.69 7.22 8.77 18.85
6 14.89 10.88 13.79 26.78 [ 0.40 8.49 6.97 8.37 18.51
8 16.41 12.13 15.92 30.00 | 0.50 8.02 6.67 7.96 18.00
10 20.12  14.16 17.80 32.83 [ 060 7.45 6.34 7.54 17.31
12 23.38 17.14 19.50 35.39 | 0.70 7.26 5.94 7.12 16.39
14 2742 19.74 21.06 3775 | 0.80 7.07 5.47 6.68 15.18
16 25.10 16.70 22.51 39.94 | 0.90 6.11 4.88 6.23 13.42
RZ= 08.92% 96.69% 96.68% R?= 97.88% 96.32% 02.48%
B; = 0.90, ho = 0.50, Lo = 0.50 B; = 0.90, ho = 0.50, J =2
B c* CNA cNnva  cpra | WO ¢ CNA CNVA  CDFA
0.860 6.94 5.88 7.27 14.87 0.1 7.60 6.01 6.36 14.68
0.875 7.64 6.15 7.51 15.87 02 1.7 6.18 6.78 15.79
0.900 8.02 6.67 7.96 18.00 03 7.95 6.35 7.19 16.65
0.915 8.29 7.04 8.27 19.69 04 7.99 6.52 7.58 17.37
0.930 8.90 7.45 8.63 21.87 0.5 8.02 6.67 7.96 18.00
0.945 9.53 7.94 9.06 24.87 0.6 8.06 6.80 8.33 18.57
0.960 10.21 8.61 9.61 29.39 0.7 8.09 6.91 8.68 19.10
0.975 11.97 9.45 10.36 37.47 0.8 8.13 7.00 9.02 19.59
0.990 13.95 11.02 11.71 59.70 09 8.16 7.08 9.36 20.05
R?= 08.94% 99.01% 95.37% R? 90.79% 87.27% 93.09%
LO=Lj =05, hg =050, J =2 B; =090, Lo=L;=05J=2
Table 4.6: Regression Analysis for Approximations (Ap = 16).
Fill-Rate Constrained Model | PONI Constrained Model
# Experiments | mean STDEV mean STDEV
J=2 80 19.07% 19.27% 54.63% 21.39%
J =32 80 -30.35% 9.47% 51.23% 13.52%
A =16 200 -14.98% 21.17% 54.50% 16.41%
Ao =64 200 -0.41% 16.42% 57.72% 29.06%
Lo =0.10 200 -14.69% 14.95% 47.04% 20.07%
Ly =0.25 200 -0.69% 22.42% 65.19% 23.47%
hg = 0.30 200 -10.89% 17.71% 52.74% 20.68%
hg = 0.90 200 -4.49% 22.14% 59.48% 25.86%

Table 4.7: Summary Statistics for Backorder-cost Method: Non-identical Retailers.
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